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Tis paper seeks to improve mobile communications performance by integrating artifcial intelligence (AI) techniques. Te study
is centered on device-to-device (D2D) communication, which has emerged as a signifcant aspect in the 5th generation of mobile
networks (5G) and is expected to be extended to the 6th generation (6G). Based on the fuzzy system, the proposed solution tackles
the critical issue of energy harvesting in D2D communication.Te solution presents a support system that selects the best relay for
the transmitter-receiver communication to minimize energy consumption and maximize the network’s lifetime. Minimizing
energy consumption optimizes the network’s lifetime, thus providing a reliable and efcient communication system. Te ap-
proach taken in this study ofers a novel perspective in addressing the energy harvesting challenge in D2D communication. It is
expected to have a signifcant impact on the performance of mobile communications.

1. Introduction

As per Cisco’s newly renamed Annual Internet Report [1],
the total number of networked devices around the world is
projected to reach 29.3 billion by 2023, exceeding the human
population by more than three to one. Tis represents
a signifcant increase from the 18.4 billion connected devices
in 2018. A new generation of cellular networks is required
(5G). Customers require a network that can accommodate
a wide range of access requirements with high speed, low
latency, guaranteed quality of service, and the ability to
manage multiple connected devices [2].

To meet customer expectations, the 5G network must
meet certain demands, including a ten to hundred times
higher data rate per user, more than a thousand times higher
volume of mobile data per unit area, a signifcantly increased
number of connected devices, a ten-fold increase in battery
life for low-power devices, and a fvefold reduction in end-
to-end latency [3, 4].

Device-to-device (D2D) communication is a type of
wireless communication where two mobile devices can
communicate directly without going through a central
network. Tis allows for faster, more efcient, and more
reliable communication compared to communication
through a central network, particularly in areas where the
central network is congested or inaccessible.

With D2D communication, devices can exchange data,
fles, music, and video in real time. Tis technology can also
be used for location-based applications, social networking
services, and multimedia content delivery.

D2D communication can be implemented over wireless
technologies such as 4G or 5G cellular networks, Wi-Fi, and
personal communication services (PCS).

Minimizing energy consumption is important in device-
to-device (D2D) communication because it can greatly im-
pact the overall efciency and performance of the network. In
D2D communication, devices communicate directly with
each other, bypassing the need for a central network
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infrastructure [5]. Tis eliminates the need for transmitting
data through intermediate nodes, making communication
faster and more efcient. However, this direct communica-
tion also puts a greater strain on the battery life of the devices,
as they are constantly transmitting data. Minimizing energy
consumption can help extend the battery life of devices,
allowing them to communicate for longer periods without
needing to be recharged [6–9].

Tis paper proposes a novel approach to address the
need for reducing energy consumption in D2D communi-
cation networks and enhancing network performance. Our
study aims to reduce the energy consumption of connected
devices in D2D communication networks while ensuring
that the network can meet the growing demands of cus-
tomers and maintain high-performance standards.

Te study presents a comprehensive system model and
problem formulation for D2D communication. Tis will
include a detailed description of how D2D communication
operates and the specifc problem that our study is trying to
address. A key study component introduces a fuzzy model,
a mathematical tool that models uncertainty and vagueness
in real-world problems. Te fuzzy model consists of three
stages: fuzzifcation, fuzzy inference, and defuzzifcation.
During fuzzifcation, the data from the system is trans-
formed into a fuzzy representation; during fuzzy inference,
the data is analyzed using predefned rules; and during
defuzzifcation, the output is transformed back into a nu-
merical representation for analysis.

We will also provide information on the simulation
parameters used in the study, which will give readers an un-
derstanding of the conditions under which the study was
conducted and the limitations and assumptions of the study.
Te results and discussion section will present and analyze the
study’s fndings, providing a detailed examination of the results
and their implications for the feld of D2D communication.

Finally, the conclusion will summarize the main results
and contributions of the study, providing a concise overview
of the key results and highlighting the implications of the
fndings for future research in the feld of D2D communi-
cation. Te proposed approach not only addresses the issue
of energy consumption in D2D communication networks
but also ensures that the network can meet the growing
demands of customers while maintaining high-performance
standards, making it a signifcant contribution to the feld.

2. Related Works

Te works [10, 11] delve into resource allocation and power
management in intracellular D2D communication networks.
Reference [10] emphasizes reducing energy consumption by
implementing efcient resource allocation and power man-
agement strategies. On the other hand, Kim [11] adopts
a diferent approach to improving energy efciency in D2D
networks. Both studies aim to optimize the performance of
D2D communication systems by minimizing energy waste
and maximizing energy efciency.

Te literature in [12] investigates resource allocation for
LTE D2D communication networks, using mathematical
programming algorithms to minimize energy consumption

while maintaining a high quality of service.Te study aims to
fnd the optimal allocation of resources that balances energy
consumption and quality of service.

Te work provided in [13] introduces a graph-based
power management method to minimize energy con-
sumption in D2D communication networks. Te method
allocates resources and efciently manages power con-
sumption, reducing energy waste and maximizing energy
efciency.

Conversely, authors in [14] examine the impact of dif-
ferent channel allocation policies on energy consumption in
D2D communication networks. Te study sheds light on the
relationship between channel allocation and energy con-
sumption and how this relationship can be leveraged to
optimize the energy efciency of D2D networks.

In [15], the authors propose an energy-efcient channel
reusing scheme for multi-D2D (device-to-device) links in
communications. It frst analyzes the energy efciency of
a single D2D link in both noncooperative mode (NCM) and
cooperative mode (CM), showing that the D2D link’s ef-
ciency is mainly determined by the location of the cellular
user equipment (CUE) that shares resources with the D2D
pair. Based on this analysis, a location-based algorithm
(LBA) is proposed to select the optimal CUE for each D2D
pair, aiming to maximize the overall energy efciency of all
D2D links. Numerical results demonstrate that the proposed
LBA efectively improves the D2D system’s overall energy
efciency while ensuring the target rate for each D2D link.
Moreover, the proposed LBA does not require channel state
information (CSI) for all the involved links, signifcantly
reducing feedback overhead and computational complexity.

A proposed method to minimize energy consumption
using game theory in D2D communication networks is
deliberated in [16, 17]. Te study explores how game theory
can be applied to optimize resource allocation and power
management in D2D networks to reduce energy con-
sumption and improve energy efciency.

Concerning the research in [18], this paper focuses on
providing real-time monitoring and response services for
smart cities in an environmentally-friendly manner. Te
authors propose integrating green communication tech-
niques, particularly device-to-device (D2D) communication,
to improve data rates and reduce energy consumption. Te
research aims to optimize uplink subcarrier assignment and
power allocation in D2D-based cellular networks, minimizing
energy costs while meeting data rate requirements. Te
complexity of the problem is addressed by decomposing it
into subproblems for subcarrier assignment and power al-
location, using a heuristic algorithm, and transforming
constraints into a convex optimization problem.

In [19], the authors investigate the impact of network
coding on energy consumption in D2D communication net-
works. Te study proposes a method to improve energy ef-
ciency by reducing energy consumption through network
coding techniques. Te goal is to minimize energy waste and
maximize energy efciency in D2D communication networks.

Te optimization of energy consumption in D2D
communication networks is a critical research area that has
received considerable attention in recent years. Researchers
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have explored various techniques, such as resource alloca-
tion and power management strategies, to reduce energy
waste and improve energy efciency in D2D networks. Te
studies discussed in this review highlight the importance of
considering various factors, such as network topology,
communication range, channel allocation policies, and
trafc load, when optimizing energy consumption in D2D
networks.

Overall, the literature shows that there is still much room
for improvement in terms of energy optimization in D2D
communication systems.

3. System Model and Problem Formulation

In this section, we will explore the defnition of a D2D
communication system model that considers diferent to-
pologies and D2D management in terms of control and
discovery.

We will thoroughly analyze our methodology for selecting
the most suitable relay for DR-DC communication. We will
closely examine the transmitted power consumed, focusing
on energy efciency. Finally, we will thoroughly describe our
energy harvesting strategy for D2D communication.

3.1. D2D Communication Model. In device-to-device com-
munication, various topologies are used. Specifcally, D2D
communications are classifed into four distinct categories by
many authors and specialists, as shown in Figure 1 [20–22].

(i) DR-OC (device relaying with operator controlled
link establishment): Tis is a D2D communication
mode where a device located in a poorly covered
area or on edge can relay information to the base
station via other neighboring devices. Te base
station manager controls the link and allocates
resources, either partially or completely [20, 21].

(ii) DC-OC (direct D2D communication with operator
controlled link establishment): In this case, the
source and destination devices communicate di-
rectly without the need for routing data through
a base station. However, the base station still plays
a role in establishing control links for efcient radio
resource management [20, 21].

(iii) DR-DC (device relaying with device controlled link
establishment): In this mode, D2D communication
operates similarly to DR-OC but without the in-
volvement of a base station. Te source and target
devices coordinate communication and rely on
relay devices for data transmission [20, 21].

(iv) DC-DC (direct D2D communication with device
controlled link establishment): In this mode, the
source and target devices communicate directly
without needing a base station to control the
connection [20, 21].

3.2. D2D Communication Management and Discovery.
Tis classifcation involves mobile devices and the network
in supporting D2D communications.

(i) D2D control: Tere are three types of control in D2D
communication: full control, light control, or hybrid
control. With full control, the operator network fully
manages the communication, including authentica-
tion and resource allocation. With light control, the
D2D terminals can communicate with each other with
minimal network intervention, with the network only
responsible for terminal authentication when con-
nected. Hybrid control involves critical aspects being
managed by the network, such as authentication and
radio resource allocation, while noncritical aspects are
managed autonomously by the D2D equipment.

(ii) D2D discovery: Tis task is crucial for D2D com-
munications, where devices search for neighboring
devices to initiate communication. Te discovery
process can be split into two steps: discovery ini-
tiation and discovery control.

(iii) Te initiation step occurs when two users want to
share content. Te control step occurs when both
users are already engaged in cellular communication
and come within close range of each other [23, 31].

Te focus of this study is the DR-DC case, deemed the
most energy-efcient D2D communication topology,
intending to fnd a net power gain in a network of fve devices.

Tese devices are named, respectively, as UEA, UEB, and
UERi. with i ∈ {1, 2, 3}.

Te notations used in the rest of this work are given in
Table 1:

Te parameters listed in Table 1 are as follows:

(i) UEA represents the source device that transmits its
own data.

(ii) UEB represents the destination device that receives
data from UEA.

(iii) UERi represents the relay device, which relays data
from UEA to UEB.

DC-OC DR-OC

DC-DC DR-DC

BS

(a) (b)

(c) (d)

Direct D2D Communication
Control Link
Device relaying

Figure 1: D2D communication topologies.
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In the DR-DC topology, UEA transmits its data DUEA to
UEB via the relay node UERi.

Tis considers four transmissions inside the network,
defned as follows:

(1) UEB sends a discovery signal to UERi
(2) UERi sends a discovery signal to UEA
(3) UEA sends its data DUEA to UERi and
(4) UERi sends data from UEA (DUEA) to UEB
Te considered tested topology is illustrated in Figure 2.
Tis fgure presents the DR-DC communication scheme

as proposed in this paper.
Te forthcoming section will show how someone will

describe and discuss diferent situations.

3.3. Problem Formulation. As previously mentioned, the
objective is to develop a viable strategy to maximize the
network’s lifetime in D2D communication. Tis entails
implementing energy-savingmeasures for devices within the
network. Achieving this goal depends on accurate and ef-
fective management to optimize the network’s parameters.
Key parameters include network lifetime and energy con-
sumption by the equipment.

Te presence of an obstacle such as a wall does not afect
energy losses in the simulation since the simulation scenario
remains unchanged compared to the classical case, and the
approach used has no impact on the space utilized.

To address these factors, we propose a DR-DC commu-
nication scheme that utilizes a fuzzy logic procedure to select
the appropriate relay, thus ensuring a longer network lifetime.

To accomplish this objective, we present the following
detailed algorithm, which consists of a small number of
straightforward steps:

Step 1

(i) Te distance between the two observed devices
(UEA–UERi) must be calculated. Afterward, any
terminals that have a distance exceeding 100m
should be discarded. Tis maximum distance’s
length is justifed in [12]. In other words, these
terminals could exist at a position more than 100m
or perhaps they have not yet been discovered.

(ii) Next, we will determine the distance between UER
and UEB.

To do this, we frst establish the Cartesian coordinate
system for UEA, UEB, and UERi devices. We move UER along
a line that is parallel to the line connectingUEA and UEB.Te
coordinates for UEA, UEB, and UER are (0, 0), (dAR, 0), and
(xR, d), respectively. With this information, we can then
calculate the distance between UERi and UEB as follows in
the following equations:
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Step 2. We will calculate the transmission power provided
by each terminal. Te frst assumption is that the bandwidth
for transmitting data remains constant over time. To de-
termine the potential gain in energy efciency within a D2D
network, we must assess the overall energy consumption of
the network; we must analyze the overall network’s energy
consumption.

First, we use Shannon’s capacity formula because, as
shown in the literature, such a rule gives the relationship
between the data transmitted rate coming from the user
equipment j (Dj) and the needed power by the user
equipment j for a transmission of that data rate Dj (Pj), as
given in [18, 19]:

C � W.log2 1 +
S

N
􏼒 􏼓, (3)

where W is the width of the bandwidth, S the signal strength,
and N is the power of additive white Gaussian noise
(AWGN)

S � Pj|h|
2
kr

− α
, (4)

where k is a constant related to antenna gain, h represents
channel fading at transmitter and receiver (Assuming that
fading follows the same law at both the transmitter and
receiver), r is the distance between the transmitter and the
receiver, and α is the path loss exponent.

We can see that the power expression can be deduced
from this Shannon’s rule as it follows:

Table 1: Defned notations.

Symbol Description
UEA User equipment A
UEB User equipment B
UER User equipment Ri (relais)
dAB Distance between UEA and UEB
dARi Distance between UEA and UERi
dBRi Distance between UEB and UERi
DUEA Data transmitted by UEA
DUEB Data transmitted by UEB
DUERi Data transmitted by UERi

Source
UEA

UER1

UER2

UER3

UER4

Destination
UEB

Figure 2: Proposed topology.
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Furthermore, we have the following expressions for the
power of the diferent devices:
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α
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where j ∈ UUEA, UUEB, UUERi􏼈 􏼉

Furthermore, we have the following expressions for the
power of the diferent terminals:
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We aim to determine the overall energy efciency gain
for the entire network. Tis total entire network’s power
consumption could be expressed as follows:

PT � PUEA + PUEB + PUERi, (11)

where PUEA is the total power consumed by UEA, PUEB is the
total power consumed by UEB, and PUERi is the total power
consumed by UERi.

PRi
T is the total powers for the DR-DC topology.

P
Ri
T �

N

|h|
2
k

.Υ dARi, dBRi( 􏼁. Φ CA( 􏼁 +Φ Cbeacon( 􏼁( 􏼁, (12)

where Υ(x, y) � xα + yα, dARi, and dBRi are, respectively, the
distances between UEA and UERi, and UEB and UERi.

In the DR-DC topology, the transmission of DUEA data
from UEA to UEB occurs through the UER relay device in
four steps:

(i) UEB sends a beacon to UER
(ii) UER sends a beacon to UEA
(iii) UEA sends its DUEA data to UER
(iv) UER sends the data from UEA (DUEA) to UEB
Te timing process of these transmissions is illustrated in

Figure 3.

Te total energy consumed by the DR-DC topology can
be deduced from the temporal processes involved. By an-
alyzing the power consumed during the transmission from
node A to node B, from node B to node R, from node R to
node A, and from node R to node B, as well as the duration of
each transmission, we can calculate the total energy con-
sumed by the network using the following equation:

ET � P
x
B⟶R.T1 + P

x
R⟶A.T2 + P

x
A⟶R.T3 + P

x
R⟶B.T4,

(13)

where ET represents the total energy consumed by all UEs.
Px

B⟶R is the power consumed during the transmission from
node B to node R. T1 is the duration of the transmission
from node B to node R. Px

R⟶A is the power consumed
during the transmission from node R to node A. T2 is the
duration of the transmission from node R to node A. Px

A⟶R

is the power consumed during the transmission from nodeA
to node R. T3 is the duration of the transmission from node
A to node R. Px

R⟶B is the power consumed during the
transmission from node R to node B. T4 is the duration of
the transmission from node R to node B.

Figure 4 represents the total energy consumption of
mobile devices (smartphones) at each moment in the
classical case, meaning it provides a discrete representation
of energy consumption, displaying values at specifc mo-
ments in time.

Step 3. Tis step involves implementing a fuzzy decision
support system (FDSS) approach.

To ensure a reliable and efcient connection, adopting
a fuzzy decision support system approach in the selection
process of the most qualifed relay is necessary. Te FDSS
will consider various important factors such as signal
strength, distance, reliability, and other relevant character-
istics of the relays.

By processing this information through a set of fuzzy
rules, the FDSS will recommend the best relay to use for the
requested connection. Tis approach allows for a more

T 1
T 2

T 3
T 4

UUEA UUER UUEB

DEUA

DEUA

Disco
ver s

ignal
Disco

ver s
ignal

Figure 3: Time processes of DR-DC topology transmissions.
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nuanced and sophisticated evaluation of the relays, con-
sidering both certain and uncertain information.

Implementing an FDSS approach in the relay selection
process will greatly improve the overall performance and
quality of the requested connection.

4. Fuzzy System Model

Fuzzy logic is a mathematical theory that extends classical
(or binary) logic by allowing variables to have degrees of
truth rather than just being true or false. Te “degree of
truth” concept is represented as a value between 0 and 1,
where 0 represents false and 1 represents true. Tis enables
fuzzy logic to handle uncertainty and imprecision more
fexibly and naturally.

Fuzzy logic is used in various felds, such as artifcial
intelligence, control systems, decision-making, and expert
systems. It can be used to model human reasoning, where
knowledge about a particular problemmay be incomplete or
ambiguous.

Fuzzy logic operates on linguistic variables, which are
variables that can take on values described by words or
phrases rather than numbers. Tese linguistic variables are
then transformed into fuzzy sets, which describe the degree
of membership of a value in a particular set. Tese fuzzy sets
are then manipulated using fuzzy rules, which describe the
relationship between inputs and outputs in a way that re-
sembles human reasoning [24–28].

Overall, fuzzy logic provides a more intuitive and fexible
way of dealing with uncertainty and imprecision compared
to classical logic, making it a valuable tool in various felds.

Te internal workings of a decision support system
(DSS) will utilize fuzzy logic analysis to reach the desired
outcome, as shown in Figure 5.

In this scenario, the inputs of the decision support
system are the transmission power (I1) and the distance (I2)
between equipment that could be selected to play the relay
role. Tese inputs are analyzed using fuzzy logic analysis, as
shown in the schematic representation of the system in
Figure 6.

Te input of transmission power is represented by (I1),
and the input of distance is represented by (I2). Te inputs
are processed through the fuzzy logic approach to reach the
desired result. Te purpose of using fuzzy logic analysis in
this system is to provide a clearer understanding of the
relationship between the transmission power and distance
when selecting equipment to play the relay role [29].

4.1. Fuzzifcation. In a fuzzy model with two fuzzy variables
(distance and emission power), fuzzifcation transforms the
numeric inputs of distance and emission power into fuzzy
sets, representing the degree to which each input belongs to
a given fuzzy set. Tis can be accomplished using relevance
functions, which assign a relevance degree between 0 and 1
to each possible input [30].

For example, suppose the distance can vary between
0 and 50meters, and the emission power can vary between
10mW and 100mW. In that case, we can defne fuzzy sets
such as “Short Distance” (distance less than 25m), “Average
Distance” (distance between 12m and 25m), and “Long
Distance” (distance between 25m and 50m).

Similarly, we can defne fuzzy sets for emission power,
such as “Low Power” (power less than 25mW), “Average
Pawer” (power between 25mW and 75mW), and “Maxi-
mum Power” (power greater than 75mW).

Te creation of fuzzy linguistic variables, the execution
of fuzzifcation, and the selection of the ideal number of
division levels are decisions stemming from an iterative
procedure that encompasses multiple simulations. Tese
choices are founded on a combination of theoretical ex-
pertise, practical familiarity, and empirical assessments, all
with the intention of ensuring that the model efectively
caters to the specifc requirements of the problem at hand.

Fuzzifcation, in turn, involves utilizing relevance
functions to allocate a degree of relevance to each input,
namely distance and emission power, based on their
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Figure 4: Total energy consumption in DR-DC communication.
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Figure 5: General structure of a decision support system including
fuzzy logic.
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membership in the respective fuzzy sets. Te outcome of
fuzzifcation produces two relevance functions that char-
acterize the importance of each input for each fuzzy set.

4.2. Fuzzy Inference. Fuzzy inference in this model refers to
the process of using fuzzy logic to reason about the re-
lationship between the inputs and the desired output. Te
fuzzy inference process involves mapping the inputs, rep-
resented by fuzzy sets, to the output space using a set of rules
defned by the system designer. Te rules specify how the
input fuzzy sets should be combined to form the output
fuzzy set. Tis process is often referred to as “fuzzifcation.”

Te fuzzy inference engine evaluates the rules by using
a combination of fuzzy set operations, such as intersection
and union, to determine the degree to which each rule is
satisfed by the inputs. Te output fuzzy set is obtained by
aggregating the results of all the rules.Tis fuzzy output set is
then defuzzifed to obtain a single, crisp output.

In this model, fuzzifcation transforms the inputs I1
(transmission power) and I2 (distance of equipment selected
as a relay) into fuzzy sets. Te fuzzy sets are then processed
through the fuzzy inference engine, which uses a set of rules to
combine the input fuzzy sets and generate an output fuzzy set.

Finally, the output fuzzy set is defuzzifed to obtain
a crisp output representing the desired result.

Tis system has two inputs, I1 and I2, which are
transformed into linguistic variables, and an output,UR. Te
fuzzy sets related to the information are shown in Table 2.

Table 3 summarizes the various fuzzy rules that defne
the logical relationship between the input variables and the
output variables.

Instead, rules are typically selected in a way that best
refects the logic of the system and provides relevant results
for the specifc problem being addressed.

Te rules are combined using AND and OR opera-
tions, where the AND operator acts on the variables
within a rule, while the OR operator connects diferent
rules. Tere are several ways to perform these operations
in inference, and they relate to the membership functions,
including [24].

(i) MAX-MIN inference method (Mamdani)
(ii) MAX-PROD inference method (Larsen)
(iii) SOM-PROD inference method (Sugeno)

In this case, we opted for the min-max method due to its
ease of implementation. Tis method associates “min” with
logical “AND” and “max” with logical “OR.”

Figures 7–9 illustrate, respectively, the input variables I1
(P), I2 (D), and the output variable UR.

Te input variable I1 (P) represents the power con-
sumption of the relay node in device-to-device communi-
cation. Te fuzzy logic algorithm uses this variable to
determine the most energy-efcient relay node for data
transmission. Te higher the value of I1 (P), the greater the
energy consumption of the relay node, and vice versa. Te
goal is to choose the relay node with the lowest power
consumption to transmit data and minimize energy waste,
thus improving the system’s overall energy efciency.

Input variable I2 refers to the distance (D) between the
transmitter and the potential relay node. It represents the
physical proximity of the relay node to the transmitter, and it
is used as an input in the fuzzy logic system to determine the
suitability of a particular node as a relay. Te closer the relay
node is to the transmitter, the more likely it is to be selected
as the relay, as it will result in a lower path loss and a stronger
signal.

Te output variable UR refers to the uncertainty level of
the proposed energy harvesting and connectivity-maintaining
algorithm based on fuzzy logic. It determines the appropriate
relay node to be selected based on energy consumption and
the distance between the transmitter and receiver. Te output
variable UR is calculated using the fuzzy logic rules, which
consider the input variables I1 (power) and I2 (distance). Te
output variable UR determines the relay node with the lowest
energy consumption and the best connectivity, ensuring that
the energy and connectivity requirements are met.

RULES

I2
I1

FUZZIFICATION INFERENCE DEFUZZIFICATION UR
(Use Relay)

Figure 6: Illustration representing the logic system.

Table 2: Te information is associated with fuzzy sets.

Information Description
LP Low power
AP Average power
MP Maximum power
SD Short distance
AD Average distance
LD Long distance
NU Not used
MU Moderation used
HU Heavily used

Table 3: Fuzzy rule table.

LP AP MP
SD MU MU MU
AD NU HU MU
LD NU MU HU
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Te frequent use of the MAX-MIN inference method is
due to its practicality, which makes it easier to implement.

4.3. Defuzzifcation. Defuzzifcation is the fnal process in
a fuzzy logic system where the fuzzy output obtained from
the fuzzy inference step is transformed into a precise nu-
merical decision. Its objective is to provide an accurate value
that can be used to select the appropriate relay based on the
transmission power (I1) and distance (I2) characteristics.

Once the input variables I1 and I2 are provided to the
system, a fuzzy logic analysis is performed to generate
a fuzzy output.Tis fuzzy output represents diferent degrees
of membership to diferent possible relays based on the
transmission power and distance characteristics.

Next, defuzzifcation is performed using the centroid
method. In this method, the aggregated fuzzy set is repre-
sented by a curve of fuzzy members, where each fuzzy
member represents the degree of membership of a precise
value in the fuzzy set. Te centroid of this curve is calculated
by considering the degrees of membership and their cor-
responding precise values.

Te centroid represents a selected relay using a precise
numerical value corresponding to the optimal relay. It is
calculated by taking a weighted average of the precise values,
where the weights are determined by the respective degrees
of membership of the fuzzy members. Tus, fuzzy members
with higher degrees of membership have a greater impact on
the centroid.

Trough defuzzifcation and the use of the centroid
method, it is possible to determine the most appropriate
relay for the role using the input variables I1 and I2. Te
precise numerical decision obtained can then be used to
choose the ideal equipment for the relay role based on the
transmission power and distance characteristics.

5. Simulation Parameters and Results

To meet the requirements of D2D communication with the
relay application and minimize energy consumption in the
network, fuzzy simulation parameters will be employed. Tese
parameters will be used to simulate the behaviour of the sender
(UEA), receiver (UEB), and three relays (UER1,UER2, andUER3).

Te goal is to optimize the network’s energy consumption
while ensuring that the D2D communication requirements
are met.

(1) Distance: Te distance inputs can be defned in
a range of 0 to 100meters, with discrete values such as
10, 50, and 100.

(2) Power:Te power inputs can be defned on a range of
25 to 100mW, with discrete values such as 25, 50,
and 100.

(3) Fuzzy rules: Fuzzy rules can be defned to refect the
optimal use decision of the relay based on distance
and power. For example, if the distance is low and the
power is high, the relay is not used, but if the distance
is high and the power is low, the relay is used.

(4) Fuzzy membership functions: Fuzzy membership
functions can be defned to represent the (distance)
and (power) inputs.
For example, a fuzzy membership function for dis-
tance may have values of “Short Distance,” “Average
Distance,” and “Long Distance” and a fuzzy mem-
bership function for power may have values of “Low
Power,” “Average Power,” and “Maximum Power.”

(5) Fuzzy inference algorithm: Te fuzzy inference al-
gorithm can be defned to produce an output using
the inputs, fuzzy rules, and fuzzy membership
functions. For example, the algorithm may use the
max-min method to produce an output using the
most relevant fuzzy rules.

In this study, we conducted a comprehensive compar-
ison between the use of a smart fuzzy system and the classical
case for DR-DR communication in a relay network. Our
objective was to assess the impact of the fuzzy system on the
total energy consumption within the network.

Te study’s results, which are displayed in Figure 10,
provide strong evidence for the efcacy of using a fuzzy
system in DR-DR communication networks. In a 3-relay
network, for instance, the total energy consumption without
the fuzzy system was observed to range between 10 and
17 joules. However, when a fuzzy system was implemented,
the energy consumption was found to be between 7 and
15 joules, demonstrating a signifcant reduction. Te same
pattern was seen in a 5-relay network, where the total energy
consumption without a fuzzy system was between 15 and

μ

LP AP MP

10 mW 50 mW 100 mW

Figure 7: Input variable I1 (P).

μ

LDADSD

0 25 50 m

Figure 8: Input variable I2 (D).

μ

HUMUNU

0 50 100 %

Figure 9: Output variable UR.
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23 joules, while with a fuzzy system, it was between 12 and
21 joules. Tis trend held even in a 10-relay network, where
the total energy consumption without a fuzzy system was
between 27 and 41 joules, while with a fuzzy system, it was
between 24 and 38 joules.

Te study’s results clearly indicate that using a fuzzy
system can result in signifcant energy savings within DR-DR
communication networks. In fact, the results showed that the
total energy consumption was reduced by 11.76% for a 3-relay
network, 8.69% for a 5-relay network, and 7.31% for a 10-relay
network.

Tese fndings highlight the potential for energy ef-
ciency that can be achieved by implementing a fuzzy system
in DR-DR communication networks.

Te study examined the impact of a fuzzy system on the
average energy gain in DR-DC communications. Te results
revealed that the average energy consumption was 21.16 joules
without the fuzzy system. However, with the implementation
of the fuzzy system, this average consumption was success-
fully reduced to 18.31 joules.

Tese fndings, as depicted in Figure 11, clearly underline
the efectiveness of the fuzzy system in reducing energy
consumption in DR-DC communications. Te fuzzy system
enables signifcant energy savings by optimizing the network’s

energy performance. Te decrease in average energy con-
sumption from 21.16 to 18.31 joules represents a reduction of
approximately 13.5%.

Tese fndings demonstrate the signifcance of the fuzzy
system in improving the energy efciency of DR-DC
communications. By employing advanced techniques such
as the fuzzy system, it becomes possible to better utilize
energy resources, reduce costs, and maintain high perfor-
mance in communication networks.

Table 4 displays the diferences in total energy con-
sumption with and without a fuzzy system for various
numbers of used relays. It provides a clear and concise
presentation of the results obtained in the study, making it
easy to understand the data. Te table includes information
on the number of relays, the total energy consumption
without a fuzzy system in joules, the total energy con-
sumption with a fuzzy system in joules, and the reduction in
total energy consumption as a percentage.

Te results highlight that the application of an intelligent
system can facilitate more informed decision-making by
using fuzzy logic to optimize operations or controls. More
specifcally, employing a fuzzy system for the judicious
selection of an appropriate relay, thereby minimizing energy
consumption andmaximizing network lifespan, proves to be
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Figure 10: Comparison of energy consumption in DR-DC communication: without fuzzy system vs. with fuzzy system.
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a promising approach. Te obtained results demonstrate the
value of this approach in reducing the overall energy con-
sumption within a D2D network.

6. Conclusion

Device-to-device communication in the upcoming genera-
tions of 5G and 6G telecommunication systems is attractive.
Despite increased network load, it will allow more users to
communicate simultaneously with improved communica-
tion quality. We have proposed an energy and connectivity
optimization algorithm based on fuzzy logic to meet this
challenge.

Our algorithm efectively manages energy consumption
and enhances the quality of sender-receiver communication,
thereby maximizing the network’s lifespan.Te evaluation of
our approach using Matlab yielded positive results, dem-
onstrating signifcant improvements in reduced energy
consumption, extended network lifespan, and shorter de-
livery time. Tis algorithm proves to be highly efective in
optimizing energy management and connectivity in both 5G
and 6G telecommunication systems. Furthermore, future
studies can focus on further enhancing performance and
efciency. Overall, our fuzzy logic-based approach ofers an
efective solution for optimizing energy consumption and
communication quality in 5G and 6G telecommunication
systems, with simulation results validating the improvements
in energy consumption, network lifespan, and delivery time.
We have confdence in the performance of our algorithm and
its potential to positively impact future telecommunication
systems.
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