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Optimal project portfolio planning is a typical nonconvex, multiobjective, highly constrained, multitemporal coupling, and
combinatorial optimization problem. Tis paper proposes a novel multistep iterative ranking learning method (MIRL) to solve this
complex combinatorial optimization problem from massive infrastructure projects of smart grid. Te optimal project portfolio
planning problem of power grid is formulated as the optimization process of massive project priority sorting with an improved
knapsack model. Te proposed method dynamically optimizes the best infrastructure project combination for each round to
maximize the economic, social, and security benefts without exceeding the annual investment limit. A pairwise-based ranking
learning algorithm is used to mine the priority sorting law from massive historical combination data of power grid to initialize
candidate project portfolio. In order to approach the optimal portfolio planning solution with the constraint satisfactions of project
construction duration and electric load supplies, a heuristic greedy strategy is designed to search the solution dynamically for
selecting the project having highest construction benefts iteratively. Te efectiveness of the proposed method is proved by ex-
periments with real-world project data of Hunan power grid in China, and experimental results show that the proposed MIRL can
outperform other methods on investment efciency, calculation time, and rationality of project construction period schedule.

1. Introduction

Te vigorous development of power grid infrastructure
projects is to promote the coordinated regional development
for meeting the increasing load demand in various regions
and mitigating the tense power supply-demand balance.
Infrastructure projects of power grid usually exhibit the
characteristics of large investment, long construction period,
and high resource consumption. Facing the massive amount
of infrastructure investment projects, it is important for
power grid decision-makers to make the comprehensive
evaluation of infrastructure projects and develop a scientifc
investment portfolio planning so as to ensure the optimi-
zation of investment returns [1].

Te optimal project portfolio planning problem of power
grid is a nonconvex, multitemporal coupling, strong con-
strained, multiobjective complex portfolio optimization
problem [2, 3]. Most existing methods applied Pareto op-
timization [4], fuzzy multicriteria-decision-making tech-
niques [5], integer linear programming [6], dynamic
modelling [7], or expert experience to solve the portfolio
optimization problem. Te project evaluation index system
was also formulated to quantize the power grid in-
frastructure projects with diferent weights, and the projects
are optimized based on the ranking of comprehensive scores
[8, 9]. However, it is difcult to comprehensively consider
investment temporal constraints of new construction, re-
newal, and expansion projects as well as annual investment
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limits. When the optimal project portfolio planning problem
has multiple objectives, it is usually solved through the
normalization method or multiobjective heuristic algorithm
[10, 11]. Te adaptation of the two-phase Pareto local search
(2PPLS) to the resolution of MOMKP was proposed in [12]
for the multiobjective multidimensional knapsack problem.
A multiobjective optimization algorithm based on the ge-
netic algorithm and epsilon constraint method using the
fuzzy decision maker was proposed to minimize the oper-
ational cost of the distribution network [13, 14]. In addition,
a hybrid ensemble forecasting scheme was proposed, which
uses the multiobjective Grasshopper optimization algorithm
(MOGOA) to ensemble the forecasting results of each
subseries [15]. In recent years, more and more studies begin
to introducemachine learningmethods [16, 17].Te ranking
learning (LTR) is a machine learning ranking method based
on supervised learning [18–20]. It has been recognized and
adopted by many felds. FastAP was proposed in 2019, which
has low complexity and is suitable for stochastic gradient
descent [21]. A learning-to-rank-based investment portfolio
optimization framework was proposed in [22] for smart grid
planning, and a machine learning-driven deduction pre-
diction methodology in [23] was proposed for power grid
planning.

(1) An improved constructive knapsack model is pro-
posed to optimize the infrastructure project portfolio
planning of power grid. Te project library can be
formulated as a constructive knapsack, in which each
project and investment size limit are considered as
an item and total capacity in the knapsack, re-
spectively. Te proposed model can optimally
schedule the project construction period with en-
hanced investment efciency and calculation time
based on NP-hard combinatorial optimization.

(2) A multistep iterative ranking learning method
(MIRL) is proposed to uncover the potential pref-
erential ranking laws from historical data. A ranking
SVM-based algorithm is presented based on binary
classifcation to establish pairwise relationship
among massive infrastructure projects. Te resulting
project priority can be used as initial project sorting
for multistep iterative optimization. A heuristic
greedy strategy is designed to search the solution
dynamically for selecting the project having highest
construction benefts iteratively.

2. Optimal Project Portfolio Planning Based on
the Knapsack Model

2.1. Problem Statement. Te optimal project portfolio
planning problem of power grid is to optimize suitable
projects from the project library to form the best set of
optimal projects so that the power grids’ infrastructure de-
velopment planning is more scientifc and reasonable, which
obtains greater investment benefts and fewer investment
risks [8]. Te advantage of the proposed method is that the
formed set will have fne benefts in the economy, society, and
security felds and can be adjusted for diferent scenes.

Te problem is defned as follows: there are N projects in
the project library, each of which contains various project
attributions, such as project type, total investment, etc. Te
projects are optimized one by one to form the project op-
timal set. Te project optimal set should satisfy some
constraints, including the investment size constraint, the
investment structure constraint, and the load demand
constraint.

2.1.1. Investment Size Constraint. It means that investment
by year amount of each grid infrastructure project mustmeet
the investment size by year. In addition, the investment size
constraint by the voltage level (500 kV, 220 kV, and 110 kV)
needs to be considered when considering the total in-
vestment size constraint. It must be satisfed, which are
known as hard constraints.

Sj ≤ S
max
j ,

Sj � 
N

i�1
xi · fi,j,

(1)

where Sj is the investment size of the Jth year of the selected
new project; Smax

j is the maximum investment capacity of the
Jth year of the new project; N is the total number of grid
projects in the library; xi is the preferred decision value of
the Ith grid project; fi,j is the planned investment of the Ith
grid project in the Jth year.

Grid project infrastructural planning includes a variety
of constraints [24], and here, three representative constraints
are considered as the soft constraints of the model: the new/
feasible investment ratio constraint, the new/continued
investment ratio constraint, and the load demand constraint,
the frst two of which together constitute the investment
structure constraint.Te satisfaction of these soft constraints
can be used to evaluate the overall infrastructure project
interdependence relation.

2.1.2. Investment Composition Constraint. Te investment
composition of power grid infrastructure planning aims to
optimally schedule the investment allocation among dif-
ferent projects and periods. Te expenditure to be incurred
in the current year by projects is referred that start investing
in the current year as “new investment,” the total investment
amount of projects that start investing in the current year as
“feasibility investment,” and the expenditure incurred in the
current year by projects that start investing in previous years
as “continued investment.” Terefore, the “new/feasible
investment ratio” refers to the ratio between the investment
in the optimized investment projects in the current year and
the total investment in all infrastructure projects. Te “new/
continued investment ratio” refers to the ratio of the ex-
penditure incurred by the optimized project and previous
years’ projects in the following year to the overall planned
expenditure in the following year. Te values of new/feasible
investment ratio and new/continued investment ratio are
usually determined by historical infrastructure planning
data of power grids.Tese two constraints are related but not
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identical, and their values must fall within a reasonable
range.

cmin ≤ c≤ cmax,

c �


M
i�1 xi · fi,j


M
i�1 xi · ki

,

(2)

where cmin and cmax denote the threshold value of new/
feasible investment ratio. c is the new/feasible investment
ratio calculated for the optimized project.M is the number of
new constructed projects. ki is the total feasible investment
of the Ith project among the new constructed projects.

σmin ≤ σ ≤ σmax,

σ �


N
i�1 xi · li,j+1 + Wj−1

Tj+1
,

(3)

where σmin and σmax denote the threshold value of the new/
continued investment ratio. li,j+1 is the planned investment
of the new constructed project I in the (J + 1)th year; Tj+1 is
the total investment size in the (J+ 1)th year. Wj−1 is the
planned investment of the new constructed project in the
(J + 1)th year for continued investment in the (J− 1)th year.

2.1.3. Load Demand Constraint. It is the requirement for the
optimized infrastructure project to be able to supply the
electricity in the current year. Tis constraint is to ensure
that the infrastructure project can be put into production
before peak periods of electricity consumption, such as the
summer phase when air conditioning and cooling are widely
switched on, making it possible to meet the demand for load
demand in the summer and winter. To meet this constraint,
decision-makers can not only consider projects with good
investment returns when making infrastructure project
preferences but also need to consider the construction cycle.
Tis constraint requires that the sum of the supply capacities
of the projects that can be built in the year of the infra-
structural planning does not fall below a specifed reasonable
value.



Oj

i�1

xi · gi + Vj−1 ≥Dj, (4)

where xi is the set of grid projects put into operation in the
Jth year, covering the continued grid projects and new grid
projects started and can be put into operation; gi is the new
capacity of grid projects put into operation; Vj−1 is the total
installed capacity already in the (J− 1)th year; Dj is the basic
electricity demand in the Jth year.

2.2. Dynamic Knapsack Model for Project Portfolio Priority.
Te classic knapsack model can be used to solve various
combinatorial optimization problems [25]. In this paper,
a dynamically time-constrained knapsack model is formu-
lated to cope with the power grid project portfolio planning
problem. First, each project in the library has to be regarded

as an item and the project investment planning as a knap-
sack, and the process of infrastructural planning is for-
mulated as the process of flling the knapsack with items.Te
capacity of the knapsack represents the upper limit of the
overall infrastructure projects, which is a hard constraint,
and the sum of the investment amounts of all the optimized
infrastructure projects must not exceed the specifed value.

Te classical knapsack problem is only constrained by
the capacity of knapsack [26], and the goal is to maximize the
total value of items placed in the knapsack. It can be solved
with the greedy idea of calculating the “value/volume ratio”
of each item. For infrastructure project portfolio planning of
the power grid, the knapsack model is more complex due to
the additional soft constraints, though the overall framework
has some similarities.Terefore, a heuristic greedy strategy is
designed, in which each item has a dynamic priority related
to not only the project itself but also all soft constraints.
Firstly, an initial priority value for all projects is assigned and
all projects are ranked according to the priority value, which
is obtained by the ranking SVM learning algorithm to be
introduced later. In each iteration, the project with the
highest priority value is added into the knapsack and the
priority value of all projects in the library is adjusted as the
overall constraint value changes. Te priority value of those
projects with a positive efect on the satisfaction of soft
constraints will be increased. On the contrary, the priority
value of those projects with a negative efect on the satis-
faction of soft constraints will be reduced. Terefore, the
remaining projects are reranked according to the new pri-
ority values, and the project with the highest priority value
will be placed into the knapsack in the next iteration. Tis
process is repeated until no more infrastructure projects
satisfy the investment size constraint. Figure 1 shows the
overall architecture of the method.

3. Multistep IterativeRankingLearningMethod

3.1. Ranking SVM-Based Project Portfolio Optimization.
Te basic idea of the ranking SVM learning algorithm is to
transform the ranking problem into a pairwise classifcation
problem, which is then learned and solved using a support
vector machine (SVM) classifcation model [19]. In ranking
learning problems, the pairwise approach usually learns the
ranking information through making comparison between
every two samples. It forms the pairs of items to be ranked
from all samples, with the labels +1 and −1 indicating the
relative order of the two items in the pair. In this way, the
sorting problem is transformed into a binary classifcation
problem, and these document pairs are used to train
a support vector machine (SVM) classifcation hyperplane to
obtain a classifcation model.

In the MIRL, ranking SVM is used to obtain investment
composition characteristics according to history investment
planning data and project portfolio feature extraction. Tese
data are processed as a training set to train the ranking SVM
model. In this way, the optimized ranking law of investment
projects under diferent scenarios is mined. When making
project portfolio optimization, the project library will be
input into the trained model to obtain ranking results.
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When applied specifcally to the infrastructure project
portfolio planning scenario of power, the input historical
infrastructure project data contain multiple project features
and the infrastructure projects are combined in pairs to form
a sample, each sample including all features of two in-
frastructure projects (x

(1)
i , x

(2)
i ) and a label yi indicating

which infrastructure project should be ranked frst.
Te ranking problem of the infrastructure project is

transformed into a binary classifcation problem to solve for
the classifcation hyperplane (w, d

(i)
1 − d

(i)
2 ) and the classif-

cation decision-making model f(d, w) that can correctly
partition the training set and has the largest geometric in-
terval, where w represents the normal vector of the hyper-
plane and d represents samples to be classifed. Tomake better
use of the existing theoretical and computational methods,
this can be transformed into a quadratic convex function
optimization problem, minimizing the objective function:

min
ω,ξ

1
2
‖ω‖

2
+ C 

m

i�1
ξi. (5)

It is subjected to the constraints:

s.t. yi ω, x
(1)
i − x

(2)
i ≥ 1 − ξi ξi ≥ 0, i � 1, · · · , m( , (6)

where ω is the parameter vector, C is a coefcient, and ξi is
a relaxation variable.

Te weights are updated in steps by the losses generated
by misclassifed samples, and the ranking relationship be-
tween any two infrastructure projects will be obtained,
which is called the local ranking. Te local ranking is fnally
transformed into an overall ranking to obtain an ordered
project library based on ranking learning.

3.2. Constraint Punishment for Priority Adjustment. As de-
scribed in the previous section, the constraint penalty idea
aims to adjust the constraint priority values for individual
grid infrastructure projects based on their satisfaction with
soft constraints, and the adjusted priority values will be used
for a new round of grid infrastructure project preference
ranking.

Si,j � Si−1,j + Syi,j
, (7)

Project Set In The Library

Project Properties

Construction Timeline

Investment Scale

Investment Progress Model

Rigid Projects

Non-rigid Projects

Indicator Score

Soft-constraint Penalties
Penalty
Factors

Dynamic Optimal Project Set

Project optimal portfolio
and

its investment plan

Start Time

Annual Investment

Production Time

Feasible Investment

Project Location

Select the highest ranked individual project

Judge whether the investment scale constraint
is satisfied

Judge whether the constraints of the power supply capacity
 and investment structure are satisfied

Calculate the soft-constraint penalty factors

Reorder the remaining projects

(6)

Step (1) is performed only once, steps (6) and (9) are cycled until the end of project optimization decision-making to obtain the optimal set of project optimization

The highest priority projects that
meet the rigid constraints are optimizedRigid project directly into the optimization

(2)

(5)

(7)

(9)

Initial Ranking Score

Ranking SVM

(3)

Project Priority Sorting

(8)

(4)Investment Structure(i)
Power Supply Capacity(ii)

Figure 1: Overall fowchart architecture of the proposed method.
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where Si,j represents the priority value of the Jth nonrigid
project in the ranking of the Ith round, Si−1,j represents the
priority value of the Jth nonrigid project in the ranking of the
(I− 1)th round, and Syi,j

represents the Ith constraint score of
the Jth nonrigid project.

For the initial ranking results output by the ranking SVM
model, the initial score can be calculated from the equation
as follows:

S0j � 50 + 2 · N − sortj , (8)

where S0j represents the priority value of the Jth nonrigid
project in the ranking of the frst round, N represents the
total number of projects of all nonrigid projects, and sortj
represents the initial ranking result of the frst nonrigid
infrastructure project.

Te constraint score represents the priority value change
of the Jth project before the Ith round of grid infrastructure
project portfolio planning, which is mainly determined by
the penalty factors of the three constraints, while three
weights are introduced to balance the infuence of the
constraints. It can be calculated from the equation as follows:

Syi,j
� PT1i,j

· w1 + PT2i,j
· w2 + PVi,j

· w3, (9)

where w1 represents the new/feasible investment weight of
power grid infrastructure projects in the ranking of the Ith
round and PT1i,j

represents the new/feasible investment
penalty factor of the Jth infrastructure projects in the ranking
of the Ith round. w2 represents the new/continued in-
vestment weight of infrastructure projects in the ranking of
the Ith round and PT2i,j

represents the new/continued in-
vestment penalty factor of the Jth infrastructure projects in
the ranking of the Ith round. w3 represents the new load
demand capacity weight of infrastructure projects in the
ranking of the Ith round and PVi,j

represents the new load
demand penalty factor of infrastructure projects. Te weight
parameters w1, w2, and w3 are usually set between 0 and 10
according to the importance of three constraints. In our
experiment, these three parameters are set as 5.

3.3. Execution Steps of the Proposed Method. Te multistep
iterative ranking learning method (MIRL) proceeds as
follows:

Step 1. Te rigid infrastructure projects are directly opti-
mized into the dynamic knapsack project set from the power
grid projects in the library;

Step 2. All nonrigid projects are input in the trained ranking
SVM model to get the initial ranking score;

Step 3. Te total score S of each nonrigid project is calcu-
lated according to the initial ranking score and constraint
score criteria;

Step 4. Projects are ranked according to the priority of all
infrastructure projects;

Step 5. Te highest ranked individual project in the library is
optimized in this round of iterative optimization;

Step 6. Whether the project with the highest ranking sat-
isfes the investment size constraint is judged. If it is satisfed,
then the project is optimized into the dynamic backpack
project collection. If it is not satisfed, the project is removed
and it no longer participates in the optimization process;

Step 7. Te load demand capacity V and investment
structure constraint T is calculated after the optimization of
this project;

Step 8. Whether the accounting results satisfy the con-
straints of investment size and investment structure is
judged. If it is satisfed, the constraint penalty factor PV

becomes 0, as well as PT1 and PT2 are not adjusted. If it is not
satisfed, the adjustment of the penalty factor PV is increased,
as well as PT1 and PT2 are adjusted from negative correlation
direction; that is, the two constraint penalty PT1 and PT2
factors are adjusted according to the actual situation;

Step 9. Te remaining projects in the library are reordered;

Step 10. We repeat steps six through nine until the optimal
set of projects is obtained.

Te algorithm input includes the project library, con-
straint parameters, investment schedule model, and his-
torical data. Each project can be labelled with engineering
properties including the investment scale, line length, power
capacity, voltage rating, and construction time sequence.Te
algorithm output can obtain infrastructural project com-
bination with optimal investment schedule.

4. Comparative Results and Discussion

4.1. Experimental Data and Settings. In this section, a mul-
tistep iterative ranking learning method for project portfolio
optimization of power grids in a certain province is pro-
posed. Taking 2021 as an example, the optimized list of new
constructed power grid infrastructure projects is taken as the
set of power grid infrastructure projects in the library. Te
four voltage levels (500 kV, 220 kV, 110 kV, and 35 kV)
contain a total of 456 projects, with a total feasible in-
vestment of 238.60 million yuan. As shown in Table 1, the
total feasible investment, total number of projects, and
number of rigid projects of the four voltage levels are in-
troduced, respectively.

According to Table 2, we can know the total investment
size and constraints of the four voltage levels. In the current
year, the total investment size of 500 kV, 220 kV, 110 kV, and
35 kV is 27.32, 63.82, 51.15, and 11.80, respectively. Te ratio
of new/feasible investment is 0.17–0.39, 0.17–0.33,
0.39–0.50, and 0.66–0.83, respectively. In the next year, the
total investment size of 500 kV, 220 kV, 110 kV, and 35 kV is
46.2, 50.6, 42.9, and 15.4, respectively, and the ratio of new/
continued investment is 0.22–0.39, 0.28–0.50, 0.44–0.61, and
0.66–0.83, respectively.
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4.2. Results Analysis Based on Comparing with the Existing
Method. In order to refect the superiority of the multistep
iterative ranking learning method for project portfolio
optimization of power grids proposed in this paper, it is
compared with the existing power grid project investment
optimization decision-making methods. Te existing
method of the frst type is the manual project optimization
decision-making method used by most power grid com-
panies.Tis methodmainly relies on expert experiences, and
the decision-making process is time-consuming. Te second
method is the integer linear programming algorithm, and
the third method is the multiobjective NSGA-III algorithm.
Te fourth method introduces a greedy strategy and con-
structs the optimization decision-making process into
a knapsack model, which dynamically selects investment
projects iteratively. Te ffth method is the multistep iter-
ative dynamic decision-making model for project portfolio
optimization of power grids proposed in this paper, which is
built based on the fourth method by adding the ranking
SVM learning algorithm.

For the proposed ranking SVM learning algorithm, the
training set is input to train the model at frst. Te per-
formance of the ranking SVM learning algorithm is related
to the sample numbers of the training set.Te learning curve
of the ranking SVM is shown in Figure 2. As shown in
Figure 2, the classifcation accuracy of the ranking SVM
converges when the sample numbers approach 20000.

Four models are, respectively, used to evaluate the
optimization decision-making results of power grid in-
vestment projects in a province in the current year, and the
comparative analysis of the satisfaction of fve methods
about the investment structure constraint is shown in
Figure 3.Te ratio of new/feasible investment in the current
year and the ratio of new/continued investment in the next
year of the proposed method are the highest, which are 39%
and 56%, respectively. Te proposed method without the
ranking SVM is the second highest, which are 37% and
54%, respectively. According to the total investment size,
we can fnd that the proposed method has the smallest. Te
manual optimization algorithm has the largest total in-
vestment size, which is 147.42 million yuan. Terefore, we
can know that the efciency of investment of the proposed

method is the highest. However, according to Table 3, the
optimization time of the proposed method without ranking
SVM is the shortest, which is 0.2 seconds. Te optimization
time of the proposed method is a little longer, which is
10 seconds. Furthermore, the proposed method also in-
cludes 4 hours of the model training time.Te optimization
time of the other three models only includes the calculation
time. Te manual optimization algorithm takes the longest
time of 15 days, so it is time-consuming. In summary, the
multistep iterative ranking learning method proposed in
this paper can prioritize projects more objectively by
adjusting the priority of projects in optimization decision-
making, to better satisfy each constraint and arrange
projects more rationally. Te proposed MIRL can out-
perform other methods on investment efciency, calcula-
tion time, and rationality of project construction period
schedule.

Considering that the ranking SVM learning algorithm
integrates the machine learning mechanism, it can mine and
extract investment characteristics and rules in diferent
scenarios from historical planning data. Figures 4–7 show
the portfolio planning results of four types of six investment
performance indicators, respectively. Te four types are
comprehensive balance type, economic beneft oriented,
social beneft oriented, and security beneft oriented, re-
spectively. Four voltage levels of 500 kV, 220 kV, 110 kV, and

Table 1: Total feasible investment and the number of projects of 500 kV/220 kV/110 kV/35 kV.

500 kV 220 kV 110 kV 35 kV Total
Te total number of projects 13 57 246 184 501
Total feasible investment/100 million yuan 58.11 77.39 86.45 16.65 238.60
Te number of rigid projects 2 6 9 26 43

Table 2: Total investment size and constraints of 500 kV/220 kV/110 kV/35 kV.

Year Index 500 kV 220 kV 110 kV 35 kV Total

Current year

Total investment size (100 million yuan) 27.32 63.82 51.15 11.80 154.10
Investment size of newly constructed projects (100 million yuan) 5.02 8.83 18.98 8.8 41.62

Load demand capacity (MVA) 2090 8107 6500.5 822.4 —
Te ratio of new/feasible investment 0.17–0.39 0.17–0.33 0.39–0.50 0.66–0.83 0.33–0.66

Next year Total investment size (100 million yuan) 46.2 50.6 42.9 15.4 155.1
Te ratio of new/continued investment 0.22–0.39 0.28–0.50 0.44–0.61 0.66–0.83 0.50–0.61
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Figure 2: Classifcation accuracy of ranking SVM with diferent
sample numbers.
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35 kV are considered for each type. Each type contains three
kinds of investment benefts, and the proportion of each
beneft is diferent. For the comprehensive balance type, the
proportion of the three benefts of economic, social, and
security is 0.33, 0.33, and 0.34, respectively. For the other
three types, the proportion of investment benefts corre-
sponding to the oriented type is 0.5 and the proportion of the
other two investment benefts is 0.25. For example, for the

economic beneft-oriented type, the proportion of the three
benefts of economic, social, and security is 0.50, 0.25, and
0.25. Te economic indicator is meeting new load, the social
indicators are the reinforcement of the grid structure, and
the security indicator is heavy overload resolution and
elimination of old equipment security hazards. As can be
seen from Figure 4–7, the comprehensive balance type has
good results in all three indicators and the other three

0.28
0.35 0.36 0.37 0.390.31

0.5 0.5
0.54 0.56

0.2

0.3

0.4

0.5

0.6

Manual
optimization

algorithm

Integer
linear

programming
algorithm

Multi-objective
NSGA-III
algorithm

Proposed
method
without

Ranking SVM

Proposed
method

The ratio of new/feasible investment in current year
The ratio of new/continued investment in next year

Figure 3: Te satisfaction of fve models about the investment structure constraint.

Table 3: Te comparative analysis of fve methods.

Manual optimization
algorithm

Integer linear
programming
algorithm

Multiobjective
NSGA-III algorithm

Proposed method
without ranking

SVM

Proposed
method

Te number of optimized projects 288 350 325 278 266
Total investment size (100 million yuan) 147.42 117.30 116.70 111.74 107.40
Te ratio of new/feasible investment
in the current year 28% 35% 36% 37% 39%

Te ratio of new/continued investment
in the next year 31% 50% 50% 54%  6%

Te time of optimization 15 days 3.5 s 40minutes 0.2 s 4 hours + 10 s
Bold values represent that the proposed method has the best result on our evaluation criteria.
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Figure 4: Optimal solution with a comprehensive balance objective at 500 kV/220 kV/110 kV/35 kV voltage levels.
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beneft-oriented types have good investment results, re-
spectively, for this type of indicator. To sum up, the method
proposed in this paper has good investment results for

diferent investment scenarios, so this method can provide
a more scientifc and reasonable project optimization
ranking under typical investment patterns.
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Figure 5: Optimal solution with an economic beneft objective at 500 kV/220 kV/110 kV/35 kV voltage levels.
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Figure 6: Optimal solution with a social beneft objective at 500 kV/220 kV/110 kV/35 kV voltage levels.
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Figure 7: Optimal solution with a security beneft objective at 500 kV/220 kV/110 kV/35 kV voltage levels.
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5. Conclusions

In this paper, a novel multistep iterative ranking learning
method (MIRL) is proposed to solve the complex combi-
natorial optimization problem from massive infrastructure
projects of smart grid. Firstly, a dynamic knapsack model is
proposed for the project portfolio priority.Ten, the ranking
SVM algorithm integrates the machine learning mechanism,
which can mine and extract investment characteristics and
rules under diferent investment orientations from historical
investment plan data, and provides more scientifc and
reasonable project ranking under typical investment modes.
Te proposed method dynamically optimizes the best in-
frastructure project in each round to form an optimization
set, so as to maximize the economic, social, and security
benefts without exceeding the annual investment limit.

Te annual investment planning data of the current year
are input to the model to obtain the output results. We
conduct a detailed analysis of seven indicators, such as the
number of optimized projects, total research investment, the
ratio of new/feasible investment in current year, and the
ratio of new/continued investment in the next year. We can
get the following results: the ranking SVM algorithm has the
highest new/feasible investment ratio and new/continued
investment ratio, 39% and 56%, respectively. However, the
training time of this method is long, which leads to the fact
that the whole process of infrastructure project optimization
decision-making is not the shortest. In summary, the
ranking SVM algorithm by learning the characteristics of
historical investment, based on project attributes and con-
struction necessity and other indicators to determine the
order of the project, the priority selected projects with
a higher overall efciency and according to the constraints to
meet the appropriate adjustment project priority so that each
constraint could meet the situation better. As a result, the
proposed MIRL can outperform other methods on in-
vestment efciency, calculation time, and rationality of
project construction period schedule.
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Te data that support the fndings of this study are available
from the corresponding author upon reasonable request.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Tis work was supported by the State Grid Science and
Technology Project (no. 5100-202123009A).

References

[1] Z. Du, H. Weng, D. Liu, T. Tang, and J. Zhao, “Evaluation
index system and comprehensive evaluation methods of the
power grid infrastructure projects,” in Proceedings of the 2016
International Conference on Advances in Energy, Environment

and Chemical Science, pp. 9–1, Atlantis Press, Amsterdam,
Netherlands, May 2016.

[2] A. H. Ali and A. Najaf, “Optimization and performance
improvement of grid-connected PV plant based on ANN-PSO
and P&O algorithms,” International Transactions on Electrical
Energy Systems, vol. 2022, Article ID 1278492, 15 pages, 2022.

[3] A. Rastgou and S. Hosseini-Hemati, “Simultaneous planning
of the medium and low voltage distribution networks under
uncertainty: a Bi-level optimization approach,” International
Transactions on Electrical Energy Systems, vol. 2022, Article ID
2267926, 19 pages, 2022.

[4] Y. Wu, T. Zhang, R. Gao, and C. Wu, “Portfolio planning of
renewable energy with energy storage technologies for dif-
ferent applications from electricity grid,” Applied Energy,
vol. 287, Article ID 116562, 2021.

[5] A. Chaidez and Y. Sang, “Optimal energy portfolio planning
for power system considering the impact of winter storms,” in
Proceedings of the 2021 North American Power Symposium
(NAPS), pp. 1–5, College Station, TX, USA, November 2021.

[6] Y. F. Li, G. H. Huang, Y. P. Li, Y. Xu, andW. Chen, “Regional-
scale electric power system planning under uncertainty—a
multistage interval-stochastic integer linear programming
approach,” Energy Policy, vol. 38, no. 1, pp. 475–490, 2010.

[7] Y. Cao, B. Zhou, C. Y. Chung, Z. Shuai, Z. Hua, and Y. Sun,
“Dynamic modelling and mutual coordination of electricity
and watershed networks for spatio-temporal operational
fexibility enhancement under rainy climates,” IEEE Trans-
actions on Smart Grid, pp. 1–13, 2022.

[8] Y. Sha, W. Li, J. Yan, W. Li, and X. Huang, “Research on
investment scale calculation and accurate management of
power grid projects based on three-level strategy,” IEEE
Access, vol. 9, Article ID 67176, 67185 pages, 2021.

[9] X. Fu and Y. Z. Zhou, “Collaborative optimization of sus-
tainable energy systems and PV-Greenhouses in rural areas,”
IEEE Transactions on Sustainable Energy, vol. 14, no. 1,
pp. 642–656, 2022.

[10] B. Xu, Y. Zhang, D. Gong, Y. Guo, and M. Rong, “Envi-
ronment sensitivity-based cooperative co-evolutionary algo-
rithms for dynamic multi-objective optimization,” IEEE/
ACM Transactions on Computational Biology and Bio-
informatics, vol. 15, no. 6, pp. 1877–1890, 2018.

[11] X. Fu and H. S. Niu, “Key Technologies and Applications of
Agricultural Energy Internet for Agricultural Planting and
Fisheries Industry,” Information Processing In Agriculture,
pp. 1–40, 2022.

[12] T. Lust and J. Teghem, “Temulti-objective multidimensional
knapsack problem: a survey and a new approach,” In-
ternational Transactions in Operational Research, vol. 19,
no. 4, pp. 495–520, February 2012.

[13] Z. Huang, B. Fang, and J. Deng, “Multi-objective optimization
strategy for distribution network considering V2G-enabled
electric vehicles in building integrated energy system,” Pro-
tection and Control of Modern Power Systems, vol. 5, no. 1,
pp. 7–55, 2020.

[14] R. Ashraf, M. Amirahmadi, M. Tolou-Askari, and V. Ghods,
“Multi-objective resilience enhancement program in smart
grids during extreme weather conditions,” International
Journal of Electrical Power & Energy Systems, vol. 129, Article
ID 106824, 2021.

[15] J. Wang, L. Zhang, Z. Liu, and X. Niu, “A novel
decomposition-ensemble forecasting system for dynamic
dispatching of smart grid with sub-model selection and in-
telligent optimization,” Expert Systems with Applications,
vol. 201, Article ID 117201, 2022.

International Transactions on Electrical Energy Systems 9



[16] X. Fu, “Statistical machine learning model for capacitor
planning considering uncertainties in photovoltaic power,”
Protection and Control of Modern Power Systems, vol. 7, no. 1,
p. 5, 2022.

[17] X. Fu, Q. Guo, and H. Sun, “Statistical machine learning
model for stochastic optimal planning of distribution net-
works considering a dynamic correlation and dimension
reduction,” IEEE Transactions on Smart Grid, vol. 11, no. 4,
pp. 2904–2917, 2020.

[18] T. Y. Liu, “Learning to rank for information retrieval,”
Foundations and Trends® in Information Retrieval, vol. 3,
no. 3, pp. 225–331, 2007.

[19] Z. Cao, T. Qin, and T. Y. Liu, “Learning to rank: from pairwise
approach to listwise approach,” in Proceedings of the 24th
international conference on Machine learning, pp. 129–136,
Corvalis, OR, USA, June 2007.

[20] H. Li, “A short introduction to learning to rank,” IEICE -
Transactions on Info and Systems, vol. 94, no. 10, pp. 1854–
1862, 2011.

[21] F. Cakir, K. He, and X. Xia, “Deep metric learning to rank,” in
Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 1861–1870, June 2019.

[22] W. Zhao, X. Liu, Y. Wu, T. Zhang, and L. Zhang, “A learning-
to-rank-based investment portfolio optimization framework
for smart grid planning,” Frontiers in Energy Research, vol. 10,
Article ID 852520, 2022.

[23] Y. Wu, X. Li, L. Zhang, C. Liu, W. Zhao, and T. Zhang,
“Machine learning–driven deduction predictionmethodology
for power grid infrastructure investment and planning,”
Frontiers in Energy Research, vol. 10, Article ID 893492, 2022.

[24] S. Bruch, S. Han, and M. Bendersky, “A stochastic treatment
of learning to rank scoring functions,” in Proceedings of the
13th International Conference on Web Search and Data
Mining, pp. 61–69, Houston, TX, USA, January 2020.

[25] M. Assi and R. A. Haraty, “A survey of the knapsack problem,”
in Proceedings of the 2018 International Arab Conference on
Information Technology (ACIT), pp. 1–6, Werdanye, Lebanon,
November 2018.

[26] C. Changdar, G. S. Mahapatra, and R. K. Pal, “An improved
genetic algorithm based approach to solve constrained
knapsack problem in fuzzy environment,” Expert Systems with
Applications, vol. 42, no. 4, pp. 2276–2286, 2015.

10 International Transactions on Electrical Energy Systems




