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Te design of fnite impulse response (FIR) flters involves the estimation of efective flter coefcients, making the designed flter
exhibit infnite stopband attenuation and have a fat-shaped passband. Te few conventional flter design methods such as impulse
response truncation (IRT) and windowing technique exhibit undesirable characteristics owing to the Gibbs phenomenon, thus
making them unsuitable for various practical complexities. Tis research work employs the fuzzy logic-based diversity-controlled
self-adaptive diferential evolution algorithm (FLDCSaDE) for the design of FIR band stop (BS) and high pass (HP) flters. In order to
validate the results of the proposed technique, various population-based evolutionary computing techniques such as the covariance
matrix adaptation evolution strategy (CMAES), diferential evolution (DE), self-adaptive diferential evolution (SaDE), and Jaya
algorithm have also been applied for determining the efective flter coefcients. Te performance of the various algorithms has been
analysed and compared based on the parameters such as stopband attenuation, passband attenuation, and ripples. Te simulation
results show that the FLDCSaDE algorithm outperforms other evolutionary algorithms having 4% and 1.5% lower ripples than the
SaDE algorithm for high pass and band stop flters, respectively. Experimental results depict that the performance of the fuzzy
approach causes positioning and tracking accuracy obtained to be improved by 27% and the corresponding false positive rate (FPR) is
substantially reduced to 0.11 from the mean amplitude value obtained from the fuzzy approach in the frequency response. Te
frequency response obtained from the FLDCSaDE algorithm is close to the ideal response of the BS and HP FIR flters.

1. Introduction

A signal can be termed as a physical parameter that changes
with space, time, or any other quantity. In general, signals are
responsible for the movement of information which sprouts
in almost every feld of science and technology. Signals are

categorized into two sections, namely, discrete and
continuous-time signals, depending on the nature of space
and time. Given that most of the inherently occurring signals
are continuous in nature (analog), an efective fltering
method of analog signals is a necessity. One such method of
fltering is through digital signal processing (DSP).
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Filters are the most extensively used systems for pro-
cessing signals that are digital in nature. Tis can be
employed to obtain the needed output spectral attributes by
altering the input signal spectrum. Digital flters play
a critical role in the communication and processing of
signals. Te main advantage of digital flters is higher re-
liability, accuracy, and lower tolerances with lower noises
leading to increased efciency. Tey are robust to changes in
characteristics which make them suitable for variable
multiple applications such as voice signal synthesis and
analysis [1], image processing [2], removing random noise
from seismic data [3], and rectifying many biomedical
signals [4] such as EEG, MRIs, and ECGs. Digital flters can
be further classifed into IIR and FIR flters based on the
response. FIR flters exhibit a linear phase which is in-
herently stable, nonrecursive in nature, and less sensitive in
utilizing bounded word duration efects. Te above-
mentioned attributes make FIR flters more desirable despite
the requirement of numerous coefcients as compared to
infnite impulse response (IIR) flters where the memory
requirement is high.

Tere are several traditional techniques available with
the notion of designing FIR flters, among which the
windowing approach is the most preferred technique.
Selection of a suitable window function such as Ham-
ming, Hanning, and Kaiser is dependent on several
factors with respect to the desired frequency response
such as variation in stopband attenuation, transition in
width, and ripples in stopband and passband [5]. Fre-
quency domain convolutions carried out in the win-
dowing technique results in tapered rectangular edges,
leading to ripples in passband and stopband and in turn
limit the performance of the given FIR flter. Te obtained
ripple is not uniformly distributed across a given rect-
angular window but in turn follows a pattern in which
ripples decay as we move away from the path along the
discontinuous points according to the side-lobe pattern
observed from the window. Tolerance to given ripple
behaviour can be observed by allowing more freedom to
the stated ripple, thus reducing the complexity and im-
proving the robustness of the given flter. However, in
this way, the order of the flter gets reduced and it afects
the transition from passband to stopband, thus de-
teriorating signal strength by interference [6].

In contrast to the traditional method, procedures in-
volved in the digital FIR flter designing process could be
conceived to be an optimization problem [7], alongside the
intention to minimize the error function, which basically
indicates an inconsistency in the flter designed from the
intended response [8]. Classical methods such as the least
square and gradient-based methods, optimizing L1 and L2
norms, can provide better passband response and high
stopband attenuation, with minimal ripples [9, 10]. How-
ever, these gradient-based methods can result only in local
optimal solution and cannot support multiobjective opti-
mization problems. Furthermore, these gradient descent
methods have difculties in handling large dimension
problems, due to the irregularities in the approximate
gradients.

Due to the drawbacks of classical gradient-based
methods, in recent times, many researchers have started
to implement evolutionary and swarm-based algorithms to
get global optimal solutions in designing digital FIR flters.
Te use of evolutionary algorithms and intelligent swarm
techniques are very well suited for handling non-
diferentiable and multiobjective functions [11]. It is im-
portant in laying the foundation for understanding flter
design with the use of diferent possible solution algorithms,
namely, the search algorithms. Both the single objective and
multiobjective formulations have their own set of advan-
tages, wherein the single objective problems have lower
constraints and complexity and the multiobjective formu-
lation has better accuracy. Te adaptation of these formu-
lations depends on the nature of the problem in
consideration [12]. Many evolutionary and swarm tech-
niques are developed in designing the FIR flter, and they are
discussed as follows.

Te evolutionary process-based algorithms such as
simulated annealing and genetic algorithms are imple-
mented in FIR flter design [13]. In 2015, the simulated
annealing method was employed to design the FIR flter with
the objective of attaining a desired magnitude response of
the flter [14]. Moreover, various variants of the genetic
algorithms (GAs) such as real-coded GA and hybrid GA are
also implemented to design the FIR flter [9, 13, 15].

Te swarm intelligence-based metaheuristic algorithms,
one of which is called particle swarm optimization (PSO),
was developed in the year 2016 [16]. Its greatest advantage is
its simplicity in implementation and conceptual level,
leading to highly utilized computational algorithms for the
flter design. References [17–20]. Te linear phase FIR flter
has been designed using PSO and GA by considering the
feasible passband and stopband frequencies and the size of
the passband and stopband ripples [21]. Craziness-based
PSO was implemented in designing the 28th and 36th order
band stop flter [22, 23]. Te cat swarm optimization al-
gorithm is applied to design the linear phase of the FIR flter
to meet the desired frequency response characteristics [24].
Te linear phase multiband stop flter for the order of 40, 48,
and 58 is developed using an improved cuckoo search PSO.
Te adaptive cuckoo search algorithm (ACSA) is also de-
veloped to design a digital FIR flter design [25].

Further research through the years led to the develop-
ment of much more refned techniques for estimating the
flter coefcients. Te algorithms so found had to inherently
displace the issue of global search space and replace it with
the local search mechanism. One such algorithm was de-
veloped in 2005 and was called the covariance matrix ad-
aptation evolution strategy (CMAES). It generates renewed
population members by sampling from the probability
distribution of a given search space. Te use of correlations
between flter coefcients accelerates the convergence pro-
cess because of the absence of derivatives [26]. However,
when compared to diferential evolution (DE), the CMAES
algorithm sufers from the nonstationary error that increases
the noise component in the flter which if present in the
magnitude response may remain undetected, thus de-
creasing the efciency of the flter. Te use of eigenvectors
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and covariance matrix to fnd the frequency response of the
given flter increases the time complexity [27], especially for
higher order matrix where the optimization of the flter
coefcients becomes a complicated process.

Te Jaya algorithm solves the abovementioned problem
as it is free of gradient, free of algorithm-specifc parameters,
and the time complexity for flter optimization is much
lesser for this algorithm. In terms of reducing mixed noise or
ripples in the flter, Jaya outperformed other algorithms as
shown in reference [28]. However, the convergence rate is
not as efcient when compared to CMAES as its perfor-
mance benchmark is lesser when applied to optimizing flter
coefcients.

Furthermore, the FIR flter design has been designed by
improving the candidate solution iteratively based on the
evolutionary process using DE, proposed in 2020 [29]. Te
major advancement in DE is fnding the true global mini-
mum of a model search space from the coefcient set re-
gardless of the initial parameter values [30], thus making the
initialization process independent of the delay. In contrast to
GA, the DE algorithm uses mutation operation, thus uti-
lizing fewer control parameters for flter responses, namely,
the magnitude responses for stopband and passband regions
[31]. Low pass digital FIR flter parameters are identifed
using the DE algorithm byminimizing the least mean square
function [32]. Te FIR flter has been designed using DE in
consideration of diferent word lengths, and the same is
implemented using Cadence RTL Compiler (UMC 90 nm
technology) [33]. However, there are inherent disadvantages
of the decreasing search spaces because of the diversity of the
possible movements in exploration. Te performance of DE
sufers due to the predefned control parameters (CO and F)
and mutation strategy. If the problem difers, mutation
strategy and control parameters are to be fne-tuned for
obtaining the consistent optimization performances. Due to
this drawback of DE, many adaptive DE algorithms such as
self-adaptive DE [34], DE [35], opposition-based DE [36],
composite DE [37], random neighbours-based DE [38], and
neighbourhood mutation and opposition-based learning
(NBOLDE) [39] have been proposed recently. Te nuances
of the diferent optimization algorithms are summarized in
Table 1. Te basic understanding of the processes and pa-
rameters to determine the optimal flter coefcients were
analysed. Te DE algorithm had an interesting approach to
improving candidate solution and minimizing it using elitist
replacement. Tis methodology of DE and SaDE is com-
bined to avoid using the predefned parameters to improve
the performance.

Tis paper proposes fuzzy logic-based diversity-
controlled self-adaptive diferential evolution (FLDCSaDE)
for the frst time to design the FIR flter by overcoming the
accuracy and performance limitations from the previous
literature. Te superiority of the FLDCSaDE algorithm over
other algorithms is analysed in terms of its ripple content,
performance, attenuation, and others. Te algorithm over-
comes the inherent problems of the evolutionary algorithm
when designing the flter, namely, the dependency among the
flter parameters, improper initialization of control parame-
ters, and premature convergence. Te abovediscussed DE,

CMAES, Jaya, SaDE, and FLDCSaDE algorithms are used in
constrained and unconstrained real-life problems as their
parameter requirements are much lesser than other algo-
rithms, and hence, their computation makes their limitations
negligible. FLDCSaDE employs fuzzy logic mainly for two
purposes. One is to keep the diversity in the population, and
the other is to obtain weights that would help narrow down
the search space, thus fnding the optimal flter parameters at
a much faster rate. Te designed flter possesses minimum
magnitude error and ripples in passband and stopband. Te
general design procedure involved in the design of the FIR
flter using the evolutionary algorithm is discussed in Figure 1.

Although the conventional SaDE algorithm is used to
generate success and failure rates based on four mutation
strategies [40], it requires a total of Kn strategies for choosing
an optimal value for updating the CO value. Te use of fuzzy
logic makes it feasible to update CO values based on the
diversity of the population, thus surpassing the performance
of SaDE and removing numerous types of noise and har-
monics. Proper tuning of flter coefcients dynamically gives
a way for better performance and at the same time improves
the trade-of between adaptation and robustness. In case of
improper tuning, the parameters increase the computational
efort and complexity [39].Te core notion of employing local
search in the FLDCSaDE algorithm helps strike a balance
between the two important driving forces imperative for any
optimization algorithmwhich is exploitation and exploration.
It is not required to look for optimal flter coefcients in each
iteration since the search can be applied to any randomly
chosen individual in the given population, and if the solution
obtained is better than the one obtained in the previous
generation, the individual is included in the given solution set,
thus enhancing the time complexity.Tis helps obtain feasible
FIR flter coefcients having an execution time much lesser
than that of SaDE and lower ripple content, and thus, higher
efciency shows that this algorithm can be applied to obtain
the optimal FIR flter response.

2. Methodology

Te methodology for the implementation of the design of
the fnite impulse response (FIR) flter has been listed as per
the sequence in the following section:

(1) Determination of objective function.
(2) Comparison of optimization algorithms.
(3) Evaluating the best ft.
(4) Integrating the abovementioned algorithm to high

pass (HP) and band stop (BS) flter.
(5) Introducing constraints and determining the default

initial values.
(6) Finding the errors (both stop and passband) and

amplitude. Repeating step 5 until the errors are
minimized.

Tis research paper is organized beginning with the
formulation of the flter design, objective function, and
constraint parameters in Section 3. It is followed by an in-
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depth analysis of the various evolutionary algorithms
having performance similar to the proposed FLDCSaDE,
namely, DE, CMAES, Jaya, and SaDE in Section 4. Section
5 discusses the implementation of FLDCSaDE for the FIR
flter design. Based on the simulations, the results ob-
tained are tabulated for various evolutionary algorithms
in Section 5, followed by the analysis and conclusion at
the end.

3. FIR Filter Design

FIR-based flters are adopted for many practical applications
because of their properties such as linear phase and inherent
stability over IIR-based flters. At the forefront of designing
anNth order FIR high pass flter which is optimal, the desired
response of the flter H(ejω) is compared with the ideal
feedback Hd(ejω), specifed as follows:

Hd e
jω

􏼐 􏼑 �
0, ω ∈ 0,ωc( 􏼁 stopband,

1, ω ∈ 0,ωc( 􏼁 passband,
􏼨 (1)

where the cut-of frequency of the desired flter is given by
ωc. Utilizing the inverse discrete time-based Fourier
transform (IDTFT) response of the given ideal flter and
multiplying the result with a window function gives the
impulse or delta response obtained for the flter h(n).
Taking the discrete-time Fourier transform (DTFT) for
the given impulse response h(n) into account, the desired
flter response H(ejω) for the given FIR flter could be
attained as follows:

H e
jω

􏼐 􏼑 � 􏽘
N

n�1
h(n)e

−jωn
, (2)

where the order of the given flter is given byN. Basically, for
a linear phase type-I flter having coefcients which are
symmetric and have bounded length, h(n)� h(N− 1− n),
where 0≤ n≤N− 1, have the magnitude response, which is
given by the following equation:

Hr e
jω

􏼐 􏼑 � h[M] + 2 􏽘

M−1

n�0
h(n) cos((M − n)ω), (3)

whereHr(ejω) is the function with a real-valued response and
M� (N− 1)/2. Trough the process of limiting Hr(ejω) with
the response obtained for the ideal flter, the error function
E(ω) can be found. By the defned L2 norm given as the
standard for designing a high pass flter, the error function
E(ω) can be stated as follows:

|E(ω)|2 � 􏽚
π

0
Hr e

jω
􏼐 􏼑 − Hd e

jω
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dω. (4)

Tis paper aims at deriving the response for the stated
flter through the utilization of the aforementioned error
function E(ω) as an objective function in the optimization
problem. Te main objective is to obtain a series of opti-
mized symmetric coefcients that minimize the error
function of the flter and to use those coefcients in de-
signing a linear phase type-1 FIR flter for band stop and
high pass modes. Te error function can be minimized by
adopting any evolutionary algorithm to fnd the optimal
flter coefcients for the design of the FIR band stop and high
pass modes.

4. Evolutionary Algorithms

Tis section deals with the steps involved in the optimization
process of various evolutionary algorithms applied in
this paper.

4.1. Covariance Matrix Adaptation Evolution Strategy
(CMAES). Nikolaus Hansen developed an efcient evolu-
tion algorithm used as an optimizing tool for continuous
search spaces with real objectives [41]. Tis algorithm was
termed as the covariance matrix adaptation evolution
strategy (CMAES). It is a derivative-free stochastic approach
used specifcally for nonlinear problems [42], unlike other
methods which are being based on derivatives failing to yield
a solution due to various reasons such as improper search
with sharp turns, numerous breaks in continuity, and local
optimal solutions. Te CMAES algorithm is continuous in
nature and can be used for various applications involving
complex optimization numerical problems at a search region
which is continuously nonconvex and nonlinear. It utilizes
multivariate distribution samples N(m,C) which are con-
structed with the help of its mean value and its covariance
matrix; it is symmetric, positive, and defnite in nature
during the process of optimization. Tese samples can be
taken into account for obtaining renewed members of the
population. Te covariance matrix and the mean involving
the given set of samples point out to the limits in the region
of m ∈ Rn and C ∈ Rn×n, respectively. In the previous
generation, by updating the value of “m,” which corresponds

Determine the fbest and xbest from
each iteration and determine filter

coefficients

Choose the optimization algorithm and
set the learning period and order

Generate the equality
constraint

Define the filter constraints,
population size, coefficients

Select Design Variables

Filter parameters (or)
specifications

Figure 1: FIR flter design using the optimization algorithm.
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to the translational displacement of the distribution, the pos-
sibility of obtaining the optimal solution is maximized. Te
covariance matrix can be represented geometrically, with
a distinct shape such as that of an isodensity ellipsoid.Te shape
of this geometric representation, whose axis has length, cor-
responds to the respective eigenvalues of the covariance matrix.

Te algorithm uses two diferent adaptation strategies,
namely, CMA and step size adaptation. Te numerous steps
used during the implementation of the algorithm are
specifed as follows:

Step 1. Sampling population
Te search positions are found through the process of

sampling a distribution consisting of multiple variables. For
every search point belonging to the generation “g,” we fnd
the step size (σ(g)), covariance matrix C(g),

and themean valuem(g). From the abovementioned process,
the new variables or individuals obtained are again sampled
at the subsequent generation (g+ 1) as follows:

X
(g+1)

k � m
(g)

+ σ(g)
Ns 0, C

(g)
􏼐 􏼑 for k � 1, . . . , Ns, (5)

where X
(g+1)

k belongs to the g+ 1 generation and is the kth
ofspring belonging to the generation g+ 1; population size
is denoted by Ns.

Step 2. Recombination along with the selection process
After completion of the sampling process, the new mean

m(g+1) is obtained by selecting the top µ (weighted average)
samples having the highest ftness among the given total
population size (Ns). Te new mean becomes the weighted
average of μ samples with the weight parameter wi and is
given by the following equation:

m
(g+1)

� 􏽘

µ

i�1
wiX

(g+1)
i: Ns , (6)

where μ≤Ns denotes the original population size, and
subsequently, by equating wi � 1/μ,we calculate themean for
all μ samples and X

(g+1)

i: Ns denotes that among the given (Ns)
sampling points, it is the ith best ranked individual.

Step 3. Adaptation of the covariance matrix C
Tere are two more reliable but complex methods to

update C, which are as follows:

(i) Using Polyak’s average to estimate the rank-µ up-
date of C:
It is based on updating the value of C using the
previous history,

C(g+1)
� 1 − ccov( 􏼁C(g)

+ ccov 􏽘

µ

i�1
wi

X(g+1)

i: Ns − m(g)

σ(g)
⎛⎝ ⎞⎠

⎧⎨

⎩

·
X(g+1)

i: Ns − m(g)

σ(g)
⎛⎝ ⎞⎠

T⎫⎪⎬

⎪⎭

� 1 − ccov( 􏼁C(g)
+ ccov( 􏼁C

(g+1)

λ .

(7)

(ii) Utilizing the evolution path–cumulation:
Te second way is using an evolution path (pg

c ), to
log symbol information, (Pc) can be calculated using
the standard conditions defned initially
C(0) � I, p(0)

c � 0, σ(0) � 0.25(xt,max − xt,min), as

p(g+1)
c � 1 − cc( 􏼁p(g)

c +

�����������

μeffcc 2 − cc( 􏼁

􏽱 m(g+1)
− m(g)

σ(g)
􏼠 􏼡.

(8)

We can use Pc to update the covariance matrix C:

C(g+1)
� 1 − ccov( 􏼁C(g)

+ ccovp
(g+1)
c p(g+1)T

c , (9)

Also, f(x) �
1
2

x − x
∗

( 􏼁
T
H x − x

∗
( 􏼁. (10)

(iii) Combining two methods:
Using the updated values of the covariance matrix
from the two previous methods, we combine the
values to derive the renewed formula for updating
the fnal CMA for the covariance matrix (C(g+1)) by
using equations (7) and (10), with µcov ≥ 1, rank-one
update and weighting between rank-μ:

C(g+1)
� 1 − ccov( 􏼁C(g)

+
ccov
µcov

p(g+1)
c p(g+1)T

c

+ ccov 1 −
1

µcov
􏼠 􏼡 􏽘

µ

i�1
wi

X(g+1)

i: Np − m(g)

σ(g)
⎛⎝ ⎞⎠

·
X(g+1)

i: Np − m(g)

σ(g)
⎛⎝ ⎞⎠

T

.

(11)

Te eigen composition of the covariance matrix obeys
the following:

C(g) � B(g)(D(g))2(B(g))T; μeff � 1/(􏽐
µ
i�1 w2

i ) is given to
the variance for the given optimized mass; cc � 4/(n + 4) is
denoted as the learning ratio which can be used to fnd the
combined efective step for the evolution path; µcov defned
a constraint for rank-μ update and rank-one weighting.

ccov � 1/µcov2/(n +
�
2

√
)2 + (1 − 1/µcov)min(1, (2µcov−􏽮

1)/(n + 2)2 + µcov)} gives the learning rate of the updated
covariance matrix C(g), B(g) � n∗ n orthogonal matrix, and
D(g) � n∗ n diagonal matrix. During the usage of population
sizes for small ofspring, the rank-one update is found to be
inefcient as it minimizes the evaluations of the
functions [43].

Step 4. Controlling the given step-size
For the purpose of updating the global step size (σ(g)),

we utilize the relation between the mean trajectory denoted
by (p(g)

σ ) [44].
Te evolution path for adaptive step size is computed by
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p(g+1)
σ � 1 − cσ( 􏼁p(g)

σ +

�������������

cσ 2 − cc( 􏼁μeff( 􏼁

􏽱

B(g)D(g)−1
B(g)T m(g+1)

− m(g)

σ(g)
􏼠 􏼡􏼨 􏼩, (12)

where, cσ is defned as the learning for the given step size
which is found from Pσ , the path movement. Step size (σ(g))
is linked to the conjugate evolution path (p(g)

σ ) and is given
as follows:

σ(g+1)
� σ(g) exp

cσ
dσ

‖p(g+1)
σ

�����

E‖N(0, I)‖
− 1⎛⎝ ⎞⎠⎛⎝ ⎞⎠, (13)

where I is an Identity matrix; N(0, I) denotes the normal
distribution with unity covariance matrix and zero mean.
E||N(0, I)|| defnes the expectation of the Euclidean normal
distribution of N(0, I) with the distributed random vector
initialized to zero p(0)

σ � 0 initially. cσ � 10/(n + 20) denotes
the timer horizon of evolution in the backward path and also
cσ � μeff + 2/n + μeff + 3; the step-size damping factor is
given by dσ � 1 + 2max(0,

�����������
μeff − 1/n + 1

􏽰
) + cσ .

4.2. JayaAlgorithm. Te Jaya algorithm is a new population-
based metaheuristic optimization algorithm that is used to
determine the optimal subset of features to improve the
performance of the classifcation process. It combines the
features of evolutionary algorithms and swarm-based in-
telligence. Te Jaya algorithm has the tendency to move to
the best, i.e., it is closer to success, and avoids the worst
solution obtained in the iteration [45]. Tis nature makes
this algorithm victorious, and hence, the name Jaya is de-
fned. It is derived from a Sanskrit word meaning “victory”
[46]. Te advantage of the algorithm over other meta-
heuristic algorithms is that it requires only a few control
parameters such as the maximum number of generations,
population size, and the number of design variables that are
common for all algorithms, and it is independent of
algorithm-specifc parameters; therefore, it does not require
extensive tuning, so we can avoid unwanted convergence
and reduce the computational costs.

Te primary objective of this algorithm is to minimize/
maximize an objective function f(x).

Te following steps are followed in the implementation
of the Jaya algorithm:

Step 1: initializing the decision variable (xi), population
size (Np), and iteration number (T). Te decision
variable is initialized by a value between the lower and
upper bound ranges such that xi ∈ [Xmin

i , Xmax
i ].

Step 2: creating a job preference vector
Vk,l � v1,k,l, v2,k,l, . . ., vi,k,l, . . ., vn,k,l􏽮 􏽯, where Vk,l is an n-
dimensional vector which represents a sequence of jobs
in the kth schedule at the lth iteration and vi,k,l is the
preference value assigned to an ith job in the kth
schedule at the lth iteration. Te preference value is
randomly generated with a uniform random number
distribution as follows:

vi,k,l � 1 + rand (0, 1)∗ (n − 1), (14)

where rand is a uniform function that generates
a random number between 0 and 1 and

i ∈ 1, 2, 3, · · · , n{ }, k ∈ 1, 2, 3, · · · , Np􏽮 􏽯, l ∈ 1, 2, 3, · · · , Np􏽮 􏽯.

(15)

Step 3: the objective function f (xi) for each solution is
calculated, and the job preference vector is sorted in the
ascending order based on the objective function values
[47]. Te minimum and the maximum objective
functions are determined, and their corresponding best
preference vectors and the worst preference vectors are
Vk,lmin and Vk,lmax, respectively.
Step 4: Updating the preference values of all vectors
based on the preference values of (Vk,lmin and Vk,lmax),
respectively.

Vi,k,l � vi,k,l + ri,k,l ∗ vi,k,lmin − vi,k,l

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

− r2,i,l ∗ vi,k,lmax − vi,k,l

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑,

(16)

where Vi,k,l is the preference value for the ith job in the
kth schedule at the lth iteration.; Vi,k,lmin and Vi,k,lmax
are the preference values of the ith job in kth schedule
with the minimum and maximum values of the ob-
jective function.; and r1 and r2 are random values
generated with the uniform distribution function U
[0,1], which are used to achieve the right balance be-
tween the exploration and exploitation processes [48].
Step 5: converting the values to a new preference value
and identifying the corresponding new objective
function value
Step 6: comparing the values of the new schedule with the
previous schedule and updating it with the better solution
Step 7: repeating the abovementioned process until an
optimal solution is obtained and the current solution is
replaced by the optimal solution

Te viability and efciency of the Jaya algorithm make it
suitable for real-world problems such as feature selection,
image processing, designing PID controllers, and many
other applications [49–51].Te algorithm is used to optimize
multiple-objective cases such as (i) minimizing the total
operating cost, (ii) minimizing the system loss, and (iii)
minimizing voltage deviation. In addition, the algorithm is
investigated to satisfy the multiobjective cases such as (i)
minimizing the total cost and system loss, (ii) minimizing
the total cost and voltage deviation, and (iii) minimizing the
system loss and voltage deviation.

4.3. Self-AdaptiveDiferential Evolution (SaDE). In the SaDE
algorithm, the population is initialized randomly with NS
(population size) target vectors, strategy probability, number
of strategies available, and learning period (LP). Fitness for
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the population is evaluated for the parent selection process.
Te mutation operator is enforcing a very objective vector in
the existing period to bring about the evolution vector. Te
crossover process is enforced on every combination of
objective vectors and uses the respective mutated vector to
create a preliminary vector combination. For ofspring
generation, the SaDE algorithmmainly calculates (i) strategy
probability and (ii) assigns control parameters to the process
of obtaining preliminary vectors for each objective vector.
Te choice of three control constants such as crossover rate
(CO), mutation rate (M), and population size (NS) in

successive generations highlights the SaDE algorithm from
the conventional DE algorithm by providing randomness
[52], which in turn helps enhance the measure of searching
for exploitation and exploration.

Tus, the strategy candidate pool has been divided into
four diferent strategies; the frst three strategies use the
binomial-crossover operator, and the fourth strategy gen-
erates a trial vector without a solitary crossover.

(1) DE/rand/1/bin (ST1)

Ui,j�

xr1,j + M∗ xr2,j − xr3,j􏼐 􏼑, if rand [0, 1) <COorj � jrand,

xi,j, Otherwise.

⎧⎨

⎩ (17)

(2) DE/rand-to-best/2/bin (ST2)

Ui,j �
xi,j + M∗ xbest,j − xi,j􏼐 􏼑 + M∗ xr1,j − xr2,j􏼐 􏼑 + M∗ xr3,j − xr4,j􏼐 􏼑, if rand[0, 1)<COorj � jrand,

xi,j, Otherwise.

⎧⎨

⎩ (18)

(3) DE/rand-to-best/2/bin (ST3)

Ui,j �
xr1,j + M∗ xr2,j − xr3,j􏼐 􏼑 + M∗ xr4,j − xr5,j􏼐 􏼑, if rand[0, 1)<COorj � jrand,

xi,j, Otherwise.

⎧⎨

⎩ (19)

(4) DE/current-to-rand/1 (ST4)

Ui,j�Xi,g + k∗ Xr1,g − Xi,g􏼐 􏼑 + M∗ Xr2,g − Xr3,g􏼐 􏼑.

(20)

In the SaDE technique, xr1, xr2, xr3, xr4, and xr5 are the
distinct solutions for the current population. Population
size (NS) is not needed to be tuned, and common values
should be attempted based on the intricacy of the ap-
plication under consideration. Te scaling factor, M, is
frmly linked to the concurrent speed. Proper selection of
CO results in enhancing the efciency of the optimiza-
tion, while incorrectly selected values may worsen the
efciency. Hence, for a given problem, there is a gradual
adjustment in the prior values so that they are in the
range and have entered the next generation successfully.
CO is usually spread across a spectrum with a mean
(COmk) and a standard deviation of 0.1 analogous to the
kth strategy. In the beginning, (COmk) is assigned to be
0.5 for fundamental LP generation and is repeated for all
strategies. Subsequently, after LP iterative generations,
(COmk) is assigned to be the median of the successful CO
values. Post evaluation of the latest obtained objective
vectors, CO variables in (COmk) belonging to the

previously defned generation are substituted with the
numeric values found in the most recent generation for
the kth outcome.

A single outcome for obtaining the objective vector is
taken from one of the efcient strategies assigned to each
target vector in order to obtain an objective vector. From
the knowledge of previous candidate solutions, the SaDE
algorithm adapts to the strategies for generating objective
vectors and related control parameter settings by oneself
during evolution. As a result, a better and more appro-
priate outcome for obtaining is found and the various
arguments are found by adjusting the control parameters
to match at various stages during the optimization
problem [53]. Te selected control strategy is then
enforced on the analogous output vector for creating an
objective vector. After iteratively passing through the
generations and calculating all the obtained objective
vectors, the numeric value of objective vectors obtained in
a particular strategy that can be passed and discarded in
the subsequent generation is kept in the pass and fail
memories, respectively, within the given learning period.
Te chances of obtaining a unique outcome shall be
modifed after each iterative generation with respect to the
passed and failed ones.
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5. FIR Filter Design Implementation
Using FLDCSaDE

5.1. Fuzzy Logic-Based Diversity Controlled Self-Adaptive
Diferential Evolution (FLDCSaDE). Tis methodology of
diversity control is elicited through CO adaptation and
executed by means of a fuzzy system using a feedback loop.
To bring about obligatory changes in CO, we calculated the
mean for the Gaussian or normal distribution of the
crossover rate (COm) on the basis of diversity. Imple-
mentation of these changes in the algorithm helps enhance
the exploration attribute. Diversity in the population is
controlled by changing the rate of crossover based on the
necessity of the evolutionary process using the fuzzy system.
To strike an equality between exploitation and exploration,
there exist numerous techniques for obtaining appropriate
validity in the evolutionary process and for diversity cal-
culations. In the FLDCSaDE algorithm, for the purpose of
obtaining the diversity among the population, we use the
“distance-to-average-point” [54] estimate, which is given as
follows:

divg(Pop) �
1

|L|∗NS
∗ 􏽘

NS

i�1

������������

􏽘

D

j�1
xij − xj􏼐 􏼑

2

􏽶
􏽴

, (21)

where the required dimension for the problem is given by D,
the size of the population is given by NS for a population
Pop, and the diagonal length in the search space defned in
the range of S⊆RD is given by |L|. Te search area is defned

by
��������������

􏽐 (xmax − xmin)2
􏽱

where every search variable x lies at
bounded limits given by xmin <x< xmax; xj denotes jth value
for the given average point x, whereas xij indicates the jth

numeric value for the ith independent individual. Te given
“distance-to-average” measure needs the size of the pop-
ulation as a constraint, the limits across which the variable
used can be searched, and the problem amplitude in terms of
its dimensions. Tus, the aforementioned approach is found
to be very efective in tackling complicated problems in-
volving dynamic design characteristics [55].

Te fuzzy approach used in the system is interpreted by
putting together a unique mapping, extending from the
specifed input onto the output with the help of fuzzy logic
[56]. Tis approach elucidates the numeric value defned for
the input vector and with the help of a few laid-down
regulations allocates a numeric value for the given output
vector. Given COm adaptation in the DCSaDE strategy
usually demands two components mentioned as follows:

COmk � COms,k + COmd,k, (22)

where COms,k value is acquired by using the SaDE algorithm
that usually takes the median defned for every COmd,k

constituent involving diversity, and CO numeric value de-
fned during the past generations of linear programming
optimization LP is taken into consideration. Initially, the
COmd,k value was obtained by using a set of if-then state-
ments. If the diversity is above a certain level, then COmd,k is

gradually decreased by a fxed factor; otherwise, it is grad-
ually increased by a fxed factor to improve the overall
crossover rate. Te problem with this method was de-
termination of the factor by which to increase or decrease the
COmd,k value. Larger values resulted in quicker settling to
the maximum or minimum value of COm, which resulted in
poor diversity control. Also, fne tuning of the COm value
was not possible with the if-then statements.

Te fuzzy system-based adaptation causes a gradual
change leading to better evolutionary process. Te fuzzy
system usually takes into consideration the numeric value of
COm immediately besides any user mediation based on the
problem attributes. Te COm value should necessarily be
carried out in accordance with the numerous stages in the
evolution as well.

During the various stages of evolution, the crossover rate
should be suitably modifed based on the search space. Te
fuzzy system helps in the efective tuning process for the
numeric value of COm, at the instant of many levels in the
evolutionary development. Te adoption of COm can be
carried out in a similar fashion for a feedback-based fuzzy
controller, where the feedback is stated using the diversity
deviation involving the current population. Diversity de-
viation or error is measured by involving deviation of
population diversity of the current generation with respect
to a reference or desired diversity level.Terefore, for COmk,
variables which are predefned are adapted on the basis of
fuzzy logic.

In the given task, a SISO (single input and single output)
fuzzy logic-based system developed byMamdani is used.Te
input used for the fuzzy system involves deviation in the
diversity at gth generation ∆errg is defned as given deviation
in the diversity among the individuals of the population divg

present at gth generation and the diversity taken as a ref-
erence (ref).

∆errg � ref − divg. (23)

Te output obtained FS is interpreted as the deviation of
the mean for the given normal distribution at the specifed
numeric value of the crossover rate (∆COmg

k) under the kth

strategy for the gth generation. For the given generation, the
COmg

k is obtained through

COmg

k � COmg−1
k + ∆COmg

k . (24)

Fuzzy variables for FS are established from output and
input. Subfunctions of these variables are classifed into
Positive (P), Negative (N), Zero (Z), Large Positive (LP), and
Large Negative (LN). All of these are specifed with the help
of functions of triangular membership. For obtaining
defuzzifcation, we use the centroid approach. Towards the
completion of every generation, calculation is carried out for
obtaining reference diversity (ref) and current population
diversity. Te deviation among the two terms is sent for the
feedback control in the FS loop. Te FS makes note of all the
important implementation changes in numeric value of
COmk numeric value using the assistance of rule set, ob-
tained from the SaDE approach for revising the crossover
rate in the upcoming generation. Tis combined with
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success history-based adaptations of COwill be able to adopt
the control parameter value depending on the search space
of the functions and the stage of evolution during the
evolutionary process. Te fuzzy approach is summarized in
Figure 2. Te corresponding false positive rate (FPR) can be
computed based on the ripple content which contributes
towards false decision outputs. Lower the ripple obtained,
the better is the frequency response and in-turn performance
thus obtained.

5.2. Implementation of FLSaDE for FIR Filter Design. Te
general steps involved in the implementation of the
abovementioned algorithm are summarized as follows. Te
objective or ftness function used to minimize the error
function is given in equation (4) for both band stop and high
pass flters. Te abovementioned function is evaluated after
each iteration in order to derive optimal coefcients for the
given FIR flter.Te target error value (tolerance) that should
be reached is set to 0.001, and the target objective value is
given to be 1.000001. Te equality constraint for the given
frequency response h(n) is bounded and given by h(n)�

h(N− 1− n) where 0≤ n≤N− 1, where N is the order of the
given FIR flter.

Te various values of function parameters such as upper
and lower bound limits and size of the given population are
selected such that they are used in fnding and generating
optimal coefcients of the given flter for minimizing the
error function of high pass and band stop flters.

Step 1: values are initialized to the population size,
Ns � 20. Te lower and upper bound limits for the
coefcients of the given flter are assigned −1 and +1,
respectively, for both band stop and high pass flters.
Te number of iterations N� 20 for improving the
accuracy of the given search space.Te values of control
parameters are initialized using the formulation rate
M� 0.5 and the crossover rate CO� 0.5.
Step 2: we evaluate the strategy probability to the 4
strategies listed in the SaDE algorithm. Te learning
period is set to 50, and the coefcients are divided into
lower bound and upper bound values. Te fuzzy in-
terference system (FIS) parameters are initialized. In
the initialization, the inputs of the system are made
fuzzy, followed by the fuzzy operators being applied to
obtain the output.
Step 3: the parent population is evaluated. Te best
value and its id are computed for the given generation.
In order to rotate the given population to randomize,
the following steps are performed: frst, the old pop-
ulation is saved, and then the current index of the
pointer array is found. Second, the vector’s locations
are shufed, and their indices are rotated.
Step 4: we group the given population into strategies,
and their diversity is calculated by fnding the error,
length of the FIS, and mean CO values. From the mean,
the optimal CO and M are computed. For the given
bounded coefcients, boundary conditions are
checked. After the given parent population is shufed,

the child population is selected from the parent pop-
ulation. If the selected child is better than the previous
generations, it is added to the list. For the given
population, local search is applied for fnding flter
coefcients.
Step 5: each function call is performed for each indi-
vidual iteration, and the parameters are passed in
column form. Te number of design variables is set to
11. Te maximum function evaluation is performed for
200 generations, and the population in each generation
is updated based on the worst and best solutions
obtained.
Step 6: for each iteration (or run), we fnd the optimal
frequency (fbest) and flter coefcients (xbest). Te
same procedure is repeated for all the algorithms used
in the design of the FIR flter. Finally, the iterations are
repeated until the tolerance error and target objective
value are reached. After 20 iterations, the one with the
minimum fbest value is treated as the best member of
the given generation. Te values corresponding to the
best are the optimal coefcients for the given algorithm.

6. Simulation Results and Analysis

6.1. High Pass Filter (HPF). A comparison of the high pass
flters designed using diferent evolutionary algorithms (EA)
is made with regard to the set of attenuation values and the
flter frequency response. Te optimum flter coefcients for
the algorithms, namely, SaDE, FLDCSaDE, CMAES, Jaya,
and DE, are depicted through Table 2.

Te ideal flter order is determined by the ability to
achieve higher attenuation between stopband and passband,
a fatter passband resulting in signifcantly minimal ripples,
and narrow transition band. While lower order flters have
minimal roll-of and complexity, they have a larger transi-
tion band, leading to irregular fltering action. In compar-
ison to lower order flters, higher order flters also have
disadvantages of their own. Tey have higher complexity
which increases in the powers of 2 as we double the order.
Hence, there is a need to determine the ideal flter order
which encompasses the advantages of both the lower and
higher order flters. In this paper, we have utilized the order
of the flter with 21 coefcients and 20 iterations. We fnd
that this 21st order flter ofers a lower transition band than

Fuzzifier

Decision based
output

Decision based
output

Rule based
classification

Defuzzification with
Centroid Approach

Figure 2: Approach towards the fuzzy algorithm.
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other higher order flters. Moreover, the flter gain obtained
is higher and the error is minimal, making the flter closer to
the ideal response [57]. Te frequency response for the
optimized flter coefcients of each algorithm for both band
Stop and high pass flters is obtained through the freqz
function in MATLAB which is used to fnd the frequency
response of the given digital flter as shown in Figure 3. We
measure the attenuation values for the given flter by taking
the absolute values of the given frequency response, con-
verting the values to decibels, and utilizing the peaks ob-
tained in stopband and passband to fnd the corresponding
attenuation [8]. Also, for fnding ripples, the absolute values
are taken as they are not converted to decibels. Te stopband
and passband attenuation analogous to the distinct algo-
rithms mentioned above are listed as follows. Te above-
mentioned algorithms form the basis for the algorithms
discussed in the paper. Te performance of the various
algorithms is discussed in the latter sections. Te following
algorithms are found to be superior among all the other
genetic and swarm optimization algorithms due to the fact
that they are much more recent, and the limitations of the
previous algorithms have been rectifed in the following
algorithms.

In this paper, a high pass flter is designed to demonstrate
the efectiveness of optimization techniques. Te specifca-
tions for the high pass flter are order of the flterN� 21, cut-
of frequency ωc � 0.43, and the number of samples: 1000.
Te objective function in equation (4) is computed for each
and every step until optimal solution is obtained. Te limits
assigned for the flter coefcients are found to lie within the
range of −1 to +1. We analyze the parameters obtained from
the frequency response of a high pass FIR flter for their
performance, utilizing various evolutionary algorithms
(EA), most importantly the stopband ripple, passband, and
stopband attenuation. Tese parameters are tabulated in
Table 3.

Based upon the magnitude response in dB obtained from
the graphical representation of various algorithms such as
SaDE, FLDCSaDE, Jaya, CMAES, and DE in Figure 3, we
observe that the plot clearly depicts SaDE and FLDCSaDE
having the highest negative magnitude in dB for a given
normalized frequency. For more accurate visualization, we
use stopband attenuation (Astop) as recorded in Table 4 since
it is based on the mean value from each iteration, thus
making it a stable value obtained in any iteration rather than
a single highest peak, followed by a subsequent lower value.
Te flters are mainly characterized by their stopband at-
tenuation [58, 59]. From Table 3, SaDE and FLDCSaDE have
the highest negative stopband attenuation of −23.9720 dB
and −20.2928 dB, respectively, compared to Jaya
(−15.8515 dB), CMAES (−14.1167 dB), and DE (−14.4799).
However, from their mean value in Table 4, we fnd
FLDCSaDE to outperform other algorithms in the region
around the stopband, thus indicating the highest stable
attenuation throughout the response. Moreover, we fnd that
the passband attenuation is the lowest for FLDCSaDE
(0.4330 dB), indicating that it takes the minimum time for
computation. Lower time correlates to a lower number of
parameters involved in the flter design. It is seen from the

plot that all the algorithms produce almost the same
magnitude of overshoot, but among them, FLDCSaDE
delivers the minimum overshoot at the point where the ideal
flter contains discontinuity [60]. CMAES and Jaya generate
the maximum. SaDE as well as DE produces an intermediate
overshoot [61, 62]. It shows that FLDCSaDE type flters yield
a level and smooth passband response; that is, they have a fat
response at the passband. Tese considerations are studied
and passed onto the calculation of the variance, highest, and
mean values of the ripples obtained at the passband as in
Table 5. Since the variance of the ripples in the passband for
all the algorithms is close to 0, it states that the passband
ripples of the algorithms for 20 runs are very close to each
other. Te lower value of stopband ripple from Table 6 for
FLDCSaDE indicates that the distortion and aliasing in the
waveform are comparatively lower than the other
algorithms.

6.2.BandStopFilter (BSF). In this section, we adopt a similar
approach as in the design of a high pass FIR flter. One of the
diferences in execution is that we have two crossover fre-
quencies for the band stop flter when compared to one for
the high pass flter. It is basically the inverse of the band pass
flter, and these second order reject flters are designed to
provide higher attenuation at and near the single crossover
frequency with little attenuation at all other frequencies as
shown in Figure 4. For any standard band stop flter, the
highest frequency attenuated is about 10 to 100 times more
than that obtained from the lowest frequency of attenuation.
Te conventional band stop flter is designed because of its
lower interference and increased performance; also, the
amplitude of the reference level of the sideband is com-
paratively reduced, thus producing a wider stopband. Te
band stop flter coefcients for various evolutionary algo-
rithms are listed in Table 7.

Te design specifcations taken into consideration for the
states’ band stop flter are as follows: order for the given flter
N� 20, cut-of frequency ωc1 � 0.38, ωc2 � 0.73, and number
of samples: 1000. Te objective function in equation (4) has
to be estimated after each step in order to come up with the
solution which is most efective. Te limits assigned for the
flter coefcients are found to lie within the range of −1 to +1.
Similar to the high pass flter, we analyze the parameters of
the frequency response of the band stop FIR flter for fnding
their performance, utilizing various evolutionary algorithms
(EA), most importantly the stopband ripple, passband, and
stopband attenuation observed and tabulated in Table 8 [62].

From the normalized magnitude response representation
in graphical form in Figure 4, for various algorithms such as
SaDE, FLDCSaDE, Jaya, CMAES, and DE, we fnd that al-
though the maximum flter stopband attenuation from Ta-
ble 8 is favourable for DE with −26.0818 dB, the passband
attenuation is high (1.03995 dB). Taking the mean value in
Table 9 into consideration for the stopband attenuation, we
fnd that FLDCSaDE has the highest negative value of
−18.86844 dB, as seen from Table 9, which shows that it has
the most stable response with the highest magnitude.
Moreover, the response of DE is skewed, indicating a sole
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Table 2: Optimized high pass flter coefcients of order 21.

Algorithm Fbest Xbest

DE 0.0324 −0.01894, 0.03103, 0.0283, 0.00673, −0.03601, −0.0023, 0.07345, 0.14259, −0.1024,
−0.3348, 0.5614

CMAES 0.2142 −0.1521, 0.0971, 0.0620, −0.0272, −0.1055, −0.0204, 0.3003, −0.3187, 0.0991,
0.0262−0.0305

Jaya 0.138794 0.0680, −0.0960, −0.0206, 0.0480, −0.0473, 0.1299, −0.0868, −0.2067, 0.3875,
−0.1402, −0.0420

SaDE 0.03359 −0.0299, 0.01694, 0.0316, −0.0111, −0.0474, −0.02359, 0.07580, 0.0797, −0.07563,
−0.30701, 0.57366

FLDCSaDE 0.0303 0.0252, −0.0149, −0.0389, −0.0005, 0.0516, 0.0281, −0.0619, −0.0833, 0.0686, 0.3104,
−0.5709
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Figure 3: High pass flter normalized frequency response of order 21.

Table 3: Comparative study of the high pass flter after 20th iteration.

Algorithm used Lowest stopband amplitude
(IndB)

Highest passband amplitude
(IndB)

DE −14.4799 1.5653
CMAES −14.1167 1.4737
Jaya −15.8515 1.2363
SaDE −23.9720 0.9697
FLDCSaDE −20.2928 0.4330

Table 4: Statistical study of the high pass flter after 20th iteration.

Algorithm
Stopband amplitude (in dB)

Mean Variance Standard deviation
DE −16.1164 11.8321 3.4398
CMAES −18.3858 10.4221 3.2283
Jaya −14.6156 8.8489 2.9747
SaDE −20.8871 11.4938 3.3902
FLDCSaDE −22.0034 11.6958 3.4199
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peak followed by a decaying response. Also, the passband
attenuation of the FLDCSaDE is much less than the other
algorithms 0.7434 dB, as noticed from Table 10, indicating
that the algorithms perform efciently when applied to either
high pass or band stop flters. It is also proposed that the
maximum passband ripple for the FLDCSaDE algorithm has
a diference of 0.0040 dB with SaDE, 0.6766 dB with Jaya,
0.3026 dB with DE, and 0.2887 dB with CMAES. Te mean
value of the passband ripple is the lowest for the FLDCSaDE
algorithm. Hence, the FLDCSaDE algorithm yields a level and

smooth passband response; that is, it has a fat response at the
passband. Te stopband ripples of all the algorithms in Ta-
ble 11 except for the Jaya algorithm are very close to each
other, and therefore, these algorithms ofer high attenuation.
Some ripples are observed in the stopband for FLDCSaDE,
suggesting that the gain obtained is irregular in the passband
region. But the fact that the average value of the ripple in
Table 11 is the minimum for the FLDCSaDE algorithm
suggests that it has better convergence and a stable response
compared to other algorithms.

Table 5: Quantitative study of the high pass flter after 20th iteration.

Algorithm
Normalized passband ripple

Highest Mean Variance
DE 1.1975 1.1867 0.0097
CMAES 1.1894 1.2311 0.0011
Jaya 1.1789 1.3140 0.0045
SADE 1.1181 1.1964 0.0037
FLDCSaDE 1.1075 1.2172 0.0034

Table 6: Qualitative study of the high pass flter after 20th iteration.

Algorithm
Normalized stopband ripple

Highest Average
DE 0.1772 0.2582
CMAES 0.1127 0.1768
Jaya 0.0778 0.2391
SaDE 0.0695 0.1078
FLDCSaDE 0.0239 0.1381

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Frequency

M
ag

ni
tu

de
 R

es
po

ns
e (

dB
)

-120

-100

-80

-60

-40

-20

0

20

SaDE

FLDCSaDE

Jaya
CMAES

DE

Figure 4: Normalized frequency response for the band stop flter of order.

International Transactions on Electrical Energy Systems 13



Ta
bl

e
7:

O
pt
im

iz
ed

ba
nd

st
op

fl
te
r
co
ef

ci
en
ts

of
or
de
r
21
.

A
lg
or
ith

m
Fb

es
t

X
be
st

D
E

0.
06
21
4

−
0.
04
43
82
92
25
93
89
5,

0.
00
55
65
29
12
87
19
4,

−
0.
02
63
15
11
81
23
26
2,

0.
02
45
95
58
60
53
39
7,

0.
09
56
09
80
42
23
58
8,

−
0.
08
08
56
92
02
85
80
4

−
0.
05
76
25
04
78
12
98
4,

0.
01
60
96
05
96
09
10
1,

−
0.
05
10
98
70
04
58
51
5,

0.
52
93
08
96
32
18
68
4,

0.
11
98
07
45
13
02
83
1

C
M
A
ES

0.
06
09
9

−
0.
04
50
28
16
95
63
77
0,

0.
00
06
02
38
49
98
81
7,

−
0.
02
34
79
98
24
38
49
3,

0.
02
51
42
12
32
36
13
4,

0.
08
95
57
03
58
81
41
1,

−
0.
07
72
70
38
62
17
17
9

−
0.
05
94
55
05
79
49
34
6,

0.
01
51
33
59
57
80
73
3,

−
0.
04
82
79
28
55
80
28
2,

0.
53
46
16
58
10
64
30
9,

0.
10
88
94
65
63
26
62
8

Ja
ya

0.
06
06
3

0.
00
15
43
33
33
72
96
9,

−
0.
05
94
57
33
41
94
84
2,

0.
00
30
71
29
27
90
77
9,

0.
06
70
38
66
36
89
82
2,

−
0.
01
03
41
47
26
83
58
7,

0.
03
25
72
71
90
95
20
2

−
0.
09
93
54
76
59
43
96
9,

−
0.
08
98
36
54
74
32
28
3,

0.
26
17
25
30
56
13
09
1,

0.
05
08
55
50
36
93
46
9,

0.
65
24
63
41
57
91
42
5

Sa
D
E

0.
05
65
3

0.
00
66
11
88
63
94
23
3,

−
0.
06
91
04
93
70
84
88
7,

0.
01
64
83
67
69
21
15
8,

0.
05
63
46
40
91
41
70
4,

−
0.
00
95
97
75
27
15
97
6,

0.
03
64
25
35
34
80
38
3

−
0.
09
73
69
11
68
71
47
9,

−
0.
10
44
88
65
93
09
71
0,

0.
26
41
27
56
79
20
87
1,

0.
05
59
66
71
92
69
36
7,

0.
64
86
74
48
00
40
05
7

FL
D
C
Sa
D
E

0.
05
64
0

0.
00
62
50
46
88
33
99
7,

−
0.
06
86
05
87
60
87
01
6,

0.
01
53
04
20
03
65
94
5,

0.
05
54
41
39
68
90
89
3,

−
0.
00
88
82
27
53
63
90
4,

0.
03
63
09
76
35
58
91
8

−
0.
09
94
35
94
91
29
02
0,

−
0.
10
38
39
43
33
24
57
9,

0.
26
75
07
23
93
28
36
1,

0.
05
67
01
71
27
40
93
9,

0.
64
93
95
72
36
94
24
3

14 International Transactions on Electrical Energy Systems



Table 8: Comparative study of the band stop flter after 20th iteration.

Algorithm Lowest stopband amplitude
(dB)

Highest passband amplitude
(dB)

DE −26.0818 1.03995
CMAES −25.5195 1.0261
Jaya −12.4252 1.4140
SaDE −21.4021 0.7434
FLDCSaDE −22.7314 0.7374

Table 9: Statistical study of the band stop flter after 20th iteration.

Algorithm
Stopband amplitude (in dB)

Mean Variance Standard deviation
DE −16.6030 14.8547 3.85418
CMAES −17.2205 12.0425 3.47022
Jaya −15.7026 5.56584 2.35920
SaDE −18.8248 14.9776 3.87008
FLDCSaDE −18.8684 13.9893 3.74022

Table 10: Quantitative study of the band stop flter after 20th iteration.

Algorithm
Normalized passband ripple

Highest Mean Variance
DE 1.1272 1.20078 0.007394
CMAES 1.1254 1.21114 0.002519
Jaya 1.1768 1.30965 0.002302
SADE 1.0977 1.18124 0.002534
FLDCSaDE 1.0954 1.19008 0.003816

Table 11: Qualitative study of the band stop flter after 20th iteration.

Algorithm
Normalized stopband ripple

Highest Average
DE 0.0496 0.27779
CMAES 0.0530 0.14961
Jaya 0.2392 0.15719
SaDE 0.0851 0.12599
FLDCSaDE 0.0730 0.12549

Table 12: Symbols and Abbreviations.

S. No. Symbol Defnition
1 EEG Electroencephalography
2 MRI Magnetic resonance imaging
3 ECG Electrocardiogram
4 RTL Register transfer language
5 CO Crossover rate
6 IIR Infnite impulse response
7 MATLAB Matrix laboratory
8 PSO Particle swarm optimization
9 GA Genetic algorithm
10 FIS Fuzzy interference system
11 ωc Cut-of frequency
12 N Order of the flter
13 W Weights
14 D Dimension
15 NS Population size
16 LP Linear programming optimization
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7. Conclusion and Future Scope

Trough the medium of this paper, performance for the
designed fnite impulse response (FIR), high pass (HP), and
band stop flter (BS) has been scrutinized. Te analysis is
compared for various metaheuristic evolutionary optimi-
zation algorithms, namely, self-adaptive diferential evolu-
tion (SaDE), fuzzy logic-based diversity-controlled self-
adaptive diferential evolution algorithm (FLDCSaDE),
covariance matrix adaptation evolution strategy (CMAES),
and Jaya algorithm, by taking the diferential evolution (DE)
algorithm as a reference.Te FIR flter design aims at fnding
optimal coefcients for the given flter such that it minimizes
its ripple (both stopband and passband) and hence obtains
a smoother response with a minimal relative absolute error,
thus attaining a response closer to the ideal response. Te
observed optimal solutions obtained for the FLDCSaDE
algorithm were found to be the best when compared to other
algorithms and satisfed the requirements of an efcient FIR
flter in terms of performance and reduced ripple. At the
same time, the algorithms are found to attain a high at-
tenuation in the stopband, in-turn having a narrower
transition band.Te superiority of the FLDCSaDE algorithm
compared to other algorithms can be attributed to the fact
that it ofers better diversity because it updates the crossover
rate for the next generation. Tis helps in the retrieval of
useful information from the given population and in
obtaining a better solution.

Te application of the given FLDCSaDE algorithm
provides better tuning and performance.Te performance in
terms of amplitude and ripples for both high pass and band
stop flters has been appreciable. Te ripples in the order of
0.02 and 0.07 provide a smooth transition. In a practical
sense, circuits with lower attenuation in the passband which
extends from 100MHz to infnity will cause the signals to
experience an attenuation loss of approximately −10 dB
which limits the appreciable bandwidth that can be used in
the circuit. Te fact that utilizing diferent flter topologies
can cause reduction in ripples may have an added disad-
vantage of undesired resonances and introduce amplifying
elements. Te use of FLDCSaDE reduces the ripples to an
order of 1, thus scaling the desired output and reducing the
group delay. Although the fact that the fuzzy approach can
be applied to any randomly generated population, there
might be cases where the accuracy can be compromised,
especially in the case of multimodal problems. In addition to
it, one might need to manually feed the crossover rate. Even
in these problems, the accuracy obtained is almost com-
parable to that obtained by the other algorithms. Moreover,
the value of the crossover rate defned will be optimized post
each iteration, so the crossover rate fed initially does not
result in inaccuracy which makes it efcient. Te research
can be extended to solve multidimensional and multi-
objective problems and can be used to design a corre-
sponding infnite impulse response (IIR) flter. Te usage of
FIR flter design can be used to improve modulation pa-
rameters such as spectral efciency, clock synchronization,
frequency masking, and latency, thus improving bandwidth
diversifcation [63]. Te use of digital flters to improve

energy efciency in industrial automation can be considered
for future investigation. Te use of fuzzy-based optimization
can further provide frequency sampling. Tis approach can
be applied to the decision support system which can be
utilized to control the diferential curve, thereby making it
suitable for many nonlinear applications. Te usage of
adaptive fuzzy systems can further add to the reasoning on
the fuzzy patterns, thus enabling task processing and
broadening the spectrum of functional intelligence. Tis
provides a practical and an efective solution for various
applications such as audio systems for sending and con-
trolling the variable frequency components, biological in-
struments, and communication systems.

Appendix

A. Symbols and Abbreviations

Symbols and Abbreviations are presented in Table 12.

B. Hardware and Software Specifications

MATLAB 2020a and above Intel Core i3 2GHz processor
with a minimum of 4GB of RAMmust be compatible for the
implementation of the given FIR flter design.

Data Availability

Te data that support the fndings of the study are available
from the corresponding author upon request.
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