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Electric power grids are always afected by numerous unexpected faults. Occurrence of these faults will have a negative impact on
network availability and reliability indices of the network. But the indicators of reliability and quality of electrical energy in the
network can be augmented by locating the fault in the shortest time. Special features of distribution networks such as load and
network imbalance, existence of diferent types of load with diferent connections, existence of multiphase branches, efects related
to diferent conductors, capacitive efects of distribution lines, and limited numbers of measuring devices complicate the process
of fault localization in distribution networks. On the other hand, increasing penetration of distributed generation units has caused
conventional methods of fault localization. Terefore, it is mandatory to introduce new methods of fault locating by considering
the mentioned features. Hence, in the current study, nonlinear methods are presented for identifying the location of ground faults
in the power distribution network with the help of voltage phasor measurement at diferent network buses by the D-PMU phased
distribution unit. In the frst technique, the genetic optimization algorithms and particle swarm optimization for nonlinear
modeling of fault position along the distribution line have been utilized for diferent single-phase, two-phase, and three-phase
faults, and in the second technique, neural fuzzy network training has been proposed by diferent phasor measurement devices. In
this case, it is enough to access the phase information of the network bus voltage. In order to show the efectiveness of the proposed
algorithms, a 9-bus system is defned by MATLAB software and also defning diferent line lengths and line characteristics in
diferent buses. Moreover, after applying single-phase, two-phase, and three-phase faults, as well as presenting the results, fault
localization is detected in the shortest time.

1. Introduction

Nowadays, distribution and super-distribution networks
have the highest number of diferent faults. Tus, the ex-
pansion of these networks and also the high volume of
recorded information make these systems more complex.
Consequently, it is imperative to implement a system in
order to perform fault detection at the lowest possible time
and with high reliability in distribution networks [1, 2]. Te
transmission line is an important component of the elec-
trical power system and its protection is essential to ensure
the stability of the system and reduce the damage done to the
equipment due to a short connection in transmission lines

[3–5]. Transmission line relays have three important func-
tions: detecting, classifying, and locating transmission line
faults. Fast detection of a transmission line fault facilitates
the fast separation of the faulted line from service; hence, it
protects the system from harmful efects of the fault [6, 7].
Fault classifcation is the identifcation of the type of fault,
and this information is essential for locating the fault and
assessing the extent of repairs [8]. High accuracy of fault
location is essential to facilitate rapid repair and separation
of faulty line, improve reliability, and access to power source
[9]. Various fault location (FL) schemes have been used in
real systems, including phasor-based fault location (PHFL)
techniques, which are still the most common [10]. Tese
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solutions require estimation of the basic phases of voltage
and current which are used as inputs to the FL formulae.
Backup protection may be local, remote, or both [11, 12]. To
realize the support of remote sensing protection, the use of
phasor measurement units (PMU) has been subject to
university and industry attention in several years.

Short circuit faults are common in transmission lines
and are the worst type of faults that cause many hazards in
lines such as reduced component life, increased power and
heat loss of cables, and damage to insulation [13, 14].
Various types of short circuit faults occur during daily work
and are mainly classifed into two symmetric and asym-
metric faults. Symmetric or balanced faults, which keep the
system balanced, include three-line ground (LLLG) and
triple-line (LLL) lines and are unlikely to occur, but they are
the most severe type of short circuit faults, which include
large destruction efects and damage to system equipment
[15, 16]. Asymmetric or unbalanced faults that unbalance the
power system during a fault include two-line ground (LLG),
ground-to-line (LG), and line-to-line (LL) lines. Although
their intensity is lower compared to balanced rivals, they are
of great importance because one-to-ground faults are more
than 80% likely to occur [17]. In this work, ground con-
nection faults have been worked on.

In [18–20], smart meters (SMs) are placed in several
system buses so that they do not synchronize prefault and
fault voltage measurements. From the voltage drop vector,
the fow distribution vector is calculated. Te substation and
all buses of DG have to be equipped with digital fault re-
corders (DFR). Te amount of fault current is obtained
through the sum of the currents injected by each DG and the
source of the post. Knowing the system impedance matrix
and fault current, diferent voltage drops are calculated for
all buses with DG. Since the actual voltage sag is recorded on
each bus with DG, the voltage drop calculated with the
lowest fault, compared to the actual voltage drop, related to
the fault location can be used [21, 22]. Terefore, such
a method is based on classical analysis and does not require
complicated mathematical techniques and load data; the
fault occurrence position can be calculated with the help of
voltage drop information at the beginning and end of the
transmission line.

In the current study, a new method for locating faults in
the distribution network using voltage phase information is
introduced. Finding fault location in four stages is accom-
plished: frst, the voltage before and during the fault is re-
ceived by the phasor measurement equipment installed at
the network buses. In the next step, utilizing the values of
voltage drop in various phases of the power system, the types
of single-phase, two-phase, and three-phase faults are cal-
culated and estimated in proportion to each of these received
voltage drops, and the segments with potential for fault are
calculated according to the number of buses. In the third
stage, using two nonlinear modeling methods using phasor
measurement methods in each fault line, fault location for
each of the fault types is extracted, and fnally, due to the
proposed techniques of genetic algorithm and swarm op-
timization of PSO particles and ANFIS neural fuzzy, the fault
event location is achieved relative to the potential bus. In

addition, the algorithm utilizes an optimization of the co-
efcients of the third-order nonlinear model to investigate
the range of faults estimated by minimizing the objective
function to a detailed model to determine the fault location
based on phasor measurement voltages of buses. Te pro-
posed method uses intelligent measuring equipment and
D-PMU phase-measuring equipment to obtain voltage
drooping. Distributed generation and loads were modeled as
fxed impedance and then studied in the network. Te
proposed method is implemented in the IEEE 9 bus test
distribution network as well as in the MATLAB simulator
environment.

In this work, an endeavor is made to implement fault
position detection in distribution networks using neural
fuzzy network and optimization algorithms. Due to high
volume of information in distribution networks, in-
formation monitoring is often encountered problems.
Terefore, here, it has been tried to use voltage-phasor
measurement information in buses. So, there is no longer
the need for complicated mathematical calculations in other
methods of fault detection such as impedance methods.
Terefore, the phase voltage information is applied directly
as input to the estimator system and with nonlinear mod-
eling and according to fxed network information such as
length and characteristics of network lines and types of
single-phase, two-phase, and three-phase fault positions in
the network, fault positions are tracked in the shortest
possible time.

Te contents of this paper are as follows. In Section 2, the
study of the work carried out in the feld of detection and
positioning of events and faults is discussed in the power
distribution network. Section 3 deals with background
studies and provides basic concepts. Section 4 describes the
proposed algorithms and techniques for accurate posi-
tioning and fault type. In Section 4, the 9-bus system studied
under the MATLAB simulator and the results of the pro-
posed techniques are discussed, and in the end, the per-
formance evaluation of the method is presented according to
the intended scenarios. Eventually, Section 5 summarizes the
results of the study.

2. Literature Review

In [23], a model-free scheme is introduced which is capable
of identifying the topology changes in distribution networks
using the data of phase measurement units at the distri-
bution level (DPMU). In this work, algebraic tools of be-
havioral system theory are utilized to progress easy-to-
implement algorithms and the inherent problems associ-
ated with the D-PMU measurement and their proposed
solution are discussed as an additional challenge to im-
plement the proposed algorithms.

Frequency disturbance events (FDEs) occur due to
various events such as generator trip (GT), blackout line
(LO), and load interruption (LD) that afect the stability of
power systems. Depending on the intensity of the disorder,
small properties strongly afect the performance of the in-
tegrated system. Accurate and rapid recognition of the event
and its location in monitoring the adequacy of resources and
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preventing the economic loss and extinction is very im-
perative. Te article [24], by concentrating on an advanced
online hierarchical process, frst recognizes the event and
then identifes its classifcation. Finally, the exact location of
FDE is found based on PMUs data. Compared with other
articles, which are focused only on the classifcation or lo-
cation of events, both goals are generated using the proposed
new hierarchical framework. Tis study utilizes the deep
learning (DL) progress for developing a recurrent neural
network (RNN) model and a long short-term memory
(LSTM) model for detection and localization of FDE with
considerable precision. In this research, only a few time
series frequency change rates (ROCOF) received from
a limited number of PMUs are used as input to the DL
algorithm. Tis hierarchical method has been tested on New
England 39-bus, IEEE 14 bus systems, and the modifed
IEEE 118-bus system. Te assessment results indicate the
potential application of the proposed models for the de-
tection and classifcation of FDEs compared to conventional
algorithms and the frequency-based DL model. Te pro-
posed models have accomplished signifcant classifcation
accuracy [25].

An imperative subject for fault classifcation in power
distribution systems is the restriction of fault data for
training classifers to recognize types of power outages for
repair. Measuring data from power systems are generally not
labeled without specifc types of faults, and labeled data with
very limited types of faults are very limited and challenge
educational classifers with sufcient accuracy. Present fault
classifcation methods for dealing with labeled small samples
ascertain the underlying structures between labeled and
unlabeled data. However, this line of methods has incorrect
assumptions about nonlabel and labeled data and sufers
from loss of accuracy when dealing with limited data that
have a tag. Te paper [26] suggests a novel latent structure
learning under a multitask learning framework to supple-
ment the information and address the challenges of limited-
tagged data for fault organization. Te proposed process not
only uses the underlying structure of unlabeled data that is
not used efectually but also eliminates the boundaries of
learning the underlying structure by avoiding classifers
from being equipped with unlabeled data.

Rapid and accurate localization of electrical faults along
power grids increases the reliability and continuity of the
source, the rapid recovery of the power supply, and the
consequent reduction of downtime. Te paper [27] presents
a method of locating network fault through multidata source
information fusion.Te compressed sensing algorithm is used
to reconstruct the electrical signal twice and the rough fault
amplitude and the degree of fault are achieved, respectively.
Ten, to attain the degree of switching fault of each element in
the anomalous fault range, the Bayesian network is used.
Finally, the DS evidence theory combines these two degrees of
fault to obtain the result of spatial location. In [28], a new
technique for online fault location tracking in distribution
networks based on existing systems measurement using
phaser units (PMUs) and iterative support detection (ISD) is
presented.Trough the fault event and by default, voltages are
measured by PMUs that are optimally located along the

network. From the voltage change vector and the system
impedance matrix, the fow change vector contains a nonzero
element with the faulty part. Since PMUs are not located in all
crossings, the system equation has already been determined.
Hence, to solve a fow vector that has a rare nature, ISD
method is utilized. Te paper [29] considers the fault location
algorithm suitable for medium unbalanced overhead distri-
bution systems with or without distribution generation (DG).
It should be noted that the proposed algorithm uses only
simultaneous voltage measurement from two measurement
points within the distribution system. Utilizing the basic fault
analysis based on the bus matrix and the base impedance,
objective algorithm estimates the fault position for each type
of accurate short circuit fault. Fault resistance is considered in
the algorithm, but it is not explicitly used in the transmission
line impedance matrix.

To improve the sensitivity and reliability of system
protection, detection, identifcation, and location are
fundamental. Tis allows power systems to preserve stable
performance. However, it is challenging in large-scale
multidevice power systems. Te authors in [30] present
three new models of classifcation and deep learning re-
gression (DL) based on deep neural networks (DNNs) for
fault area identifcation (FRI), fault type classifcation
(FTC), and fault location prediction (FLP). Tese new
models ascertain transient data from pre- and postfault
cycles for reliable decision making, while current and
voltage signals are measured by phasor measurement units
(PMU) at diferent terminals and are used as input features
in DNN models. Here, sequential deep learning (SDL),
through long short-term memory (LSTM) and high-
dimensional multivariate features are utilized to model
spatiotemporal series to accomplish accurate classifcation
and prediction results.

Among the methods of fault localization, the most com-
mon of these methods is based on fundamental phase-based
methods, whose approximation tends to converge with the
stable state structure prior to opening the circuit breaker.Tus,
conventional troubleshooters typically consider phase esti-
mates obtained from shield relays or class P phase-measuring
units, which show the time of flter delay less than the phasor
measurement units of the class M. However, it is usually as-
sumed that phasor measurement samples of M class are not
suitable for fault location applications due to inherent fltering
delays; studies on the possibility of using class M data-based
fault locating programs are still scarcely found in literature [31].
Te paper [32] was introduced to investigate whether the
phasor measurement units of class M could be used in real
location fault localization schemes using previously used
measurement systems. In order to do so, the real fault events on
the Brazilian electricity network are investigated and the
performance of four diferent phasor measurement algorithms
is assessed when phasor measurement models are used in
a traditional protection relay algorithm and from the phasor
measurement units of class M. As opposed to initial expec-
tations, the obtained results indicate that the M-class phase
measurements can be used in fault location applications be-
cause in the phase-based fault localization methods, faults are
expected at the expected levels.
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Te authors in [33] present an approach that enables the
fault location across the system using a small set of phase
measurements. Te proposed algorithm combines the pre-
diction of voltage after fault and the scatter estimation. Te
obtained method allows for practical use of the scattering
formula using Prony analysis to predict stable state voltages
after faults at those buses equipped with phasor measurement
units. A short transient recording is required for prediction
only, which is usually accessible before the protective relays
are activated. After the prediction stage, recognizing the lo-
cation of the fault is essential from the least-angle scatter
regression-based scattering estimation algorithm. However,
for certain circumstances that are usually associated with
small fault currents, the scattered estimate algorithm may not
be able to accurately diagnose the location of the fault. To
lessen this problem, ordinary least squares are used to increase
the strength of the proposed method.

It is worthy to note that local protective elements such as
fuses and relays are the frst protectionmechanism to overcome
the fault and separation of the damaged portion of the power
network. Although the capability of choice, speed, and sen-
sitivity of these initial protective devices are relatively high and
they cannot be considered fawless, there is small percentage of
events for which the relays experience a fault occurrence. For
these scenarios, a redundant arrangement can bemade through
backup protection. In [34], a centralized remote protection
method based on two techniques, the Delta algorithm, and the
least squares technique have been proposed. Te proposed
method identifes the transmission line, fault type, and distance
to fault. Moreover, the phasor measurement unit data is uti-
lized and is nonreproducible. According to phasemeasurement
units, the network is divided into a number of subregions in
order to accurately determine the location of the fault location.
In the frst stage, the afected area is located and then a deep
search in the fault zone is carried out to determine the fault line.
Ultimately, the fault distance is determined according to the
distributed model of the transmission line.

In [35], a new high-voltage transmission line fault location
scheme based on the use of support vector regression (SVR)
has been proposed. Te proposed scheme will only use the
amplitude of the fault voltage wave amplitudes, measured at
one end of the line.Te various types of faults are investigated
in diferent locations with diferent default impedance and
types of fault initiation angles in the voltage transmission line
of 400 kv and 300 km. Fault voltages are attained from the
signals of the 1/8 cycle after the fault and also the removal of
noise using a low-pass flter.Te amplitude of the fault voltage
signals is used as features for the SVR training. Subsequently,
the SVR is used in the precise location of the fault on the
transmission line. Compared to other fault locating schemes,
the proposed scheme for estimating fault locations requires
no information and a smaller data window. However, the
proposed scheme gives more accurate estimates, regardless of
fault types, fault initiation angles, and default impedance.

Te paper [36] proposes a real-time fault detection
technique and fault line detection capability obtained by
calculating synchronous phase-based estimators. Each state
estimator is characterized by diferent and reinforced to-
pology in order to contain a foating fault bus. It should be

noted that the choice of state estimator that afords the
correct solution is made by a criterion that calculates the
sum of the weighted residues.Te proposed process design is
validated using a real-time simulation platform in which an
active fow distribution network with a PMU-based moni-
toring system is simulated. It is postulated that the proposed
process for active and passive networks, with neutral ground
connection and without neutral ground connection, is ap-
propriate for low and high impedance faults of any kind
(symmetric and asymmetric) that occur in diferent places.

Te authors in [37] present an innovative method for fault
localization in distribution networks based on the analysis of
classical circuits. Two synchronized and few nonsynchronized
pre- and during-fault voltages are required in few buses beside
the impedance matrix. A new impedance matrix manipulation
method is suggested to survey the distribution system in
partitions under multiple subsystems. Tis method allows the
fault localization process to be solved by solving the equations
of equations that are determined and this method is technically
available.Tis fault is determined by analyzing the voltage drop
across the terminal-bus of each subsystem separately.

Owing to the presence of diferent branches in the electric
distribution network and the only accessible information on
voltage and current at the beginning of the line and the
unavailability of information at the end of the network, the
detection of fault section in the distribution network is very
essential. Smart meters are now used to measure voltage and
fow of network lines, but due to limitations of installation
sites, it is not possible to use these devices in all network lines.
In [38], two techniques have been used to ascertain the fault
section and the fault occurrence location in the network to
estimate the fault distance at the beginning of the line with the
current estimation at the end of each network line. Terefore,
in this project, by installing smart meters in the main branch
of the network, as well as information obtained from the
current in the normal state of the network, we have tried to
practically estimate the voltage and current at the beginning
and end of each distribution.Te network line in this method
uses more power fow to compute the voltage drop and
voltage estimation of the voltage and current at the end of the
network lines to determine the fault area.

3. Conception

In power distribution networks, for accurate positioning of
fault, diferent network states must be considered in fault es-
timation. In this section, we try to defne concepts that are
addressed and devoted to this article. First, the types of faults
studied in this work are modeled and investigated for two fault
detection systems in the network with no distributed generation
sources and the impact of fault on the networkwill be discussed.

3.1. Types of Faults (Considered inTis Study). Basically, the
faults that may occur in a distribution feeder are single-
phase to ground faults with ground resistance Rf and two-
phase faults to ground with Rarc arc resistance and ground
resistors Rf in diferent phases, and three-phase connection
faults to ground. Before presenting the fault locating

4 International Transactions on Electrical Energy Systems



algorithm, these three types of short circuit faults are
modeled as shown in Figure 1.

3.1.1. Single-Phase to Ground-Fault Modeling. A single-
phase short-to-ground fault with ground resistance Rf at
distance d in terms of prionite from the node at the be-
ginning of the fault section is shown in Figure 2. According
to the fgure, the relationship between the voltage at the
beginning of the section and the location of the fault can be
written as follows:

Va � d. z11 .Ia + z12 .Ib + z13 .Ic(  + Vfa. (1)

On the other hand, it can be written as follows:

Vfa � Rf . Ia – I′a( . (2)

Te value of the current phasor, I′a, is obtained by
implementing the load distribution algorithm presented in
[39] in the downstream distribution feeder of point f holding
theVfa voltage phasor. However, since the location of point f,
i.e., distance d, is unknown, so with a good approximation,
the downstream distribution feeder of point S can be loaded

without considering the fault with the existing voltage phase
of Va and the calculated current Ia instead of the current
value I′a used.

By substituting (2) in (1) and decomposing the result
into two real and imaginary components, the values of Rf
and d can be obtained; the value of d is given in the following
relation:

d �
Im Re Va(  – j∗ Im Va( ( ∗ Re Ia – I′a(  + j∗ Im Ia – I′a( (  

Im Re z11 Ia + z12 Ib + z13 Ic(  – j∗ Im z11 Ia + z12 Ib + z13 Ic( (  ∗ Re Ia – I′a(  + j∗ Im Ia – I′a( (  
. (3)

3.1.2. Modeling Two-Phase Fault to Each Other and to
Ground. In this case, a two-phase fault to each other and to
ground occurred at a distance d from the beginning of the
fault section with Rarc arc resistance and ground resistance
Rf, which is shown in Figure 3. As in the previous case, based
on equation (1), the voltage of the faulty phases at the be-
ginning of the desired section and the fault location can be
written as the following equations:

Va � d. z11 .Ia + z12 .Ib + z13 .Ic(  + Vfa,

Vb � d. z21 .Ia + z22 .Ib + z23 .Ic(  + Vfb.
(4)

Regarding the aforementioned relations, the following
relations are presented:

Va − Vb � d z11 − z21(  Ia + z12 − z22(  Ib

+ z13 − z23(  Ic] + Vfa − Vfb .
(5)

On the other hand, it can be written according to
Figure 3:

Vfa –Vfb � Rarc . Ia – I′a( . (6)

By substituting (6) in (5), the values of Rf and d can be
obtained as in the single-phase ground mode, with the fault
distance d:

d �
Im Re Va − Vb(  – j∗ Im Va − Vb( ( ∗ Re Ia – I′a(  + j∗ Im Ia – I′a( (  

Im Re z11 − z21(  Ia + z12 − z22(  Ib + z13 − z23(  Ic(  – j∗ Im z11 − z21(  Ia + z12 − z22(  Ib + z13 − z23(  Ic( (  ∗ Re Ia – I′a(  + j∗ Im Ia – I′a( (  
.

(7)

Va

Vc

Vb

Ia

Ic

Ib

V'a
V'b
V'c

Figure 1: Te circuit model of the branch division between the
two buses.
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Figure 2: Single-phase fault circuit model.
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Figure 3: Te circuit model of two-phase fault to each other and to
ground.
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3.2. Fault Locating in the Distribution Network. In the frst
part, the fault location in the distribution network can be
discussed without the presence of production sources and in
the second part of the fault location in the distribution
network with the presence of distributed generation sources.
Te fault of connecting three phases to ground is
described here.

3.2.1. Fault Finding without the Presence of Distributed
Generation Sources. Te distribution network consists of all
diferent branches. Branch is a part of the distribution
network between two successive buses and there is only one
line between which there is no other element.Te single-line
view of each section is shown in Figure 4(a). In this part, the
π line model has been used for accurate modeling of each
part. Terefore, the circuit model of each section can be
extracted as shown in Figure 4(b).

To determine the fault distance according to the πmodel,
the voltage line of point n at distance l from equation (8) is
calculated [35].

VR abcn

IR abcn
  �

al −bl

−cl dl

 
VS abcm

IS abcm
 . (8)

Te coefcients a, b, c, and d are calculated from the
following equations [21]:

al � dl � I + 0.5 × ZABC × YABC × I
2
,

bl � ZABC × I,

cl � YABC × I + 0.25 × YABC × ZABC × YABC × I
3
,

(9)

VS abc: voltage at the beginning of the line
IS abc: the current at the beginning of the line
ZABC: line impedance matrix
YABC: the admittance matrix or capacitance of the line

VR abc: voltage at the end of the line
IR abc: the current at the end of a line
I: identity matrix

VR abcn � a1 × VS abcm − b1 × IS abcm, (10)

IR abcn � −c1 × VS abcm + d1 × IS abcm. (11)

Figures 5(a) and 5(b) show the single-line view and
circuit model of a part of the distribution network when
a fault occurs.

According to Figure 5(a), if fault occurs at location F, it
can be observed. Hence, this can be created in the model line
block π, before the fault point and after the fault point.When
fault occurs at location F, the fault point voltage at distance x
from the beginning of the branch is calculated with the
following relation:

VF � dx × VS – bX × IS. (12)

Figure 6 shows the general model of the fault.
According to Figure 6, the fault-point voltage matrix is

defned as follows:

VFa

VFb

VFc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

ZFa + ZFg ZFb ZFc

ZFa ZFb + ZFg ZFc

ZFa ZFb ZFc − ZFg.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

IFa

IFb

IFc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(13)

Te fault phase has an opposite current of zero, so
equation (13) in phase k is given equal to equation (12) and
(14) results.

ZFK.IFK + ZFg.IFg � VSK + x
2
. 0.5. MK − x.NK, (14)

where IF includes the sum of the fault currents in all phases.

Ma

Mb

Mc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

Zaa Zab Zac

Zba Zbb Zbc

Zca Zcb Zcc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Yaa Yab Yac

Yba Ybb Ybc

Yca Ycb Ycc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

VSa

VSb

VSc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Na

Nb

Nc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

Zaa Zab Zac

Zba Zbb Zbc

Zca Zcb Zcc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ISa

ISb

ISc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (15)

It should be noted that the results are from n equations
where n represents the total number of fault phases. By
dividing relation (14) into two parts, real and imaginary, and
considering the pure resistance of ZFa, ZFg and ZFc, ZFb,
respectively, the results are obtained:

RFk.IFkr + RFg.IFkr – xFg.IFki

� VSk + x
2
. 0.5 × Mkr − Nkr � Tkr,

(16)

RFk.IFki + RFg.IFki – xFg.IFki
� VSk + x

2
. 0.5 × Mki − Nki � Tki,

(17)

where r represents the real part and i represents the
imaginary part and is obtained by removing RFk from
equations (16), (17), and (18). Im is the imaginary part and
Re is the real part.

RFg.Im IFk.I
∗
F  − XFg.Re IFk.I

∗
F 

+ Tkr.IFki − Tki.IFkr  � 0,
(18)

RFg.Im IF.I
∗
F  − XFg.Re IF.I

∗
F 

+ 
k�Ωk

Tkr.IFki − Tki.IFkr  � 0. (19)
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Figure 4: (a) Single line view of each part of the distribution network. (b) Circuit view of each part of the distribution network.
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Given that themultiplication of two complex numbers in
one’s conjugate is equal to a real number and its imaginary
part is zero, as well as the faults in the resistive power system,
equation (14) has been rewritten from equations (11) and
(12).

Im IF.I
∗
F  � Im IF



2

  � 0,


k∈Ωk

Tkr.IFki − Tki.IFkr  � 0,
(20)

x
2 0.5 

k∈Ωk
Im Mk.I

∗
Fk ⎡⎣ ⎤⎦ − x 

k∈Ωk
Im Nk.I

∗
Fk ⎡⎣ ⎤⎦

+ 
k∈Ωk

Im MSk.I
∗
Fk ⎡⎣ ⎤⎦ � 0.

(21)

In general, equation (21) can be rewritten according to

a2 × x
2

+ a1 × x + a0 � 0,

∆ � a1 − 4 × a2 × a0.
(22)

So,

x1 �
−a1 ±

��
∆

√
 

2 × a2
. (23)

3.2.2. Fault Location in the Distribution Network with the
Presence of Distributed Generation Sources. To determine
the fault distance in this section, an algorithm is frst
implemented for one section and this algorithm is gener-
alized to more sections. Having the voltage and current at
the beginning of the feeder and the voltage and current at the
end of the feeder, which is the same voltage and current
towards the distributed sources, the fault distance π is de-
termined using the impedance algorithm based on the π
model. Figure 7 shows a single-line view and circuit model of
a distribution feeder with the presence of distributed gen-
eration sources.

Now, suppose fault occurs in the system. Figure 8 shows
the error in the system. Fault point voltage is displayed with
Vf. Te fault point voltage is obtained by using the source
voltage and the line model matrix π line, or by using the
distributed source voltage, or, in other words, the line end
voltage and the line matrix π model. Te fault point voltage
is equal from the source side and from the distributed
generation sources.

Assume that the fault point voltage is calculated
according to equation (8) by the source at distance x from

VFs � VS + 0.5 × zz × Y × VS × x
2

− zz × x × IS. (24)

Te voltage of the fault point is calculated from equation
(25) from the distributed generation sources that is located
at the l − x distance.

VFDG � VSDG + 0.5 × zz × Y × VSDG

×(l − x)
2

− zz ×(l − x) × ISDG.
(25)

Te fault voltage from the distributed generation sources
is set equal to the fault voltage from the source. A quadratic
equation gives the following results:

0.5 × zz × Y × VS − VDG(  × x
2

+ Y × zz × l × VDG

− zz × l × VDG

− zz × IS − IDG(  × x + VS − VDG

− 0.5 × l
2

× zz × l × IDG � 0.

(26)

In general, equation (26) can be rewritten according to

a2 × x
2

+ a1 × x + a0 � 0,

∆ � a1 − 4 × a2 × a0.
(27)

So,

x1 �
−a1 ±

��
∆

√
 

2 × a2
. (28)

3.3. Genetic Algorithm (GA). Genetic algorithm is a com-
putational model that solves optimization problems by
imitating genetic processes and evolution theory [40, 41].
Solutions of a population set are used to form a new pop-
ulation set. Tis is hoped that the new population will be
better than the previous population.Te solutions that make
new solutions are chosen according to their ftness: the more
appropriate they are, the more likely they are for re-
production. Tis is repeated until some conditions (e.g.,
a number of generations or improvement in the best so-
lution) are met. In traditional GA, all variables of interest
must frst be encoded as binary digits (genes) of a string
(chromosome). To minimize a function f(x1, x2, . . . ., xk)

using GA, each xi is frst encoded as a dual or foating string
of length m. Tus,

X1 � [11110, . . . , 01011],

X2 � [00101, . . . , 11110],

Xk � [10001, . . . , 01001],

(29)

where x1, x2, . . . . . . ., xk  is called a chromosome and xi is
a gene. Ten, three standard genetic operations, namely,
reproduction, crossover, and mutation, are accomplished to
produce the new generation [42, 43]. Such procedures are
repeated until the number of predetermined generations can
be achieved or accurately required.Te results are illustrated
by chromosomes and the methods are known as the ftness
function. Te evolution of the GAs is shown in Figure 9,
while the original methods are introduced with three main
defnitions.

Selection: the process in which solutions must be
maintained or entitled to disappear or be selected (or au-
thorized solutions). Te best solution is selected and others
are eliminated. Here, the ftness function and the optimi-
zation are quantitatively determined.

Crossover: a new solution is created from existing so-
lutions after the selection process.
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Mutation is the occasional introduction of new features
into a solution string of the population. Mutation happens to
preserve diversity within the population and prevent pre-
mature convergence.

3.4. Fuzzy Logic and Adaptive Neural-Fuzzy Inference System
(ANFIS). Fuzzy logic is defned as a type of artifcial
methods used in the classifcation of fuzzy logic resource
classifcation. Fuzzy logic theory is unclear in the scope of
its activities or observations. In fact, fuzzy sets are de-
veloped, but it contains certain types of activities, such as
“true-false” or numeric “1-0.” Fuzzy logic is known for its
simplicity and ease in the design of the algorithm, but when
increasing the complexity of the system, you have difculty
to determine the appropriate set of rules and functions. In
general, fuzzy rules and membership function are based on
the behavior of the method learned by the neural network
using input and output data [44]. Figure 10 shows an
example of the membership functions created by the fuzzy
rule generator.

In this study, the use of ANFIS is introduced. ANFIS is
the intersection of an artifcial neural network (ANN) and
a fuzzy logic inference system. An artifcial neural network
is designed to mimic features of the human brain and
includes a set of artifcial neural cells. An adaptive system is
a multilayer system in which each node (neuron) plays the
capacity of the input signals. You can read more about the
structure of ANFIS in [45–47]. Figure 11 shows a general
diagram of the structure of ANFIS. In this fgure, fxed
nodes with a circle and adaptive nodes with a square are
shown. Te ANFIS technique uses the Sugeno fuzzy model
[49], in which the fuzzy rules (if-then) are formulated by
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Figure 7: (a) Single-line view of a distribution feeder with distributed generation sources. (b) Circuit view of a distribution feeder with
distributed generation sources.
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Rn&9; � if M1i(x) M2i(y), thenf

&9; � pn x(t) + qn y(t) + rn,
(30)

where n represents the number of rules. Note that M1i and
M2i represent fuzzy membership functions. pn, qn, and rn

represent the linear parts of the corresponding n law.
Note that the frst layer of ANFIS contains the initial

fuzzifcation in which the degree of membership functions is
represented using the input variable. Typically, each node in
the layer represents an adaptive function formulated by [50]

M1i

1
1 + X − ci/ai 

bi
, (31)

where (ai, bi, ci) represent the set of parameters. Note that
layer 2 stands for the product inference layer in which each
node called P is controlled by a specifc fuzzy rule. Note that
the wi output of the layer is displayed as follows:

wi � M1i(e) × M2i (∆e). (32)

In turn, the third layer shows a normalization layer,
while the transfer power calculated from the previous layer is
normalized:

wi �
wi

i wi( 
. (33)

Layer 4 receives the normalized values from the third
layer. Note that each node in this layer represents a defuz-
zifcation mode with the node function as follows [51, 52]:

wiu � wi Pie + qi∆e + ri( , (34)

where (p, q, r), the result parameter, is set when u represents
the control signal passed. Note that in the last layer, you have
to calculate the sum of all the internal signals to collect the
output of the rules [48]:


i

wiu(  �
iwiu

iwi

. (35)

4. The Proposed Method

Here, we describe our proposed process for detecting and
locating faults in a default power distribution network.
Regarding the studied faults, three models of single-phase,
two-phase, and three-phase are studied, which can be
generalized to other types of faults and only pay attention
to ground connection faults. According to theoretical
studies, as observed, the fault location estimation contains
many complications and, on the other hand, the availability
of branch fow or sections is critical and the problem of
computation in diferent branches will require a series of
computational complexity. Tis is while the voltage cal-
culation at the feeder is independent of the path and the
graph in the distribution network. Here, we focus our
attention on the calculation of the error distance with the
help of the voltage phasor measurement and not the cal-
culation of the branch fow in the distribution network. In
the proposed technique, we need only the amount of
voltage phasor in the buses. Based on this, in a single
network studied at a point of a unit D, PMU feeder is
responsible for measuring the total voltages and is mea-
sured at any moment of time. Te basis of our work in this
paper is to calculate the voltage drop in each feeder when
the error occurs when the fault occurs. It is also based on
the proposed scheme to identify fault location after 0.1 s.
Figure 12 shows the fowchart of the proposed scheme.

In this scheme, the phasor measurement voltage of
each bus is checked regularly, and then the moment of the
fault occurrence is detected by sudden voltage drop, which
is determined in the next stage; according to the efective
voltage drop in each phase, the type of ground connection
fault of one, two, and three phases is determined and we
enter the next stage. In this section, the diference between
the voltage drop of each bus and the bus on the other side
of each branch is calculated and aggregated for
0.1 seconds. Nodes with a more severe voltage drop are
introduced, respectively, and any bus with a higher
voltage drop is identifed as a node subject to fault.
Terefore, the fault must be calculated in the branches
close to it. In the following, the calculated values of the
diference in voltage drop of the branch are given to the
fault positioning systems. In addition, information in-
cluding line length and line length impedance according
to model π is extracted for the fault event branch and this
information is given to the fault location estimation
system. In the last phase, the fault location estimation
system analyzes these data factors and informs the op-
erator the exact location of fault.
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Figure 10: Membership function of fuzzy logic.
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4.1. Fault Location Estimation System along the Line. In this
paper, we use three techniques to estimate the location of the
fault along the line. Te test data are extracted to investigate
the faults and their information. Ten, using a nonlinear
model, we choose the location of the faults with the help of
fuzzy neural methods, particle swarm optimization, and
genetic algorithm. We have achieved an optimal model for
estimating fault location in diferent types in the ANFIS
method. In the following techniques, a nonlinear model of
the third-order Taylor expansion is used, and we use the
squares of the diference between the values of the nonlinear
function and the real value as the objective function to
determine the coefcients of the third-order nonlinear
model, expressed in equation (36). With the help of the
algorithms described above, these optimal coefcients are
calculated:

function z � f itnessfunction (x, y),

z � sum(abs((x(1) ∗y(: 1).3̂

+ x(2)∗y(: 1).2̂ + x(3)∗y(: 1)

+ x(4)).2̂ − y(: 2).2̂)); end.

(36)

Te target variables in this system are x1, x2, x3, and x4,
which are defned as nonlinear models according to the
input and output variables y1 and y2.

5. Simulation Results

In this section, the performance results of the proposed
design based on three methods of location estimation in-
cluding fuzzy neural network and nonlinear model opti-
mized with genetic algorithm and particle swarm algorithm
are reviewed and compared. In this work, the 9 bus network
studied is shown in Figure 13. Information about each line in
the network is collected and uploaded under MATLAB
software. In this case, when for a grid defned in terms of the
length and connections and impedance of the lines, the
proposed systems are trained for the next steps for detection

and test data, it works completely fast and in real time. Te
specifcations of the computer used in this work are Intel
Core i5 M480 @ 2.67GHz.

Figure 14 illustrates the voltage drop for the error event
in a branch between the 7 and 8 buses and displays the
impact of this single phase error on the voltage drop at the
diferent buses. Te 25 km line has the highest voltage drop
on the 7 and 8 bus. In Table 1, diferent fault cases have been
investigated and selected, and for diferent fault lengths, it
has been determined as the frst option. According to Fig-
ure 14, the amount of voltage drop is diferent for diferent
types of faults and the type of fault can be determined with
a demarcation.

Figures 15–17 show the results of estimating the fault
position with ANFIS, GA, and PSO methods, respectively,
based on the comparison of actual and estimated results, and
Table 2 shows the average fault percentage of the perfor-
mance of all three methods. Based on the reviewed results,
ANFIS method has provided more accurate results.

According to Table 1, for the types of faults taught to the
estimator systems, in the frst step, the location of the fault
bus is identifed, and in the second step, the exact position of
the error is identifed. First, the phasor voltage of each bus is
regularly checked, and then the moment of the fault is
detected by the sudden voltage drop. In this part, the amount
of diference between the voltage drop of each bus and the
bus on the other side of each branch is calculated, and
according to the order of priority in the voltage drop that
occurred in the buses, the locations of the buses with the
most voltage drop are prioritized according to Table 1. In the
next step, according to the efective voltage drop in each
phase, the grounding fault type of one, two, and three phases
is determined and we enter the next step. Te frst and
second priority busses with the middle branch are prone to
errors. Terefore, the error should be calculated in the
branches close to it. In the following, the calculated values of
the voltage drop diference of the branch are given to the
fault location systems, along with that, the information
including line length and line length impedance is extracted

Start

D-PMU: phasor voltage measurement

Check voltage droopSelect feeder with fault

Select find line

Line information

calculate difference of
voltage for Line

For 0.1 s recorded all change voltage coloction

Fault location system

ANFIS GA PSO

end

calculate difference of
voltage for each phase

reach fault type 1, 2, 3

Figure 12: proposed fowchart.
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Figure 13: View the 9 bus distribution network under study.
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Figure 14: Continued.
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according to the πmodel for the same branch where the fault
occurred, and this information is given to the fault location
estimation system to be. In the last step, the fault location
estimation system checks these information factors and
informs the operator of the exact distance of the fault from
the bus with the frst priority. Table 2 shows the possible
error in distance estimation for diferent proposed methods.

Tis means the estimated distance for grounding event with
this amount of distance estimation tolerance.

According to Table 2, neural fuzzy methods and GA
genetic algorithms and PSO particle swarm have been used
as diferent and comparative techniques to estimate the
location and distance of diferent errors. Among these, the
ANFIS neural fuzzy method has been able to identify the

16

14

12

10

8

6

4

2

0

Vp
h 

(B
us

 i)

×e4

0 0.05 0.1 0.15 0.2 0.25 0.3
time (S)

(c)

Figure 14: Display voltage drop for fault occurrence at a distance of 25 km. (a) Single-phase fault, (b) two-phase to ground, and (c) three-
phase to ground.

Table 1: Display fault busses at diferent lengths.

Types of
fault 1 1 2 2 3 3

Bus frst priority 7 8 7 8 7 8
Bus second priority 8 9 8 9 8 9
Bus third priority 9 7 9 7 9 7
Distance 25 60 25 60 25 60
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Figure 15: Adaptive neural fuzzy network fault length estimation system.
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Figure 16: Nonlinear length estimation system optimized by genetic algorithm. (a) Single phase, (b) two-phase fault to ground, and (c)
three-phase fault to ground.
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exact location of the earth connection fault with the highest
accuracy and lowest error tolerance.

6. Conclusion

Due to the increasing use of distributed generation sources
in distribution networks, new proposed methods for fnding
fault in distribution network were provided by the presence
of distributed generation sources to determine the fault
location using the voltage information recorded at the be-
ginning and end of the feeder and the distributed generation
source. Due to the extent of distribution networks and the
existence of multiple branches, fault locating in distribution
networks is complicated into two parts: fault spacing in the
distribution network without the presence of distributed
generation sources and fault spacing in the distribution
network with the presence of distributed generation sources.

In this paper, the fault location was performed using
a nonlinear quadratic equation model optimized with GA
and PSO algorithms and the ANFIS neural fuzzy intelligent
model without the presence of distributed generation
sources in the distribution network with the presence of
distributed generation sources using circuit relationships.
Te proposed methods were placed in diferent conditions
such as single-phase, two-phase, and three-phase ground
connection faults in diferent locations in the 9-bus network,
and the results show the high accuracy of the proposed
methods. Among these, the ANFIS method has shown better
performance for correct fault locating.

Data Availability

Te data used to support the study are available from the
corresponding author upon request.
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Figure 17: Nonlinear fault length estimation system optimized by particle swarm algorithm. (a) Single phase, (b) two-phase fault to ground,
and (c) three-phase fault to ground.

Table 2: Comparison of the accuracy of the proposed estimating systems.

Proposed techniques ANFIS GA PSO
Fault percentage for test samples (%) 0.34 2.54 6.3
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