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Te increased integration of renewable energies (REs) raised the uncertainties of power systems and has changed the approach to
dealing with power system challenges. Hence, the uncertain nature of all the power system variables needs to be considered while
dealing with the optimal planning and operation of modern power systems. Tis paper presents a probabilistic optimal active and
reactive power dispatch (POARPD) based on the point estimate method (PEM), considering the uncertainties associated with load
variation and wind power generation. In the POARPD, the deterministic optimal active and reactive power dispatch (OARPD) is
performed in two stages, which gives a deterministic two-stage OARPD (TSOARPD). Te objectives of TSOARPD are the
operating cost (OC) minimization in stage 1 and voltage stability (VS) maximization in stage 2, whereas the VS is improved by
maximizing the system’s reactive power reserve (RPR). In this paper, instead of using multiobjective optimal power fow, this
TSOARPD is used to give more importance to VS when the system is substantially loaded. Te POARPD problem is solved using
PEM for modifed IEEE-9 bus and standard IEEE-30 bus test systems by considering the correlation between the loads.Te results
are compared withMonte Carlo simulation (MCS). While solving POARPD, the voltage-dependent load model is used to account
for the real-time voltage dependency of power system loads. Tis paper discusses the detailed procedure of solving POARPD by
considering correlation and the increased nonlinearities by giving more importance to VS when the system is heavily loaded.

1. Introduction

Conventional techniques to solve power system problems
use deterministic approaches that ignore system variables’
uncertainty. But most real-time power system variables and
characteristics, such as loads and the parameters of trans-
mission lines, are unpredictable. In addition to these un-
certainties, modern power systems incorporated with
renewable energies gain more unpredictability, thereby in-
creasing the complexity of planning and operation of
modern power systems. Tus, modern power systems with

increased uncertainties need approaches that consider dif-
ferent power system states, while conventional methods
consider only one [1]. As a result, it is critical to think of the
power-fow problem as a probabilistic problem. Te OPF is
the most commonly used tool for the planning and oper-
ation of power systems, and it optimizes the power system’s
objective function [2]. Tus, to obtain more realistic ranges
of the results of OPF, the uncertainties related to power
system variables need to be incorporated into the de-
terministic OPF, which gives the probabilistic optimal power
fow. Tus, POPF utilizes stochastic information of the
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input-random variables and gives the optimal control var-
iables’ settings and the system’s optimal output variables in
the form of random variables. Tis functionality of POPF
makes it simple to identify and investigate the possible
ranges and violations of deterministic OPF results.

Te frst step in solving POPF is to select a suitable and
efcient method of handling uncertainty. In the literature for
solving the POPF problem, numerical or analytical methods
are extensively used [3–6]. Numerical methods such as MCS
and its derivatives have been widely used for dealing with
power system problems involving uncertainties [2, 7].
Among all the probabilistic methods, MCS is considered the
benchmark method due to its high computational accuracy,
but its major drawback is its huge computation burden. To
overcome this drawback, approximate methods such as the
point estimate method are developed for probabilistic
analysis [8]. Te PEM approach is less computationally
expensive and close to MCS in terms of accuracy. Te basic
scheme of PEM is 2 PEM which uses two estimated points of
inputs, and higher schemes up to seven points (7 PEM) have
been proposed in the literature [9]. Te PEM, along with
Nataf transformation, is used for dealing with uncertainties
related to wind turbine generating systems while solving
power system problems in [5]. And discrete PEM is used for
solving probabilistic load fow with WTGS in [10]. Te PEM
gives statistical moments of output variables; from these
output moments, the output variables’ distributions will be
computed using suitable approximation series such as
Cornish–Fisher [3] and Gram–Charlier [4, 11].

Once the suitable solution method is selected, then the
next step is to supply uncertain input variables to that so-
lution method. In the literature, authors have used various
probability distributions to model the uncertainties asso-
ciated with the power system’s input random variables. Te
power system’s active and reactive loads are often modeled
by normal distribution [12–14]. For modeling uncertainties
related to the prominent RE sources such as wind speed and
solar irradiations, probability distributions other than
Gaussian are often used in the literature. Te Weibull dis-
tribution is used extensively for the modeling of wind speed
[13–15], and few authors have used other distributions, such
as the log-normal distribution also [16]. And the majority of
studies employed the beta distribution to model solar ir-
radiation uncertainty [13, 17, 18]. In stochastic analysis, the
correlation among the input random variables plays an
important role, and the consideration of correlation im-
proves the accuracy of the output variable estimation. In
literature, the correlation is handled using the combination
of Nataf transformation and Cholesky decomposition
[16, 19]. Most papers used wind speed as the input variable
to PEM directly, but the authors of [20] discuss the im-
portance of considering the wind generator’s output power
as the input variable to PLF instead of the wind speed. As
only the wind speeds which are in the range of cut-in and
cut-out speeds of the wind turbine are eligible to generate
power, the consideration of wind generator output power as
the input variable to PEM is more accurate.

As the power system loads are considered random
variables, the next step is to include load modeling in PLF.

Loadmodeling is essential in solving power system problems
such as OPF, but it has yet to be given priority in PLF or
POPF in most papers. In a real-time power system, the ZIP
model is used to represent the loads. Te foundation of the
ZIP model is the division of the load into constant im-
pedance (Z), constant current (I), and constant power (P)
loads, all of which are connected in parallel [21]. Terefore,
instead of taking the load power as the random variable, the
ZIP load needs to be considered as the random variable in
PLF or POPF [22]. Tis consideration of ZIP load as the
random variable increases the nonlinearity and afects the
computational time and accuracy of PLF (or POPF). Even if
this consideration afects the speed and accuracy of PLF, the
results will be more realistic.

In this paper, the POPF (here, POARPD in this paper)
problem is solved considering the correlated load and wind
uncertainties by using PEM and MCS, where wind generators’
output powers are taken as input random variables instead of
wind speeds. In the POPF, the deterministic OPF is solved in
two stages (TSOARPD) to givemore importance to VS thanOC
when the system is heavily loaded. Tis TSOARPD is used to
avoid the use of multiobjective optimal power fow, which may
require proper settings of goals or weights for all the objectives
while deciding the objectives’ importance. In the deterministic
TSOARPD, stage 1 performs optimal active power dispatch for
OC minimization, and stage 2 performs optimal reactive power
dispatch for VS maximization. In the literature, there are many
ways to indicate the voltage stability margin of power systems
[23], such as the smallest singular value of the load-fow Jacobian
matrix [24, 25], based on the nose point of power-voltage curves
[26], and a static voltage stability indicator denoted by L-index
[27, 28], and RPR of the system [29–33]. In this paper, maxi-
mization of the RPR is taken as an objective function (in stage 2
of TSOARPD) for maximizing VS of the system, whereas the
RPR of a system indicates the amount of reactive power gen-
erating capacity available at the sources (at the present loading
point) that the system can further utilize. Tis paper uses the
interior-point method for solving the deterministic TSOARPD
optimization problem. Te voltage-dependent load model is
considered to incorporate the real-time voltage dependency of
power system loads. Tis paper considers handling correlation
and the voltage-dependent loads in the POPF problem using
PEM, whereas the existing papers considered either correlation
or voltage-dependent loads in POPF. As discussed previously,
this paper solves POARPD with proper handling of correlation
and dealing with the increased amount of nonlinearity in the
system by prioritizing VS (maintaining OC close to its optimal
value) when the system is heavily loaded.

Contributions to this work are as follows:

(i) PEM-based POARPD considering the correlation

(ii) Nataf transformation, along with Cholesky de-
composition, is used to handle correlation

(iii) Gauss–Hermite quadrature is used to solve the
double integral equation used in the Nataf
transformation

(iv) Interior-point method (for optimization) is applied
to solve deterministic TSOARPD
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(v) Two types of WTGS are considered while solving
POARPD

(vi) Voltage-dependent (composite) load model is
also used

Te problem formulation, scenarios considered, details
of the test systems used, and observations of the work are
presented in the following sections.

2. Problem Formulation

2.1. Deterministic OPF. Te deterministic OPF problem for
minimizing a power system’s objective function [34] can be
mathematically expressed as follows:

Minimizef(x, u),

subject to g(x, u) � 0,

h
min ≤ h(x, u)≤ h

max
,

(1)

where f represents the objective function such as operating
cost, power loss; x and u are the set of dependent and in-
dependent variables of the power system, respectively; and
g(x, u) represents the equality constraints (such as power
balancing equations), whereas h(x, u) denotes the inequality
constraints for all the power system variables [35].

2.2. Deterministic TSOARPD. As the two objectives, i.e., OC
minimization and VS maximization, mainly depend on the
active and reactive control variables’ settings, respectively,
they can be achieved one after the other. For each sample of
input random variables (supplied byMCS or PEM), the steps
for the TSOARPD are given as follows:

Stage 1: Minimize OC by using OAPD and obtain the
optimal settings of active power generations of all the
generator buses.
Stage-2: Fix the active power generations of the gen-
erator buses (except slack bus) at their optimal values
obtained in stage 1. Now, maximize VS of the system
through the maximization of the system’s RPR by using
ORPD (using optimal settings for the reactive control
variables such as voltage magnitudes of the generator
buses, switchable shunt capacitors, and tap-changing
transformers).

Tis successive application of OAPD and ORPD does not
need the appropriate settings of weights or goals (those re-
quired in MOOPF) to give more importance to VS by keeping
the OC close to its optimal value when the system is sub-
stantially loaded. With the minimum number of control
variables in each stage, and as the complexity involved is minor
(as only one objective needs to be achieved in each stage) of
TSOARPD, the simulation time of the complete TSOARPD
will not difer much from the time taken by MOOPF.

2.3. Objective Functions of TSOARPD. Te objectives of the
considered TSOARPD are as follows:

Objective-1: Operating cost minimization in stage 1

f1 � Min OC{ } � Min 􏽘
NG

i�1
aiP

2
Gi + biPGi + ci􏼐 􏼑

⎧⎨

⎩

⎫⎬

⎭,

(2)

where PGi indicates the active power generation at bus i,
the cost coefcients are denoted by ai, bi, and ci for the
ith generator, and NG denotes the number of
generators.
Objective-2: Maximization of VS of the system by
maximizing the system’s efective reactive power re-
serve (ERPR) in stage 2

f2 � max ERPR{ }. (3)

Te mathematical steps for evaluating ERPR are
explained in the section as follows.

2.4. Evaluation of Deterministic ERPR. Te RPR refers to the
generators’ capacity to maintain bus voltages in the event of
increased load or disturbance. Te armature and feld
heating, as well as the current operating point and placement
of the generator in the network, determine the quantity of
reactive power that can be delivered to the system [32].
Because of the feld current limit, the upper bound on the
reactive power output of an alternator can be written as

Q
f

Gi.max � −
V

2
Gi

Xsi

+

���������������

V
2
GiI

2
Gi,f.max

X
2
si

− P
2
Gi

􏽶
􏽴

, for PGi <PRi,

(4)

where IGi, f.max is the maximum feld current of the ith
generator. Xsi, VGi, PGi, and PRi are the synchronous re-
actance, terminal voltage, present, and rated active power
outputs of the ith generator, respectively.

Te maximum reactive power generation due to the
armature current limit is given as follows:

Q
a
Gi.max �

��������������

V
2
GiI

2
Gi,a.max − P

2
Gi

􏽱

, forPGi >PRi, (5)

where IGi, a.max represents the maximum armature current
for the ith generator. Now, for ith generator, the available
reactive power reserve (ARPR) can be given as

ARPRi � Qi,res � QGi.max − QGi, (6)

whereQGi.max in equation (6) is the smaller among the values
obtained in equations (4) and (5).

Due to network constraints, the ARPR of the alternators
cannot be fully utilized by the system. As a result, equation
(7) gives the efective reactive power reserve that the network
can use.

ERPR � 􏽘
NG

i�1
pfGi ∗Qi,res􏼐 􏼑, (7)

where pfGi signifes the participation or weight factor of
generator-i, which will be computed based on the genera-
tor’s relative participation (reactive power injection) to the
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increased reactive demand [31]. Tus, if ΔQGi is the change
in the reactive power generated by the ith generator due to an
increment in the reactive power load ΔQD in the system,
then pfGi is computed as

pfGi �
∆QGi

max ∆QGi( 􏼁
. (8)

2.5. Probabilistic OPF. Because the power systems contain
numerous unpredictable aspects, using a deterministic OPF
that ignores these factors may sometimes result in infeasible
solutions. Let Ω be a multidimensional vector of random
variables that stands for the uncertain parameters of the
power system. Ten, the nonlinear probabilistic optimiza-
tion problem by incorporatingΩ into the deterministic OPF
[2] can be written as

Minimizef (x, u,Ω),

subject tog(x, u,Ω) � 0,

h
min ≤ h(x, u,Ω)≤ h

max
.

(9)

As the input Ω is random, the output will also become
random. Tus, the goal of POPF is to obtain the optimal
output variable’s distribution while keeping all dependent
variables within their bounds. POPF will produce stochastic
information in the form of mean, standard deviation, and
higher moments for the optimal output and control
variables.

2.6. Methods to Solve POPF. Te following two probabilistic
approaches are utilized in this paper to solve the POPF
problem.

2.6.1. MCS for Solving POPF. Te MCS method generates
output random variables from a large number of sample
vectors of input random variables, using each input sample
vector to solve the deterministic OPF [2]. Let the ith output
random variable to be considered is yi. Te mean (µ),
standard deviation (σ), skewness (Sk), and kurtosis (Ku) of yi
will then be determined using the MCS technique as follows:

μyi � 􏽘

NMCS

j�1

yi,j

NMCS

,

σyi �

��������������

􏽘

NMCS

j�1

yi,j − μyi􏼐 􏼑
2

NMCS

􏽶
􏽴

,

Skyi � 􏽘

NMCS

j�1

yi,j − μyi􏼐 􏼑
3

σ3yiNMCS
,

Kuyi � 􏽘

NMCS

j�1

yi,j − μyi􏼐 􏼑
4

σ4yiNMCS

,

(10)

where NMCS denotes the number of input sample vectors
taken. Usually,NMCS will be a large number (10,000–20,000).

2.6.2. PEM for Solving POPF. By employing the data of input
random variables, the PEM uses a few deterministic OPF
evaluations to generate the output variables’ stochastic in-
formation. Te 2m+ 1 scheme of PEM will need 2m+ 1
evaluation of deterministic OPF, where the number of input
random variables (P, Q loads and PWF, QWF, etc.) is denoted
bym. In this scheme, two estimated points and a third point
formed with the mean values of input variables will be used
to solve POPF. Te computational steps for solving the
POPF problem by using 2m+ 1 PEM [1] are given as follows.

Calculate the standard locations ξl,k, weights wl,k, and
estimated points (or locations) pl,k of the lth input random
variable pl by using the following equations:

ξl,k �
λl,3

2
+(− 1)

3− k

��������

λl,4 −
3
4
λ2l,3

􏽲

, k � 1, 2, ξl,3 � 0,

(11)

wl,k �
(− 1)

3− k

ξl,k ξl,1 − ξl,2􏼐 􏼑
,where k � 1, 2,

wl,3 �
1
m

−
1

λl,4 − λ2l,3
,

(12)

where skewness and kurtosis of pl are denoted by λl,3 and λl,4,
respectively.

Te above setting of ξl,3 � 0 gives pl,k � µpl, and this in-
dicates that m of the 3m locations will represent the same
vector (µp1, µp2,. . ., µpl,. . ., µpm). Tus, at this location, only
one OPF evaluation is required. Here, w0 denotes the weight
for this location.

w0 � 􏽘

m

l�1
wl,3 � 1 − 􏽘

m

l�1

1
λl,4 − λ2l,3

, (13)

pl,k � μpl + ξl,kσpl, l � 1, 2, ..m, k � 1, 2, (14)

pl,k � μpl, l � 1, 2, ..m, k � 3, (15)

where µpl and σpl denote the mean and standard deviation of
pl, respectively.

After obtaining the locations and weights, the de-
terministic OPF will be solved for each vector (µp1, µp2, . . . ,
pl,k, . . . , µpm). Te output of the OPF problem is

Y(l, k) � F μp1, μp2, ..., pl,k, ..., μpm􏼐 􏼑, k � 1, 2, 3, (16)

where Y(l,k) denotes the vector of output variables for the kth
concentration of pl.

From Y(l,k), the output variables’ raw moments are
computed using the following equation:

E(Y) � E(Y) + wl,kY(l, k),

E Y
j

􏼐 􏼑 � E Y
j

􏼐 􏼑 + wl,k(Y(l, k))
j
.

(17)
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From the above calculated moments, the PDF and CDF
can be evaluated using the appropriate expansion series; the
Gram–Charlier series [4] is used in this paper. Te details
about the Gram–Charlier type-A series are given in
Appendix A.

2.7. Importance of considering Correlation between the Input
Random Variables. In the real-time data of input random
variables of the power system, there always exists some
correlation between the input random variables. Ignoring
these correlations leads to a reduction in the accuracy of
POPF results. Te above-discussed conventional 2m+ 1
scheme of PEM considers the input variables independent of
each other. Considering correlation among the input

random variables into the conventional 2m+ 1 scheme of
PEM [16] involves the following steps:

Step 1: Convert all the correlated input random vari-
ables (Xi) following diferent marginal distributions
into correlated standard normal variables (Zi) by using
the Nataf transformation as given as follows:

Zi � Φ− 1
F Xi( 􏼁( 􏼁, (18)

where F and V represent the CDF of marginal and
standard normal distributions, respectively. Now,
calculate the transformed correlation matrix ρZ of Z
from the original correlation matrix ρX of X by solving
the following relationship between the elements of ρZ
and ρX.

ρx(i,j) �
􏽒

+∞
− ∞ 􏽒

+∞
− ∞ F

− 1
Xi
Φ zi( 􏼁􏼂 􏼃F

− 1
Xj
Φ zj􏼐 􏼑􏽨 􏽩φρz(i,j) zi, zj􏼐 􏼑dzidzj − μxiμxj

σxiσxj

, (19)

where ρx(i,j) indicates the element at ith row and jth
column of ρX.

φρz(i,j) zi, zj􏼐 􏼑 �
e

− z2
i
− 2ρzizj+z2

j􏼐 􏼑/2 1− ρ2( )

2π
�����

1 − ρ2
􏽱 , (20)

where ρ� ρz(i,j). µxi, µxj, σxi, and σxj are the mean and
standard deviation values of ith and jth variables,
respectively.
Step 2: Apply Cholesky decomposition to factorize ρZ.

ρZ � LL
T
, (21)

where L in the above equation is a lower triangular
matrix.
Step 3: Convert the correlated standard normal random
vector Z into an uncorrelated random vector G of the
standard normal type, by

G � L
− 1

Z. (22)

Calculate the standard locations (ξ), weights (w), and
estimated points g,k (l� 1, . . ., m, k� 1, 2) for the
uncorrelated standard normal vector G by using
equations (11)–(14).
Step 4: Convert the above calculated uncorrelated es-
timated points of input variables gs,k � [g1,k, g2,k, . . .,
gm,k]T (where k� 1, 2) back into correlated estimated
points by

us,k � L∗gs,k. (23)

Te above transformation gives a column vector
containing correlated estimated points of input vari-
ables in standard normal form.

Step 5: Apply reverse Nataf transformation to convert
us,k into the marginal distribution variables.

xs,k � F
− 1 Φ us,k􏼐 􏼑􏼐 􏼑, (24)

where the column vector xs,k represents the estimated
points of input random variables following marginal
distributions. Now, use the elements of xs,k instead of
pl,k in equation (16) for solving OPF.

When employing the Nataf transformation, the com-
putation of the coefcients ρz(i,j) may be challenging because
it requires solving the integral equation (20), which is not
always certain to have a solution, especially if ρx(i,j) is too
close to 1 or − 1. So in this paper, the Gauss–Hermite
quadrature is used to solve the integral equation given by
equation (20).Temathematical procedure of this method is
provided in the section as follows.

2.8. Gauss–Hermite Quadrature. Te GHQ is a type of
Gaussian quadrature [36, 37] that is used in the numerical
analysis to approximate the integrals’ values of the following
form:

h(t) � 􏽚
+∞

− ∞
e

− t2
g(t)dt. (25)

By using GHQ, the above integral can be approximated
as

􏽚
+∞

− ∞
e

− t2
g(t)dt ≈ 􏽘

n

k�1
ωkg tk( 􏼁, (26)

where n represents the considered number of quadrature
nodes. And the kth root (zero) of the Hermite polynomial
(represented by equation (27)) is denoted by tk
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Hn(t) � (− 1)
n
e

t2 d
n

dt
ne

− t2
. (27)

Te weights ωk for the corresponding roots are

ωk �
2n− 1

n!
��
π

√

n
2

Hn− 1 tk( 􏼁􏼂 􏼃
2 . (28)

When GHQ is applied for solving equation (19), then

ρx ≈
− πμiμj + 􏽐

n
k�1 􏽐

n
l�1ωkωlF

− 1
i Φ

�
2

√
tk( 􏼁􏽨 􏽩F

− 1
j Φ ρz

�
2

√
tk +

�����

1 − ρ2z
􏽱 �

2
√

tl􏼒 􏼓􏼔 􏼕

πσiσj

. (29)

A detailed derivation of equation (29) can be found in
[36]. Now, equation (29) can be solved to obtain the value of
ρz from the known ρx value by using any numerical method
or by ftting a polynomial curve for equation (29).Tis paper
uses polynomial curve ftting to solve this equation, which
involves the following steps:

(i) Assume uniformly distributed values for ρz in the
range [− 1, 1].

(ii) Solve equation (29) for the assumed values of ρz to
obtain the corresponding ρx values.

(iii) Using all the [ρz, ρx] pairs, establish a polynomial in
ρz using curve ftting. Tis polynomial will be of the
following form:

ρx � f ρz( 􏼁≃ ctρ
t
z + ct− 1ρ

t− 1
z + ... + c1ρz + c0. (30)

(iv) As ρz � 0 for ρx � 0, set the constant coefcient to
zero (c0 � 0) in the above equation.

(v) Now, for any known value of ρx, the corresponding
ρz can be computed from the above-obtained
polynomial.

(vi) A valid ρz should satisfy the conditions |ρz|≤ 1 and
ρxρz> 0.

It is worth mentioning that when both the correlated
variables follow the normal distribution, then ρx and ρz
will be equal. Here, in this paper, as only correlations of
loads (following Normal distribution) are considered, ρz
can be directly taken as ρz � ρx. But to present the
complete procedure of calculating ρz, the above steps are
discussed, which will work efciently even when the
correlations between other types of random variables
(following other distributions) are considered. In this
paper, instead of taking ρz � ρx directly, the ρz is calcu-
lated using the above steps by taking the 7th-order
polynomial. Here, this procedure is able to compute
the ρz value with a maximum error of the order of 10− 8,
proving its efciency.

2.9. Uncertainty Modeling. Tis paper considers load and
wind uncertainties. Te uncertainty related to load variation
is modeled using normal distribution [17, 38]. Te PDF of
a normal random variable X (having mean µ and standard
deviation σ) is shown as follows:

fX(x) �
1

σ
���
2π

√ exp −
(x − μ)

2

2σ2
􏼠 􏼡. (31)

Te wind speed uncertainty is modeled using Weibull
distribution [7, 39]. Te PDF of a Weibull random variable
(having k> 0, c> 0 as shape and scale factors) is

f(x, k, c) �

k

c

x

c
􏼒 􏼓

k− 1
exp −

x

c
􏼒 􏼓

k

􏼠 􏼡, x≥ 0,

0, x< 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(32)

Now, the wind generator’s active power output (Pw) is
computed using the quadratic power curve [5, 40] as given as
follows:

Pw �

0, vw ≤ vcin,

Pwr

v
2
w − v

2
cin

v
2
r − v

2
cin

, vcin < vw ≤ vr,

Pwr, vr < vw ≤ vcout,

0, vcout < vw,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(33)

where Pwr and pW denote the rated and the actual active
power outputs of the wind generator, vW and vr represent
the actual and the rated wind speeds in m/s, and vcin and
vcout denote the cut-in and cut-out speeds of the wind
turbine (in m/s), respectively.

2.10. Solution Tool for Solving TSOARPD. While solving
POPF problems, using metaheuristic algorithms for solving
the deterministic OPF will increase the simulation time of
complete POPF. So the simulation time of POPF can be
reduced by using conventional optimization methods for
solving deterministic OPF. In this paper, the interior-point
algorithm [41] is used for solving the deterministic
TSOARPD. As the interior-point method has few advan-
tages, such as ease of handling inequality constraints and
speed of convergence, and it does not require a strictly
feasible initial point, this method is used for solving large-
scale problems such as OPF in the literature [42–44].
Interior-point can handle large, sparse problems as well as
small dense problems. In this method, as the barrier
function (internally calculated) iterates away from the
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inequality constraint boundaries, the results may be slightly
less accurate. Tis inaccuracy is relatively small for most
practical purposes. However, this inaccuracy can further be
reduced by taking smaller constraints and optimality
tolerances.

Te fowchart for solving POARPD using 2m+ 1 PEM
considering correlation is shown in Figure 1.

2.11. Voltage Stability Index (L-Index). Te maximum
L-index value among the load buses [27, 28] is used in this
paper as a proximity indicator for the static voltage stability.
Based on the power-fow solution, the L-index gives the
distance between the present state and the stability limit of
a power system. Te numerical computation of the L-index
is fast and simple, and its calculation steps can be found in
[28]. Te value of the L-index varies in the VSM between
0 (no-load state) and 1 (voltage collapse state). Tus, for
a power system to improve the VSM, system L-index needs
to bemoved far away from 1 (towards 0). For a power system
with NPQ number of load buses, the system’s L-index can be
written as follows:

L − index � max Lj􏽮 􏽯, j ∈ NPQ. (34)

2.12. Inclusion of Voltage-Dependent Loads inOPF. Te real-
time electrical loads are voltage-dependent in nature; this
dependency afects the OPF calculations. Te primary
models of electrical loads are constant power load, constant
current load, and constant impedance load models [22]. But
the real-time electrical loads are not purely of onemodel; i.e.,
they are composed of all the three models mentioned above
[45, 46]. Tus, a composite load model (ZIP model) can be
used to represent the real-time loads in OPF. Te ZIPmodel
for active and reactive loads [22, 47] can be given as follows:

PD � P0 a0 + a1V + a2V
2

􏼐 􏼑,

QD � Q0 b0 + b1V + b2V
2

􏼐 􏼑,
(35)

where P0 and Q0 are the active and reactive load powers in
the constant power model of load, and V is the bus voltage
magnitude per unit. Te coefcients a and b depend on the
load composition, and the sum of all three components of
a (or b) will always be equal to one.

2.13. Wind Generator Models. Two alternative wind gen-
erator models are used in this paper. Te quadratic power
curve indicates the value of the active power output pW for
a given wind speed vW. Based on the model of the wind
generator, the reactive power QW will be computed.

2.13.1. Synchronous Generator Model (SG). In this syn-
chronous generator model (used in WTGS of variable speed
type), the power factor cosϕ or the reactive power Qw will be
specifed [48]. When cos ϕ is specifed, then Qw can be
computed as

Qw � Pw

��������

1 − cos2 ϕ
􏽱

cos ϕ
. (36)

2.13.2. Pitch-Regulated Induction Generator (IG). Solving
a quadratic equation that includes the induction generator’s
slip (s) is required to calculate the reactive power Qw for this
model [48], as given as follows:

as
2

+ bs + c � 0, (37)

where

a � PwR
2
1 Xl2 + Xm( 􏼁

2
+ Pw XmXl2 + Xl1 Xl2 + Xm( 􏼁( 􏼁

2

− |V|
2
R1 Xl2 + Xm( 􏼁

2
,

b � 2PwR1R2X
2
m − |V|

2
R2X

2
m,

c � PwR
2
2 Xl1 + Xm( 􏼁

2
+ Pw R1R2( 􏼁

2
− |V|

2
R1R

2
2,

(38)

where V denotes terminal voltage.
Now, from the above-calculated values of a, b, and c, the

slip will be computed from the following equation:

s � min
− b ±

�������
b
2

− 4ac
􏽰

2a

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (39)

From the above-obtained s value, the reactive power Qw

will be calculated as follows:

Qw �
Xl1s

2
Xm + Xl2( 􏼁

2
+ XmXl2s

2
Xm + Xl2( 􏼁 + R

2
2 Xm + Xl1( 􏼁􏽨 􏽩|V|

2

R1R2 + s X
2
m − Xm + Xl1( 􏼁 Xm + Xl2( 􏼁􏼐 􏼑􏽨 􏽩

2
+ R2 Xm + Xl1( 􏼁 + sR1 Xm + Xl2( 􏼁􏼂 􏼃

2
􏼚 􏼛

. (40)

Te values used in this paper for the parameters in the
above equation are given in Appendix B.

3. Test Systems

In this paper, POARPD is solved for modifed IEEE-9 bus
and IEEE-30 bus test systems. Te original IEEE-9 bus

system does not contain switchable shunt capacitors and
tap-changing transformers, which makes the optimization
problem further easy as only the generators’ voltage mag-
nitudes and active powers will be the control variables. So, to
increase the complexity of the optimization problem (to test
the efectiveness of the methods used in this paper while
solving complex optimization problems), a modifed version
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of the IEEE-9 bus system is used in this paper. To modify the
IEEE-9 bus system, a switchable shunt capacitor and a tap-
changing transformer are added to the original system. Te
network, load, and generator data have been taken from
MATPOWER [49].

3.1. Modifed IEEE-9 Bus Test System. A switchable shunt
capacitor of 0.035 p.u is added to the original IEEE-9 bus
test system at bus 5, and a tap-changing transformer (with
a ratio of 0.95) is considered in the line between the buses

8 and 9 to modify the test system. Along with three
generators, the test system has base-case active and re-
active loads of 3.15 p.u and 1.15 p.u, respectively. Te slack
bus is bus 1, and the system has nine branches. All the bus
voltages have upper and lower limits of 1.1 and 0.9 p.u.
Te upper and lower constraints on active power gen-
eration by generators are [2.5, 3, 2.7] p.u and [0.1, 0.1, 0.1]
p.u, respectively. Te tap ratios’ lower and upper bounds
are 0.9 and 1.1, respectively, while the switchable shunt
capacitors’ minimum and maximum limits are 70% and
130% of the base case values, respectively. For the

Start

Compute Zi by applying Nataf transformation using eq.(19)
Obtain ρz by solving eq.(20) using GHQ method

Obtain lower triangular matrix L using eq.(22)
Obtain uncorrelated standard normal vector G using eq.(23)

For the uncorrelated standard normal variables
Set l =1

Calculate: Standard Locations (ξl,k), Weights (wl,k), 
and Estimated Points (gl,k) using eqs. (12)-(16)

Set k = 1

Determine us,k using eq. (24)
Determine xs,k using eq. (25)

k = 3 ?

k = k +1

l = m ?

l = l +1

Set l = 1 and E (Yj) = 0

Set k = 1

Use the elements of xs,k in eq. (17) to solve the deterministic 
TSOARPD (where s = l ), and store the results (Yl,k)

Set j = 1

E (Y j) ≈ E (Y j) + wl,k (Yl,k)j

All moments 
considered ?

k = 3 ?

l = m ?

Print results

j = j + 1

k = k + 1

l = l + 1

No

No

No

No

No

Figure 1: Flowchart for solving POARPD using 2m+ 1 PEM considering correlation.
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generators, the maximum feld current and the syn-
chronous reactance are assumed as [2.1, 2.15, 2.05] p.u and
[1.05, 1.15, 1.0] p.u, respectively.

3.2. IEEE-30 Bus Test System. Te standard IEEE-30 bus test
system contains 6 generators, 41 branches, 2 switchable
shunt capacitors, and 4 tap-changing transformers. Te
active and reactive loads in the base scenario are 2.834 p.u
and 1.262 p.u, respectively. All bus voltages have upper and
lower limitations of 1.06 p.u and 0.94 p.u, respectively. Te
generators’ active power generation upper and lower bounds
are [3.602, 1.4, 1, 1, 1, 1] p.u and [0, 0, 0, 0, 0, 0] p.u, re-
spectively. Te tap ratios’ lower and upper bounds are 0.9
and 1.1, respectively, while the switchable shunt capacitors’
minimum and maximum limits are 70% and 130% of the
base case values, respectively. For the generators, the
maximum feld current and the synchronous reactance are
assumed as [2.2, 2.1, 2, 2, 2.15, 2] p.u and [0.9, 1.05, 0.9, 0.9, 1,
1.1] p.u, respectively.

For all the test cases, the load uncertainty is modeled by
taking the base-case loads as the mean values and 7% of the
base-case loads as the standard deviations. Tables 1 and 2
provide the wind speed characteristics, the type of WTGS
employed, the number of wind generators considered, and
the location of wind farms (WFs) used in this paper for the
test systems.

Te rating taken for SG-type wind generators is
0.55MW, while the rating taken for IG-type wind generators
is 0.5MW. Te considered rated speeds for SG- and IG-
based wind farms are 16 and 14m/s, respectively. For the
SG- and IG-based wind farms, the cut-in and cut-out speeds
are taken as [4.5, 4.2]m/s and [55, 24]m/s, respectively. Te
SG-type wind generator’s power factor is taken as 0.85 lag.
WTGS-rated capacities for the above 9-bus and 30-bus
systems are thus 42MW and 64MW, respectively. Te
IG-type wind generator’s parameter details are given in
Appendix B.

For all the test cases, all the simulation works using
MATLAB environment have been carried out on an Intel
Dual-core 3.6GHz, 16GB RAM machine.

4. Results and Discussions

In this paper, the POARPD is solved for the following
scenarios:

Case 1: Te constant power load model is considered
for solving the objective functions, whereas the com-
plete POARPD is solved by using the 2m+ 1 scheme of
PEM neglecting correlation (UCPEM) and the 2m+ 1
scheme of PEM considering correlation (CPEM). And
the same POARPD problem is solved using the MCS
method for comparison.
Case 2: Te POARPD problem is solved by considering
purely voltage-dependent loads using CPEM and MCS.

For all the cases discussed, 10000 samples of input
random variables are taken, and the POARPD problem is
solved for both the modifed IEEE-9 bus and IEEE-30 bus

test systems. Te correlated standard normal samples are
generated using the MATLAB inbuilt function mvnrnd()
and later converted into the correlated marginal distribution
samples based on the CDF of the corresponding correlated
input variables. Tese correlated marginal distribution
samples will have correlation coefcients that deviate (small
deviations) from the correlation coefcients supplied to the
mvnrnd() function. Te new correlation coefcients among
these correlated marginal distribution samples are consid-
ered (to use in CPEM) instead of the supplied ones to
maintain higher accuracy.

For the modifed IEEE-9 bus system, all the active and
reactive loads are considered correlated while generating the
input random sample vectors for all the cases. And for the
IEEE-30 bus system, the active and reactive loads at the buses
19, 21, 30 are considered correlated for generating input
random sample vectors for all the cases. For both the test
systems, the input sample vectors are generated such that the
wind speed samples are independent of each other; fur-
thermore, there is no correlation between wind speeds and
loads for all the test cases (i.e., only the loads are correlated).
Te test systems’ correlation coefcient matrices are given in
Appendix B. Te PDF of the wind speed at bus 7 and the
PDF of the total active power of the considered IEEE-9 bus
system are shown in Figures 2(a) and 2(b).

Te deterministic results for the base case and other
types of OPF are compared in Table 3. Te results for the
base-case settings of control variables are denoted by “Base.”
Te results of multiobjective OPF for OC minimization and
ERPR maximization considering all the active and reactive
control variables are denoted by MOOPF. Te results of the
two-stage OARPD used in this paper are denoted by
TSOARPD. For ERPR and L-index, the better performance
of TSOARPD compared to MOOPF can be observed from
the results in Table 3.

In Table 3, the L-index is the maximum among all the
system load bus L-index values. From the deterministic
results (Table 3) for the 100% and 120% loading condi-
tions, it can be observed that TSOARPD gives an optimal
OC, which is a little bit higher than the OC provided by
MOOPF, but at the same time, the optimized ERPR is
higher and gives a better L-index value (smaller than the
L-index obtained by MOOPF). But this increment in OC

Table 1: Wind farm and wind speed data for the modifed IEEE-9
bus system.

Bus
IEEE-9 bus system

c k Model No. of generators
7 12 2.1 SG 40
9 10 3 IG 40

Table 2: Wind farm and wind speed data for IEEE-30 bus system.

Bus
IEEE-30 bus system

c k Model No. of generator
19 11 2.1 IG 40
21 11 2.3 SG 40
30 12 2.8 SG 40
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will be a very small percentage. Tus, the TSOARPD gives
better VS by keeping the OC close to its minimum value
when the system is substantially loaded (or in contin-
gencies when it is required to provide more importance to
VS than OC). As improving the VS leads to minimizing
the active power losses of the system, it will again help
maintain the OC close to its optimal value. Tus, opti-
mizing OC and VS in two stages will achieve the desired
active and reactive objectives one after the other. Table 3
shows that the MOOPF and TSOARPD are optimizing the
reactive power generations (QG) of the conventional
generators using the reactive control variables (as the
active control variables are fxed in stage 2). Tis process
of optimizing QG is based on the generator’s participation
factor (pfG). Te QG of the generator having high pfG will
be moved away (below the maximum value of QG) so that
the ARPR of that generator is increased, maximizing
ERPR. Now, as the generator with high pfG has high ERPR,
it will respond (more) to the load increment or contin-
gency in the system and provide more reactive power to
the system. Tus, the reactive power that the system can

utilize (at that particular loading state) increases, in-
creasing the system’s capability to accommodate more
load and improving the system’s VS. Te convergence
characteristics of deterministic TSOARPD are given in
Figure 3. Figure 3(a) presents the optimization of OC
(stage 1). In stage 2 of TSOARPD; the ERPR is maximized
by minimizing the negative value of ERPR. Tus,
Figure 3(b) shows the minimization of “-ERPR”. Te time
taken by MOOPF and TSOARPD for the 100% loading
case is 1.21 and 1.34 seconds, respectively.

Te load bus voltages of the considered IEEE-30 bus
system are shown in Figure 4. For constant power load case
(Figure 4(a)), TSOARPD is able to maintain higher load bus
voltages which will increase the amount of load that can be
further served by the system. For voltage-dependent load
(Figure 4(b)) (completely voltage-dependent) case, the load
bus voltages provided byMOOPF and TSOARPD are almost
the same.

Te POARPD results for the IEEE-9 bus system for
case 1 are given in Table 4, in which VLAvg represents the
average load bus voltage. For the POARPD results
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Figure 2: Probability distributions of some of the input variables for IEEE-9 bus system for case 1: (a) PDF of wind speed at bus 7 and (b)
PDF of total active power load.

Table 3: Deterministic results of modifed IEEE-9 bus system for constant power load model.

Load (%) Method Gen Q G Q G.max pf G OC ERPR L-index

100

Base
G1 0.1534 0.9880 1.0000

5039.9 1.3573 0.1460G2 0.2245 0.0940 0.8042
G3 − 0.0786 0.8710 0.6609

MOOPF
G1 0.0531 0.8851 1.0000

4800.6 1.9367 0.1273G2 0.0940 0.5738 0.8073
G3 − 0.2204 0.8642 0.6613

TSOARPD
G1 − 0.3985 0.8784 1.0000

4815.9 2. 5 4  .1262G2 0.4084 0.5738 0.8394
G3 − 0.0538 0.8646 0.6910

120

MOOPF
G1 0.1755 0.7865 1.0000

6414.5 1.2624 0.1574G2 0.2287 0.3384 0.8007
G3 − 0.0750 0.7786 0.6603

TSOARPD
G1 − 0.0379 0.7846 1.0000

6421.1 1.3264  .1537G2 0.3248 0.3248 0.7998
G3 0.0273 0.7793 0.6702
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obtained by PEM methods, the errors that occurred in the
calculation of mean and standard deviations are calcu-
lated with respect to MCS as shown in equation (41). In
equation (41), U denotes the parameter (µ or σ, etc.) for
which the error is to be calculated. For the IEEE-9 bus
system, the corresponding errors in the calculation of
POARPD results by UCPEM and CPEM are given in
Figure 5.

%εU �
UPEM − UMCS

UMCS

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
× 100%. (41)

From the numerical results in Table 4, it can be observed
that the mean values of the optimal output variables are not
the same as the optimal values of output variables obtained
from the deterministic TSOARPD (given in Table 3). Tis
diference is due to the nonlinear nature of the power-fow
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Figure 3: Convergence of TSOARPD for 100% loading for the modifed IEEE-9 bus system: (a) optimization of OC (stage 1) and (b)
optimization of ERPR (stage 2).
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Figure 4: Load bus voltages of IEEE-30 bus system for the deterministic case with 100% load: (a) constant power loads and (b) voltage-
dependent loads (a0 � b0 � 0; a1 � a2 � b1 � b2 � 0.5).

Table 4: POARPD results for modifed IEEE-9 bus system for case 1.

Output variable
MCS UCPEM CPEM

µ σ µ σ µ σ
ARPR (p.u) 2.3580 0.1672 2.3576 0.1386 2.3584 0.1705
ERPR (p.u) 2.0405 0.1595 2.0429 0.1244 2.0409 0.1616
OC ($/hr) 4827 427.4 4825.1 373.86 4827.9 433.29
L-index 0.1263 0.0085 0.1262 0.0073 0.1264 0.0092
VLAvg (p.u) 1.0876 0.0006 1.0874 0.0008 1.0876 0.0007
Ploss (p.u) 0.0370 0.0033 0.0372 0.0029 0.0369 0.0035
Qloss (p.u) 0.3732 0.0361 0.3750 0.0304 0.3726 0.0357
Max error (%) — — εµPloss � 0.54 εσVLAvg � 33.3 εµPloss � 0.27 εσVLAvg � 16.7
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equations (the mean values of output variables will not
precisely match with the output variables’ values obtained at
the mean values of input variables). Table 4 shows that with
the reduction in L-index value, the active and reactive power
losses are minimized.Te average active power losses for the
base case are 0.049 p.u which are reduced to 0.0370 p.u after
POARPD, and the average reactive power losses for the base
case are 0.474 p.u which are reduced to 0.3732 p.u, after
POARPD. Te average load bus voltage is increased from
1.0196 p.u (base case) to 1.0876 p.u (after POARPD), and the
weak bus voltage (Vbus9) is improved from 1.0196 p.u (base
case) to 1.0615 p.u (after POARPD). As the load bus voltages
are improved, now the system can accommodate more loads
without losing stability.

From the graphs in Figure 5, it is clear that considering
correlations among the input random variables while cal-
culating locations (or estimated points) in PEM will increase
the accuracy of the results. When the correlation is neglected
in UCPEM, even though the errors in the mean values of
output variables are small, the corresponding errors in the
standard deviation are much higher. When the correlation is
considered (in CPEM), the errors related to the mean and
standard deviation calculation are signifcantly reduced. In
the above accuracy comparison (Figure 5), the maximum
errors by UCPEM are 0.54% for the mean and 33.3% for the
standard deviation, and those by CPEM are 0.27% for the
mean and 16.7% for the standard deviation. In the case of
control variables, the highest errors by UCPEM and CPEM
for mean computations are 0.21% and 0.066%, respectively.
Te highest errors for standard deviation computations
using UCPEM and CPEM are 61.5% and 37.5%, respectively.
As a result, the CPEM can provide a more accurate standard
deviation and other higher moments of output variables,
such as skewness and kurtosis, which results in a more
precise probability distribution of the output variables.
Figure 5(a) presents the errors in the mean value calculation.

Figure 5(b) presents the errors in the standard calculation
for the output variables of IEEE-9 bus system for case 1.

Te most relevant outcomes of the POPF are the mean
and the standard deviation values of output variables;
nevertheless, the accuracy of the estimated higher moments
of the results can be compared using CDF or PDF. Tis
comparison is given in Figure 6.

TeCDF graphs in Figure 6 show that not only the values
of mean and standard deviation but also the higher moments
(of the output variables) estimated by CPEM are similar to
those obtained by MCS. Figure 6(a) shows the CDF of OC,
Figure 6(b) shows the CDF of ERPR, and Figure 6(c) shows
the CDF of maximum L-index for the modifed IEEE-9 bus
system for case 1.

For case 2, all the active and reactive loads are considered
purely voltage-dependent, whereas each load is composed of
a 50% constant current and 50% constant impedance nature.
Tis ratio of the composite loads is applied to consider the
increased amount of nonlinearities in the system. Te nu-
merical results of POARPD for the considered IEEE-9 bus
system for case 2 are given in Table 5.

For the considered IEEE-9 bus system, probability dis-
tributions of the reactive demand on the system for case 1
and case 2 are given in Figure 7.

When the system loads are considered purely voltage-
dependent, the TSOARPD minimizes the load bus voltages,
thereby minimizing the load magnitudes in order to opti-
mize the objective values. Te OC has decreased due to the
reduced active load on the system in case 2. In this scenario,
even though the reactive load on the system is reduced
(Figure 7), there is a reduction in the ERPR. Tis reduction
in ERPR is due to the decrease in bus voltages. Reduced bus
voltages lower branch charging, which causes generators to
generate more reactive power. As a result, the ERPR of the
system decreases as the generators’ reactive power genera-
tion increases.
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Figure 5: Comparison of UCPEM and CPEM for the output variables of IEEE-9 bus system for case 1: (a) errors in the mean value
calculation and (b) errors in the standard calculation.
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Table 6 shows the numerical results of POARPD for the
IEEE-30 bus system for case 1. As the generated samples of
independent variables (apart from the variables considered
to be correlated) also contain correlations of small magni-
tudes, ignoring these small magnitudes of correlations still
afects the accuracy. Here, only the correlations between the
loads at three buses are considered to demonstrate the

signifcant improvement in the accuracy with the consid-
eration of even a small portion of the correlated behavior of
the input variables. As only the correlation between six input
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Figure 6: Comparison of CDF plots for the modifed IEEE-9 bus system for case 1: (a) CDF of OC, (b) CDF of ERPR, and (c) CDF of
maximum L-index.

Table 5: POARPD results for modifed IEEE-9 bus system for
case 2.

Output variables
MCS CPEM

µ σ µ σ
ARPR (p.u) 2.0867 0.1536 2.0801 0.1644
ERPR (p.u) 1.9372 0.1492 1.9340 0.1524
OC ($/hr) 4266 343.9 4279.1 351.73
L-index 0.1548 0.0103 0.1550 0.0119
VLAvg (p.u) 0.9606 0.0061 0.9611 0.0068
Ploss (p.u) 0.0385 0.0035 0.0389 0.0043
Qloss (p.u) 0.3958 0.0372 0.4000 0.0441
Max error (%) — — εµQloss � 1.06 εσPloss � 22.9
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Figure 7: PDF of the reactive load (including wind farm Q de-
mand) on the modifed IEEE-9 bus system.
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variables (P and Q loads) is considered for the IEEE-30 bus
system, the results generated by UCPEM and CPEM are
nearly identical. If the correlation between all the input
variables is assessed in CPEM, the diference will be more
signifcant (and more accurate). Te following numerical
results show that the accuracy has improved even with
a minor consideration of correlation. Even for the IEEE-30
bus system, the accuracy of the 2m+ 1 PEM scheme is good
because it is independent of the number of input random
variables. Table 6 shows that the average active power losses
are reduced from 0.176 p.u (base case) to 0.145 p.u after
POARPD, and the reactive power losses are reduced from
0.677 p.u (base case) to 0.535 p.u after POARPD. Te bar
graphs in Figure 8 show the errors in the computation of
POARPD output variables of the IEEE-30 bus system for
case 1. Figure 8(a) shows the errors in the mean value
calculation, and Figure 8(b) shows the errors in the standard
calculation for the output variables of IEEE-30 bus system
for case 1.

In the comparison in Figure 8, the maximum errors by
UCPEM and CPEM for the output variables of POARPD for
the IEEE-30 bus system are 1.69%, 1.69% (for mean values),
and 62.4%, 46.5% (for standard deviation values), re-
spectively. Te further errors are since the correlations
between most of the input variables of the IEEE-30 bus
system are ignored in this case. Te consistency in the ac-
curacy of the 2m+ 1 scheme (irrespective of the number of
input random variables) can be observed from the above
results. Furthermore, the precision with which the higher
moments are calculated can be seen by comparing the
probability distributions. Tis comparison is shown in
Figure 9.

Te numerical results of POARPD for the IEEE-30 bus
system for case 2 are given in Table 7. Te probability
distribution of ERPR using CPEM for the IEEE-30 bus
system for case 2 is given in Figure 10. Te variation of
Ploss for case 1 and case 2 is also given in Figure 10.
Figure 10(a) presents the CDF of ERPR for case 2, and
Figure 10(b) presents the CDF of Ploss for cases 1, 2 for
IEEE-30 bus system. Due to the reduced load (active and
reactive) in case 2, there will be a reduced power transfer
in the system. Due to this reduction in the line fows, the
magnitudes of Ploss and Qloss are decreased in case 2. But
due to the reduced bus voltage magnitudes in case 2, the
Ploss and Qloss will not be too far below those values
obtained in case 1.

From the numerical results of case 2, the efect of the
TSOARPD’s increased nonlinearity on the accuracy of
CPEM can be observed. As the active and reactive loads are
purely voltage-dependent in case 2, the net load values on
the system will vary nonlinearly (with an order of 2) in the
deterministic TSOARPD. Due to this nonlinear variation of
loads, the approximated values (based on a few evaluations)
of output and control variables of POARPD will not exactly
be the same as those obtained by evaluating POARPD for all
the possible vectors of loads (using MCS). Due to this in-
creased nonlinearity in TSOARPD, the accuracy of CPEM
will decrease, but the accuracy will still be in an
acceptable range.

In all of the above CPEM accuracy comparisons, the
maximum errors for the IEEE-30 bus system are slightly
greater than those for the considered IEEE-9 bus system (for
both mean and standard deviations) in all the cases. And in
case 2, due to the increased amount of nonlinearity in the
deterministic TSOARPD, the maximum errors for case 2 are
slightly higher for both the test systems. However, the errors
related to the standard deviation are signifcantly reduced by
using CPEM. A similar improvement exists in the accuracy
of the calculation of higher moments also, leading to
obtaining accurate data of CDF and PDF of the output
variables.

From the numerical results provided by both the de-
terministic TSOARPD and the POARPD, it can be observed
that the absolute error in the optimal mean values of all the
output variables obtained by POARPD concerning the de-
terministic optimal values obtained by TSOARPD is of very
small magnitude. Tus, the optimal values given by the
deterministic TSOARPD are acceptable as the mean values
of system variables. But the primary purpose of POARPD is
to provide information about the uncertainty range of
output variables, which cannot be obtained by deterministic
OARPD. Te signifcant reduction in the simulation time
provided by CPEM compared to MCS can be observed in
Table 8. Te computational time for CPEM is a little higher
than UCPEM due to its algorithm’s extra steps, but this
increased computational time is negligible compared to
MCS. By using CPEM, calculating the stochastic in-
formation of the output variables within the practically
acceptable time (with a little bit of sacrifce in the accuracy)
will enable us to make fast decisions while dealing with
a real-time power system, whereas using MCS will some-
times take hours to provide the results.

Table 6: POARPD results for IEEE-30 bus system for case 1.

Output variables
MCS UCPEM CPEM

µ σ µ σ µ σ
ARPR (p.u) 4.2489 0.0664 4.2465 0.1078 4.2466 0.0885
ERPR (p.u) 2.9786 0.0884 2.9765 0.1035 2.9764 0.0937
OC ($/hr) 7750.5 567.43 7758.4 572.37 7755.4 571.89
L-index 0.1123 0.0207 0.1142 0.0237 0.1142 0.0229
VLAvg (p.u) 1.0219 0.0043 1.0224 0.0063 1.0225 0.0063
Ploss (p.u) 0.1450 0.0035 0.1455 0.0034 0.1454 0.0035
Qloss (p.u) 0.5350 0.0132 0.5365 0.0183 0.5364 0.0165
Max error (%) — — εµLindex � 1.69 εσARPR � 62.3 εµLindex � 1.69 εσVLAvg � 46.5
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Figure 8: Comparison of UCPEM and CPEM for the output variables of IEEE-30 bus system for case 1: (a) errors in the mean value
calculation and (b) errors in the standard calculation.
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Figure 9: CDF of OC for case 1 for IEEE-30 bus system.

Table 7: POARPD results for IEEE-30 bus system for case 2.

Output variables
MCS CPEM

µ σ µ σ
ARPR (p.u) 4.3771 0.0703 4.3780 0.1019
ERPR (p.u) 2.9084 0.0905 2.9121 0.1012
OC ($/hr) 7162.7 498.45 7196.0 559.30
L-index 0.1188 0.0120 0.1201 0.0141
VLAvg (p.u) 0.9556 0.001 0.9580 0.0014
Ploss (p.u) 0.1331 0.0036 0.1341 0.0044
Qloss (p.u) 0.4999 0.0148 0.5043 0.0127
Max error (%) — — εµLindex � 1.09 εσARPR � 44.9
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5. Conclusions

A POARPD method including the load and wind un-
certainties considering the correlation between loads is
presented in this paper. In this POARPD, the deterministic
OARPD is performed in two stages to achieve better opti-
mization of ERPR, thereby better voltage stability compared
to MOOPF. Tis two-stage OARPD can provide better
optimal voltage stability (in terms of both ERPR and L-
index) with a bit of sacrifce in the optimal operating cost
during normal and heavily loaded conditions of the system.
To demonstrate this, TSOARPD is solved for 100% and
120% loading conditions and compared with the corre-
sponding results obtained by MOOPF.

To demonstrate the accuracy of CPEM, the POARPD
problem is solved for the modifed IEEE-9 bus and for the
IEEE-30 bus systems, and the performance is compared
against MCS. Te results indicate that the correlations
among the input variables (such as loads and wind speeds)
signifcantly impact the outputs of POARPD. By considering
the correlations among the input variables, the CPEM can
give more accurate uncertainty ranges of output variables
than the traditional uncorrelated PEM (UCPEM). When
a power system contains WTGS, the ERPR of the system
varies over a wide range with a decreased magnitude (and
the L-index with an increased magnitude) compared to the
system withoutWTGS.Tis wide range of variation is due to
the increased amount of system uncertainty (due to the
additional uncertainty of WTGS along with load un-
certainty), and the change in the magnitude is due to the
consumption of reactive power by the WTGS. When the
power system loads are considered voltage-dependent (even

if the system contains WTGS or not), the system’s ERPR got
reduced, and the system’s L-index got increased. Both of
these changes indicate the system’s voltage stability re-
duction when the loads are voltage-dependent. So, con-
sidering the voltage-dependent loads gives a more realistic
state of voltage stability of the system.

Acronyms

ARPR: Available reactive power reserve
CDF: Cumulative distribution function
CPEM: Correlated PEM (PEM considering

correlation)
ERPR: Efective reactive power reserve
GHQ: Gauss–Hermite quadrature
IG: Pitch-regulated induction generator
MCS: Monte Carlo simulation
MOOPF: Multiobjective optimal power fow
OAPD: Optimal active power dispatch
OARPD: Optimal active and reactive power dispatch
OC: Operating cost
OPF: Optimal power fow
ORPD: Optimal reactive power dispatch
PDF: Probability density function
PEM: Point estimate method
PLF: Probabilistic load fow
POARPD: Probabilistic optimal active and reactive power

dispatch
POPF: Probabilistic optimal power fow
RE: Renewable energy
RPR: Reactive power reserve
SG: Synchronous generator
TSOARPD: Two-stage optimal active and reactive power

dispatch
UCPEM: Uncorrelated PEM (PEM neglecting

correlation)
VS: Voltage stability
VSM: Voltage stability margin
WTGS: Wind turbine generating systems.
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Figure 10: Comparison of CDF plots for IEEE-30 bus system: (a) CDF of ERPR for case 2 and (b) CDF of Ploss for cases 1, 2.

Table 8: Simulation time in seconds.

Methods
IEEE-9 bus IEEE-30 bus

Case 1 Case 2 Case 1 Case 2
MCS 1502 1640 5787 6856
CPEM 9.05 9.29 60.1 68.6
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Te data supporting the current study are available from the
corresponding author upon request. For data-related
queries, kindly contact Baseem Khan bkhan04021987@
gmail.com.
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Supplementary Materials

In the supplementary fle, Appendix A presented the
Gram–Charlier type-A series description which is utilized in
this work. Te expansion of this series is utilized for the
computation of the probability distribution function (PDF)
and cumulative distribution function (CDF). In Appendix B,
Table B1 is utilized for providing the parameters of the
induction generator type wind generator. Furthermore, in
Appendix B, Table B2 is utilized for showing the diagonal
and of-diagonal elements of the load correlation matrix for
the IEEE 9 bus system, utilized in this work. Moreover, in
Appendix B, Table B3 is utilized for showing the diagonal
and of-diagonal elements of the load correlation matrix for
the IEEE 30 bus system, utilized in this work. (Supple-
mentary Materials)
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