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Generation rescheduling is a major action against abnormal system conditions such as small signal instability.Te operating point
of the power system impacts the small signal stability; therefore, this article proposes a novel sequential generation rescheduling
model as a preventive control against low-frequency fuctuations. An optimal power fow (OPF) problem is utilized to determine
the base operating point. Ten, in the process of improving the small signal stability, the modal analysis specifes the system
stability status in each step, and the proposed second-order convex redispatch model defnes the optimal direction of generation
rescheduling. Small signal stability is considered a constraint in this model. Using a sensitivity analysis, system generators and
system buses are divided into two increasing and decreasing groups, which are included in the model according to their
contribution coefcients in damping improvement. Finally, the alternating current (AC) power fow analysis provides the
subsequent operating points. Te redispatch model is solved using the quadratic programming algorithm, and the Newton
algorithm is used to manage the nonlinear and nonconvex characteristics of the power fow model. Te proposed method is
simulated over the IEEE 9, 39, and 118 bus test systems. It is shown that the proposed method increases the damping of the power
system from the unstable state to the desired condition by controlling the operating point.

1. Introduction

Small signal stability is critical to the security and stability of
the power system. Te expansion of interconnected power
systems and economic constraints has forced utilities to
operate their own systems close to the stability boundaries.
In such a situation, the sudden changes in power balance
such as load insertion and removal or other contingencies
such as line outages will cause low-frequency oscillations.
Also, the rise of renewable energy sources such as wind and
solar farms makes the situations more complex. Terefore,
the damping of critical modes should be improved to secure
system operation and ensure system small signal stability. To
this end, many reported studies have shown the importance
and efectiveness of the damping controllers. Te en-
hancement of system small signal stability has been tackled
by using power oscillation damping controllers installed at
fexible AC transmission system (FACTS) devices [1, 2],

installing power system stabilizer (PSS) on generators [3–5],
adding control loops on HVDC [6], and so on. Although
these damping controllers are efective, there are reasons
that confrm they are not the best strategy and cannot
guarantee the small signal stability at all times. Conventional
damping controllers require a long process of design,
construction, and installation; they need complete technical
specifcations of the system, and there are always operating
conditions diferent from what the controllers are designed
for [7]. At the operational level, the rescheduling of gen-
erating units, taking into account the stability criteria, can
provide a corrective measure to ensure the small-signal
stability of a power system. Te latter method has received a
lot of attention in recent years because it provides an ap-
propriate level of security for the power system by con-
sidering economic objectives and technical constraints.

Generation redispatch can be done using either a data-
driven or a model-driven method. In the area of data-based
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techniques, an online preventative control strategy is pro-
posed in [8] that takes transient stability into consideration.
Using a decision tree, the power system stability is assessed;
the derived rules are then incorporated to the conventional
optimal power fow. In [9], classifcation tree is used to
formulate small signal stability as a constraint in the optimal
power fow. As an extension of this work, [10] proposes an
AC security-constrained OPF method instead of DC secu-
rity-constrained OPF that providesN− 1 security and small-
signal stability. Reference [11] uses a neural network to
convert the feasible space of the nonlinear AC security-
constrained OPF problem into a mixed integer linear model
to make it computationally tractable. Te authors in [12]
introduced a new approach using LQ-decomposition-based
recursive sub-DMD to identify the relationships between
generators power and system modes. Ten, a redispatch
strategy supported by the participation factor is suggested to
improve the damping ratio of the power system.

Te available model-driven generation rescheduling
methods are time consuming due to the high computa-
tional complexity. In [7], the numerical sensitivities of
eigenvalue with respect to active power of generating units
have been calculated to select the generators to be
rescheduled for improving the power transfer capability.
In [13], an optimal preventive control strategy is proposed
by including small signal stability constraints in the op-
timal power fow (OPF), which ensures an appropriate
level of security under stressed loading conditions. Since
the small signal stability constraint is nonlinear and
nonsmooth, the stability and sensitivity analysis are valid
only at the initial operating point. Terefore, the proposed
methods cannot guarantee the convergence of the opti-
mization problem. Te closed-form eigenvalue sensitivity
method [14, 15] is used to include the small signal stability
constraint in expected-security-cost optimal power fow
[16]. To implement the primal-dual interior-point algo-
rithm, frst and second-order sensitivity is necessary,
which makes the proposed method very time-consuming.
Small signal stability constrained-optimal power fow
(SSSC-OPF) is addressed as an Eigenvalue optimization
problem in [17]. Based on Lyapunov’s stability theorem, a
nonlinear semidefnite programming (NLSDP) model and
algorithm are proposed. Because of the particular char-
acteristics of this method, like dense matrix variables, it
cannot be applied to large-scale power systems. In the
generation rescheduling algorithm proposed by [18], the
critical generators are identifed using the normalized
participation factor so that under a stress power system
condition, the small signal stability is guaranteed and the
available transmission capability is maintained. Regarding
the preservation of the network model, a new approach for
calculating analytical eigenvalue sensitivities according to
diferent operating parameters has been proposed in [19].
Using the proposed method, the most efective generators
are selected to suppress the low-frequency oscillations. In
[20], the minimum redispatch to increase the damping
coefcient is determined using numerically-calculated
generation sensitivities. In [21], a convexifcation ap-
proach is proposed to resolve the small signal stability-

constrained OPF problem without the need for lineari-
zation of power system equations and eigenvalue analysis.
In [22], a stability criterion is defned based on the energy
of interarea oscillations, which is then included in the
optimal power fow problem to investigate the efect of the
operating point on the dynamics of power grids. In order
to make the SSSC-OPF formulation computationally
tractable, it is convexifed using SDP relaxation
techniques.

As the operating conditions change, the eigenvalues of
the system change. Terefore, this local validity should be
considered in the retuning of generator setpoints. To
address this issue, various sequential methods have been
used but with a high computational burden. In [23], a
sequential quadratic programming method combined with
gradient sampling is proposed to deal with the nonsmooth
property of the spectral abscissa function. To improve the
convergence of SSSC-OPF, authors in [24] propose a se-
quential programming method that decomposes the main
problem into a sequence of subproblems. Since each
subproblem consists of two nonlinear optimization
problems, and this method is computationally complex
and time consuming.

In this paper, in order to deal with the discontinuity
nature of the small signal stability index, a sequential so-
lution approach is adopted, and also to reduce the com-
putational burden and complexity, a second-order convex
power generation rescheduling model is proposed. First, the
OPF model is solved with the aim of minimizing the pro-
duction cost of the generators. Power balance equations,
branch fow limits as well as upper and lower limits of
generation levels and voltage limits are considered as con-
straints.Te results are used to extract a state-space model of
the power system and calculate system eigenvalues. In case
of instability or undesirable damping ratio, the generators
are dispatched to provide the specifed conditions. Critical
eigenvalues are identifed at each step to manage their cy-
clical behaviour. Also, to ensure the efectiveness of the small
signal stability index linearization, the amount of change in
the active power of the generators and the bus voltage
magnitudes is limited.

Te rest of this paper is organized as follows: Section 2 is
dedicated to the problem formulation. Small signal stability
and OPF problem are briefy introduced and modelled in
Sections 2.1 and 2.2, respectively. In Section 3, the mod-
elling of the proposed method is described. Section 4
evaluates the efectiveness of the proposed method by
applying it to three diferent test systems. Section 5 con-
cludes the article.

2. Problem Formolation

Change of system operating conditions afects the stability
and economic efciency of the power system, so to achieve
various objectives of generation scheduling, security and
economic indices need to be taken into account in dispatch
strategies.Te purpose of this section is to consider the small
signal stability in economic generation dispatch or OPF
problem.
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2.1. Optimal Power Flow. In the proposed method, the base
operating conditions are determined by solving the OPF
model. Standard OPF as a constrained optimization problem
consists of an objective function with a set of equality and
inequality constraints. Te standard form of the OPF
problem is as follows [25]:

min
y

f(y), (1)

g(y) � 0, (2)

h(y)≤ 0, (3)

ymin ≤ y ≤ ymin. (4)

Equation (1) is the objective function, which is con-
sidered a quadratic function of the output power of gen-
erators. Te equality constraints are represented by (2) that
are conventionally defned as nodal power balance equa-
tions. Te set of inequality constraints including the branch
fow limits are represented by (3) and is the optimization
variable, which includes the active/reactive powers and bus
voltage phasors.

2.2. Small Signal Stability. Small signal stability refers to the
ability of the power system to maintain synchronism under
small disturbances such as load perturbation [26]. To study
the small signal stability, the dynamic behaviour of power
systems is described by a set of diferential and algebraic
equations (DAE) [27]. Generator dynamics as diferential
equations and the network model as the algebraic equations
can be written in the following compact form:

_x � j1(x, z,d),

0 � j2(x, z),
(5)

where x and z are vectors of system state and algebraic
variables, respectively, and d is the input to the system. Te
power systemmodel is nonlinear, but it can be linearized at a
specifc operating point to analyse the small signal stability.
Te frst-order approximation of the Taylor series of the
power system equations around the equilibrium point leads
to the following equation:

Δ _x

0
􏼢 􏼣 �

A B

C D
􏼢 􏼣

Δx

Δz
􏼢 􏼣 +

E

0
􏼢 􏼣Δd. (6)

AssumingD as a nonsingular matrix, Δz can be removed
from the set of equations, and we can achieve the following:

Δz � −D− 1CΔx,

Δ _x � AsΔx + EΔd,

As � A − BD−1C,

(7)

where As is known as the system state matrix. Once the
system state matrix is specifed, the stability condition of the
linear system can be determined from the eigenvalue
problem:

Asv � λv,

A
T
s u � λTu,

(8)

where u and v are matrices of the left and right eigenvectors,
respectively, and λ is a diagonal matrix of eigenvalues.
According to Lyapunov theory, the system is stable in terms
of small signal stability if the real part of all eigenvalues of the
state matrix is nonpositive. In this article, the minimum
damping ratio of the system is considered as a small signal
stability index:

ξ �
−α

������

α2 + β2
􏽱 , λ � α + βi,

(9)

ξmin � min ξ(λ): λ ϵ λ As( 􏼁􏼈 􏼉. (10)

Te stability index is considered as and for the unstable
ξmin ≥ 0 and ξmin ≥ ξDDR stable system, respectively. ξDDR is
the predetermined desired damping ratio (DDR).

3. Modeling the Proposed Method

Since the small signal stability is evaluated after the line-
arization of the power system equations around a particular
operating point, the direct solution of the optimization
problem that creates a diferent operating point does not
preserve the small signal stability analysis. As shown in
Figure 1, we deal with this issue using a sequential approach.
Using the standard OPF that takes into account the AC
power fow, the initial operating point is determined and the
subsequent operating points are determined based on the
power fow. In solving the power fow problem, two known
quantities associated with each bus should be determined.
Since the amount of network load does not change during
the stability improvement process, the load demand (P-Q) is
known. In the case of regulated or voltage-controlled buses
(PV buses), the active power and voltage magnitude are
obtained by solving the redispatch model.

3.1. Redispatch Problem

3.1.1. Te Objective Function. Te objective function is
defned as the total production cost of generation redispatch
of generators as given in the following equation:

f � 􏽘
iεNG

ciΔP
2
Gi, (11)

where ΔPGi is the change of output powers of the generators
and ci is the coefcient of the cost function of the generators.
In this article, for the sake of simplicity, the cost of all
generators is assumed as c � 1, and therefore, the objective is
to minimize changes in the output power of the generators.
Without loss of generality, any other cost vector can be
assumed.

3.1.2. Generation Redispatch Constraint. In the generation
rescheduling process, in order to maintain the total active
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power of the system, power balance without losses is con-
sidered as

􏽘
i ϵNG

ΔPGi � 0.
(12)

In each step, alternating current (AC) power fow is used
to determine the operating point, which takes losses into
account. However, for moving from one operating point to
another point and determining the direction of redispatch,
because the losses of the transmission system are insignif-
icant and on the contrary, redispatch does not create a
noticeable change in the losses, so it is ignored.

3.1.3. Small Signal Stability Constrain. In order to move
towards the stability region or improve the damping ratio of
the system, the damping should be increased in each step. If
y is an optimization variable, using the Taylor expansion of
the damping ratio, we have the following:

ξ y0 + Δy( 􏼁≥ ξ y0( 􏼁 +
zξ
zy
Δy, (13)

where (zξ/zy) is the frst-order sensitivity of the damping
ratio. To determine the status of the voltage-controlled buses
at the new operating point, the active power of the gener-
ators and the voltage magnitude of the buses are considered
as optimization variables. Terefore, the sensitivity of the
damping ratio to these two variables is determined, and the
small signal stability constraint is considered according to
(14) in the optimization problem as follows:

􏽘
i ϵNG

dξ
dPGi

ΔPGi + 􏽘
m ϵNB

dξ
dVm

ΔVm ≥Δξ. (14)

Voltage magnitude of a given bus at the beginning of
each subsequence is V0

k, and the regulation of the bus voltage
is defned as ΔVk � ΔVk− V0

k. To calculate the sensitivity of
the stability index, the closed-form analytical formula has
been used [18]. In this method, the sensitivity of an ei-
genvalue to the optimization variable is calculated by the
following equation:

dλ
dx

�
u

TdAs/dxv

u
T
v

. (15)

Utilizing (9) and (15), the frst-order sensitivity of the
damping ratio is evaluated as

dξ
dx

�
−β2

������

α2 + β23
􏽱

dα
dx

+
αβ

������

α2 + β23
􏽱

dβ
dx

. (16)

In problem modelling, the damping ratio is defned as a
hard constraint, while the operating cost is included in the
model as a soft constraint or objective function, so it can be
concluded that the desired damping is provided with the
lowest cost.

3.1.4. Redispatch Limits. At the beginning of each subse-
quence, the sensitivity of the damping ratio with respect to
the active power of the generators is calculated, and
according to their algebraic sign, the generators are classifed
into two groups, namely, increasable generators (IG) and
decreasable generators (DG) [28]. Generators with a larger
sensitivity magnitude have a greater efect on improving
system damping. Te efect of generators in each group can
be determined through their contribution coefcient as
follows:

cc
IG
i �

dξ/dPi

􏽐j ϵNIG
dξ/dPj

, i ϵ NIG,

cc
DG
i �

dξ/dPi

􏽐j ϵNDG
dξ/dPj

, i ϵNDG,

(17)

where NIG and NDG are sets of increasing (generators that
should increase their power) and decreasing generators,
respectively. Te maximum power transfer from the de-
creasing group is determined by their total power reserve
(14), and then, by a factor of w, the amount of power that
must be transferred from the decreasing to the increasing
group is determined as follows:

P
DG
TR � 􏽘

iεNDG

PGi − P
min
Gi , (18)

ΔPTR � w∗P
DG
TR . (19)

On the one hand, to increase the efectiveness of stability
index calculation, the amount of power exchange between
the two groups in each subsequence should not be con-
sidered too large. On the other hand, if the amount of power
exchange is considered small, the number of subsequence’s
increases, resulting in a high computation time. Te de-
termined power should be distributed or dispatched among
the generators of each group by the contribution coefcient
as follows:

ΔPIG
i � cc

IG
i ∗ΔPTR,

ΔPDG
i � cc

DG
i ∗ΔPTR.

(20)

Unstable area

stable area

DDR area

op1

op2

ΔPD
TR

DR–1
ΔPT

1
R

opDDR–1

opDDR

Figure 1: Picture of the proposed sequential method.
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Since there must be a balance between power redistri-
bution, the maximum reserve available in the IG group, PIG

TR,
given by (21), must be greater than the determined power
ΔPTR:

P
IG
TR � 􏽘

iεNIG

P
max
Gi − PGi. (21)

After determining the contribution of each generator to
the determined power exchange, the limits of power changes
in the form of (22) are added to the problem model:

0≤ sign
dξ
dPG

􏼠 􏼡∗ΔPG ≤ γ, γ � ΔPIGΔPDG
􏽮 􏽯. (22)

3.1.5. Voltage Change Limits. Te algebraic sign of the
system damping ratio sensitivity with respect to the bus
voltage magnitude is used to divide the system buses into
two groups of increasable buses (IB) and decreasable buses
(DB). Ten, the impact of the buses in each group is de-
termined by their contribution coefcients as follows:

cc
IB
k �

dξ/dVk

􏽐j ϵNIB
dξ/dVj

, k ϵNIB,

cc
DB
k �

dξ/dVk

􏽐j ϵNDB
dξ/dVj

, k ϵNDB,

(23)

where NIB and NDB are sets of increasable and decreasable
buses, respectively. Using the contribution coefcients of
buses, the limits of voltage magnitude changes, according to
(25), are added to the proposed model.

ΔVIB � ccIB, (24)

ΔVIB � ccDB, (25)

0≤ sign
dξ
dV

􏼠 􏼡∗V≤ ρ,

ρ � ΔVIBΔVDB􏼈 􏼉.

(26)

Terefore, the optimization problem can be summarized
as follows:

minf � 􏽘
iεSG

ciΔP
2
Gi,

s.t. 􏽘
iεSG

ΔPGi � 0, 􏽘
iεNG

dξ
dPGi

ΔPGi + 􏽘
kεNB

dξ
dVk

ΔVk ≥Δξ, 0≤ sign
dξ
dPG

􏼠 􏼡∗ΔPG ≤ c, 0≤ sign
dξ
dV

􏼠 􏼡∗V≤ ρ.

(27)

3.2. Power Flow Analysis. At the third step, an AC power
fow model is conducted to determine the new operating
point. Considering the generators as power sources and

based on the admittance matrix, the AC power fow
equations are expressed as a set of nonlinear algebraic
equations as given as follows:

PGj − PLj � 􏽘
K ϵNB

VjVkYik cos θj − θk − ϕik􏼐 􏼑, for j ϵNB( 􏼁, (28)

QGj − QLj � 􏽘
K ϵNB

VjVkYik sin θj − θk − ϕik􏼐 􏼑, for j ϵNB( 􏼁. (29)

To solve the power fow problem, there are several types
of iterative methods, often based on the Newton method or
the Gauss−Seidel method. Due to quadratic convergence
and high accuracy, we use the Newton−Raphson algorithm
in the proposed method.

3.3. Proposed Sequential Method. In the frst step of the
proposed method, the OPF problem is solved, and the
initial operating point of the system is obtained. Modal
analysis then determines the small signal stability of the
power system. If the system is unstable or the damping ratio
is not desirable, the next operating point is obtained
through power fow. Tis process of analysing stability and
power fow continues until the desired operating point is

reached. Te proposed method uses a convex optimization
model, which provides a global solution. It should also be
noted that during the steps, system generators and system
busses are divided into increasing and decreasing groups
using modal analysis and sensitivity, and on the other hand,
the system damping ratio trend is increasing and has few
changes. Terefore, it can be concluded that the proposed
method converges. Te accuracy of this issue has been
confrmed in the simulations. Te pseudocode for the
proposed method is illustrated in Algorithm 1. It is worth
noting that the redispatch as an emergency action is done
for a time step in the near future, for example, for the next
hour. However, without losing the generality of the
problem, it can be done for a fraction of the next hour or
several hours.
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4. Numerical Simulation

In this section, the efectiveness of the proposed method-
ology is evaluated by three diferent IEEE test systems.
Modal analysis at the base operating point shows that the
frst two systems (small andmedium scale) are stable, but the
third system is unstable.Terefore, by applying the proposed
method, we are looking for the test to increase the damping
to the optimal level and the stabilization test, which is an
excellent benchmark to measure its validity. MATLAB
software is used to solve the optimization problem and
perform the modal analysis. In all test systems, the two-axis
model is used to represent the generator and the excitation
system is modelled by IEEE Type I [27]. Te related
equations are summarized in Appendix.

4.1. IEEE 9-Bus System. Te 9-bus system has 3 generators
and has been used in various studies for small signal sta-
bility analysis. Te steady-state and dynamic data of this
system are extracted from [29, 30], respectively. At the
initial operating point of this system, OPF and modal
analysis are performed, and the damping ratio of the system
at base case is 2.1%. Since the system is stable, we applied
the proposed method to increase the system damping ratio
to 5%; the results are given in Table 1.Te systemmodes are
sorted in column 4 based on the system damping (from low
to high damping) and in column 5 based on the magnitude
of the real part, which are the same in this particular case. It
can be seen that to achieve the 5% damping ratio, the
generation of unit 1 is increased from 89.8MW at base case
to 141.3MA at Case 2. At the same time, both G2 and G3
reduce their generation levels to 89.5MW and 85.7MW,
respectively.

Te trace of two modes of the system with the lowest
damping ratio along with the path of increasing their
damping ratio during the process of applying the proposed
method is shown in Figure 2. It is observed that the proposed
method has increased the damping ratio of these two modes

from 2.1% to 5% and from 3.7% to 5.5%, respectively, and
provides an appropriate damping for the system.

4.2. IEEE 39-Bus System. Te 39-bus system has 10 gener-
ators, and the steady-state and dynamic data of this system
are provided in [28, 31], respectively. Te damping ratio of
the system at the initial operating point is 2.5%. To ensure
the small signal stability, we implemented the proposed
method with a damping ratio threshold of 5%. Critical ei-
genvalues with damping ratios less than 5% under diferent
operating conditions are provided in Table 2. As can be seen
from Table 2, eigenvalues exhibit a cyclic behaviour at
diferent operating points. For example, the ffth mode at the
initial operating point changes to the seventh and critical
mode of the system at points with damping ratios of 4% and
5%, respectively. Terefore, it can be concluded that se-
quential methods are more efective for redistribution of
power generation.

Using modal analysis, the sensitivity of critical eigen-
value with respect to output power, contribution coefcient
and power change of generators at diferent operating
points are shown in Figures 3–5, respectively. As it can be
deduced from the fgures, for example in operation point 3,
increasing the output of generator 8 and reducing the
generation of unit 3 have the greatest efect on improving
the system damping.

For six diferent operating points, Figure 6 shows the
trace of improving the damping ratio of eight system modes
that have a damping ratio of less than 5% at the base op-
erating point. As a result, the proposed method has been
successful in improving the stability of the system and has
provided an opportunity to select diferent operating points
at diferent times. Additionally, Figure 7 shows the path of
the minimum damping ratio of the system as a result of
using the proposed method.

In order to investigate the completely nonlinear be-
haviour of the power system, we use time-domain sim-
ulation because the small signal stability analysis is

Input:
y(0) � Initial operating condition from conventional OPF
ξDDR: Desirable SSS level
w: Power rescheduling coefcient

(1) Execute small signal stability analysis at y(0)

(2) m⟵ 1, ξ⟵ ξ(y(0))

(3) whileξ < ξDDR

(4) Use the sensitivities dξ/dPG to determine ΔPIG and ΔPDG

(5) Use the sensitivities dξ/dV to determine ΔVIB and ΔVDB

(6) Solve optimization problem given in (27)
(7) y(m)⟵ solve power fow equation given in (28)-(29)
(8) Execute small signal stability analysis at y(m)

(9) m⟵m + 1, ξ⟵ ξ(y(m))

(10) end while
Output:
y(m): desired operating point from proposed method

ALGORITHM 1: Proposed sequential method.
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Table 1: Results of the proposed method for IEEE 9-bus system.

OP
Generation,

Cost
Damping,

Ratio(DR : %)

Lambda,
min DR

Lambda,
max real part PG1 PG2 PG3 V1(pu) V2(pu) V3(pu)

Base
case 5303.7 2.1 −0.17± 8.18i −0.17± 8.18i 89.8 134.4 94.2 1.04 1.095 1.078

Case 1 5510.8 4 −0.31± 7.91i −0.31± 7.91i 126.2 104.4 85.8 1.04 1.094 1.075
Case 2 5769.6 5 −0.39± 7.80i −0.39± 7.80i 141.3 89.5 85.7 1.04 1.094 1.074

Eigenvalue Trace

First Lambda
(min DR.)
-0.17±8.18i
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Figure 2: Te trace of two modes with the lowest damping ratio and their damping ratio.

Table 2: Critical modes and their damping ratios under diferent operating points for IEEE 39-bus system.

Mode no. Mode Damping ratio
DR. (2.5∼5) %
1 −0.20± 7.92i 0.0250
2 −0.20± 6.57i 0.0308
3 −0.28± 8.65i 0.0318
4 −0.23± 7.04i 0.0330
5 −0.26± 6.08i 0.0425
6 −0.38± 8.93i 0.0432
7 −0.37± 8.15i 0.0455
8 −0.20± 4.00i 0.0490
DR. (3∼5) %
2 −0.20± 6.52i 0.0301
1 −0.24± 7.91i 0.0303
3 −0.27± 8.64i 0.0316
4 −0.23± 6.98i 0.0339
7 −0.34± 8.14i 0.0412
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Table 2: Continued.

Mode no. Mode Damping ratio
5 −0.26± 6.06i 0.0422
6 −0.38± 8.91i 0.0425
8 −0.20± 3.98i 0.0496
DR. (3.5∼5) %
7 −0.29± 8.13i 0.0351
4 −0.24± 6.94i 0.0353
6 −0.31± 8.78i 0.0358
5 −0.22± 6.08i 0.0358
1 −0.29± 7.93i 0.0361
2 −0.24± 6.53i 0.0362
3 −0.32± 8.67i 0.0370
8 −0.19± 3.99i 0.0487
DR. (4∼5) %
2 −0.24± 6.07i 0.0401
1 −0.31± 7.62i 0.0402
3 −0.34± 8.32i 0.0406
4 −0.27± 6.58i 0.0409
6 −0.35± 8.55i 0.0410
7 −0.33± 7.92i 0.0411
5 −0.22± 5.36i 0.0419
— −0.24± 3.65i 0.0657
DR. (4.5∼5) %
2 −0.26± 5.81i 0.0453
7 −0.36± 7.79i 0.0460
4 −0.29± 6.34i 0.0463
6 −0.38± 8.22i 0.0467
1 −0.35± 7.49i 0.0468
5 −0.25± 5.05i 0.0498
3 −0.63± 7.99i 0.0786
— −0.86± 9.69i 0.0888
DR. (5∼. . .) %
5 −0.25± 5.03i 0.0497
1 −0.37± 7.38i 0.0499
4 −0.28± 5.69i 0.0500
6 −0.42± 8.19i 0.0513
7 −0.39± 7.46i 0.0524
3 −0.46± 8.04i 0.0570
2 −0.41± 6.09i 0.0673
— −0.88± 9.48i 0.0870
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Figure 3: Damping ratio sensitivity at diferent operating points for IEEE 39-bus system.
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performed by means of a linear model of the power
system. By considering the nonlinear diferential algebraic
model and increasing the system load by 20% as a dis-
turbance, simulation has been performed for the oper-
ating conditions obtained from the conventional OPF and
the proposed method. Tis analysis is a type of time
domain electro-mechanical simulation and not a time
domain electro-magnetic simulation. Terefore, under
small disturbances, the small signal instability shows itself
in the form of low-frequency oscillations. Te frequencies
of all generators for two methods are shown in Figures 8
and 9. As can be seen, the proposed method dampens the
oscillations, and as a result, the system remains stable,
while under conventional OPF, the system becomes
unstable.

4.2.1. Comparative Analysis. Te following three compari-
son cases are considered in order to evaluate the efec-
tiveness of the proposed method:

(i) BCO: the basic conventional OPF that determines
initial operating point without small signal stability
limits

(ii) SSO: small signal stability-constrained OPF, which
considers only the critical eigenvalue of the initial
operating point [17]

(iii) PSM: proposed sequential method

According to the simulation, the IEEE 39-bus system is
stable at the initial operating point. To investigate unstable
conditions, we increase the system load by 10% and consider
a contingency in the form of a single line outage (between
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Figure 7: Trace of system damping ratio for IEEE 39-bus system.

2 4 6 8 10 120
Time (sec.)

57

58

59

60

61

62

63

 F
re

qu
en

cy
 (H

z.)

G1
G2
G3
G4

G5
G6
G7
G8

G9
G10

Figure 8: Time-domain simulation of IEEE 39-bus system for conventional OPF.
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buses 8 and 9). In this case, the system has a critical mode as
0.301 ± 2.429i. Table 3 presents simulation results for dif-
ferent methods.

Based on simulation results, the proposed method
provides a lower-cost stability boundary than the SSO
method. Changes in the output power of generators to reach
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G4
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G7
G8

G9
G10
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Figure 9: Time-domain simulation of IEEE 39-bus system for the proposed method.

Table 3: Comparing performance of three methods in the IEEE 39-bus system.

Generation cost ($/h) Damping ratio (%) Critical eigenvalue
BCO 51384 −12.2 0.301± 2.429i

SSO 51761 Stability boundary 0
— Positive DR Failed

PSM 51674 Stability boundary 0
52308 3 −0.225± 7.560i
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Figure 10: Generation redispatch to reach the stability boundary for IEEE 39-bus system.
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Figure 11: Eigenvalues in the basic operating point for IEEE 118-bus system.
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the stability boundary are shown in Figure 10. It should be
noted that the proposedmethod can increase the damping of
the system to a desirable level (3%).

4.3. IEEE 118-Bus System. Te IEEE 118-bus system has 54
generators, and the steady-state and dynamic data of this
system are taken from [28, 32], respectively. Based on small
signal stability analysis at the base operating point, the
presence of positive modes has caused the system to become
unstable. Te system eigenvalues in the base operating point
are shown in Figure 11.

Considering these conditions, the proposed method is
used to stabilize the system providing an appropriate
damping ratio. For this system, a damping ratio of 2% is
considered. Figure 12 shows the eigenvalues of the system
after implementing the proposed method. It is clear that the
system has successfully moved out of the unstable region,
and proper damping has been provided. Furthermore, the
path of the minimum damping ratio of the system is shown
in Figure 13, which shows that the trend of enhancing
system damping is not uniform.

5. Conclusion

Te generation rescheduling algorithm proposed in this
article provides a scheme to redispatch the active output
power of the generators to ensure the small signal stability
and enhance the minimum damping ratio of the power
system. Te stabilization process is performed sequentially
by solving the optimization problem and small signal sta-
bility analysis until a desired area of operation is reached.
Considering the sequential nature of the proposed method,
it is well suited to addressing the problem of changing the
critical eigenvalues of the system by changing the operating
conditions as well as allowing the operator to select its
desired operating point from a set of operating points.

A second-order convex redispatch model was used in-
stead of the AC optimal power fow to make the proposed
method computationally tractable to efectively compute the
optimization direction, the system generators and system
buses are divided into two increasing and decreasing groups
using modal and sensitivity analysis. Te simulation of the
proposed method on three IEEE test systems verifes the
efectiveness of the proposed sequential method to ensure
small signal stability. Two systems are stable at the base
operating point, and the proposed method increases the
system’s damping to the desired level. Te third system is
unstable; after it stabilizes, appropriate damping is pro-
duced. Te impact of other tools to improve the small signal
stability were not addressed in this paper and can be in-
vestigated in future works.

Appendix

Tis appendix presents the diferential and algebraic
equations of the power system.

(1) Synchronous machine and exciter diferential
equations:

dδi

dt
� ωi − ωs,

dωi

dt
�

TMi

Mi

−
Eqi
′ − Xdi
′ Idi􏽨 􏽩Iqi

Mi

−
Edi
′ − Xqi
′ Iqi􏽨 􏽩Idi

Mi

,

dEqi
′

dt
� −

Eqi
′

Tdoi
′

−
Xdi − Xdi

′( 􏼁Idi

Tdoi
′

+
Efdi

T
’
doi

,

dEdi
′

dt
� −

Edi
′

Tqoi
′

−
Xqi − Xqi

′􏼐 􏼑Iqi

Tqoi
′

,

dEfdi

dt
� −

KEi + SE Efdi􏼐 􏼑

TEi

Efdi +
VRi

TEi

,

SE Efdi􏼐 􏼑 � Aeie
BeiEfdi ,

dVRi

dt
� −

VRi

TAi

+
KAi

TAi

Rfi −
KAiKFi

TAiTFi

Efdi +
KAi

TAi

Vrefi − Vi􏼐 􏼑,

dRFi

dt
� −

RFi

TFi

+
KFi

TFi( 􏼁
2Efdi, for i ∈ NG( 􏼁.

(A1)

(2) Stator algebraic equations:

Edi
′ − Visin δi − θi( 􏼁 − RsiIdi + Xqi

′ Iqi � 0,

Eqi
′ − Vicos δi − θi( 􏼁 − RsiIqi − Xdi

′ Idi � 0 for i ∈ NG( 􏼁.

(A2)

(3) Network algebraic equations:

IdiVisin δi − θi( 􏼁 + IqiVicos δi − θi( 􏼁 + PLi Vi( 􏼁

− 􏽘
k∈NB

ViVkYikcos θi − θk − αik( 􏼁 � 0,

IdiVicos δi − θi( 􏼁 − IqiVisin δi − θi( 􏼁 + QLi Vi( 􏼁

− 􏽘
k∈NB

ViVkYik sin θi − θk − αik( 􏼁 � 0, for i ∈ NG( 􏼁,

PLj Vj􏼐 􏼑 − 􏽘
k∈NB

VjVkYjkcos θj − θk − αjk􏼐 􏼑 � 0,

QLj Vj􏼐 􏼑 − 􏽘
k∈NB

VjVkYjk sin θj − θk − αjk􏼐 􏼑 � 0, for j ∈ NPQ􏼐 􏼑.

(A3)

Nomenclature

Indices

i: Index of generators
k, j: Indices of buses
NB: Set of system buses
NG: Set of generator buses
NPQ: Set of PQ buses

Parameters

ωs: Rated rotor speed
Xdi/Xqi: d-axis/ q-axis components of the synchronous

reactance of ith generator
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Xdi
′ /Xqi
′ : d-axis/ q-axis components of the transient

reactance of ith generator
Td0i
′ /Tq0i
′ : d-axis/ q-axis components of the open-circuit

time constant of ith generator
TMi: Mechanical torque of ith generator
Mi: Inertia constant of ith generator
Di: Damping torque coefcient of ith generator
Rsi: Winding resistance of ith generator
SE(Ef di): Field saturation function
KEi/KAi/KFi: Exciter/voltage regulator/feedback gain of ith

generator
TEi/TAi/TFi: Exciter/voltage regulator/feedback time

constant of ith generator
Vrefk: Reference voltage of kth bus
PLk/QLk: Active and reactive load of kth bus
Yjk/ϕjk: Magnitude/phase angle of the admittance

matrix

Variables

δi: Rotor angle of ith generator
ωi: Rotor speed of ith generator
Edi
′ /Eqi
′ : d-axis/q-axis components of the internal voltage of

ith generator
Efdi: Excitation output voltage of ith generator
VRi: Voltage regulator output of ith generator
RFi: Exciter rate feedback of ith generator
Idi/Iqi: d-axis/ q-axis components of the internal current of

ith generator
Vk/θk: Voltage magnitude/phase angle of kth bus.
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