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Accurate parameter identifcation of power distribution network (PDN) has attracted remarkable attention recently. However,
power device parameters usually show an instability attributed to both the operating status and manual entry. Terefore, it is
urgent to develop reliable algorithms for identifying PDN parameters with both high accuracy and high efciency. Most of the
existing algorithms are gradient-free and based on the heuristic schemes, resulting in an unstable numerical calculation. Herein,
based on our previous work about the adaptive gradient-based optimization (AGBO) method, we propose an extensive version,
namely, AGBO-Pro model. In this method, both the numerical and categorical features of experimental observations are utilized
and incorporated with each via a weighted average. By comparing the proposed method with several heuristic algorithms, it is
found that the errors in RMSE, MAE, and MAPE criteria via AGBO-Pro are all about 2 times lower with a much faster and more
stable convergence of the loss function. By further taking a linear transformation of the loss function, the AGBO-Pro model
achieves a more robust performance with a much lower variance in repeat numerical calculations.Tis work shows great potential
in possible extension of gradient-based optimization methods for parameter identifcation in PDN.

1. Introduction

Acquiring accurate and reliable device parameters is crucial
in the context of power distribution networks (PDNs) due to
their multifaceted implications [1]. However, the lack of
in situ measurement techniques poses challenges in directly
obtaining certain PDN parameters, which are typically as-
sumed to be static in real situations. Tese parameters in-
clude line resistance, line reactance, transformer resistance,
transformer reactance, transformer conductance, and
transformer electrical susceptance. Tis limitation often
leads to poor estimation in parameter identifcation for PDN
[2]. To address these challenges, numerous approaches have
been developed to enhance numerical efciency and reduce

residuals in parameter estimation. Tese approaches include
supervisory control and data acquisition, power manage-
ment unit (PMU), and advanced metering infrastructure.
Tey can be classifed into various methods, such as the full-
scale approach [3], PSOSR [4], normalized Lagrange mul-
tiplier (NLM) test [5], fnite-time algorithm (FTA) [6], re-
sidual method, sensitivity analysis method, Lagrange
multiplier method [7], Hefron-Phillips method [8], and
specialized Newton–Raphson iteration [9]. Additionally,
recent advancements in machine learning and deep learning
techniques have led to the proposal of smart methods, in-
cluding artifcial neural network [10], graph convolution
network (GCN) [11], support vector machine (SVM) [12],
multihead attention network [13], deep reinforcement
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learning [14], estimation using synchrophasor data [15],
PSCAD simulation [16], multimodal long short-term
memory deep learning [17], and edge computing [18].
While these methods show efectiveness with simulation
data, they often require specialized measuring devices.

To overcome the challenges posed by the lack of required
data and measuring devices, a mathematical approach called
the power fow model can be employed. Te power fow
model establishes relationships between PDN parameters
and easily obtainable data, such as active power, reactive
power, and voltage. Te challenging parameters mentioned
earlier can be optimized using algorithms in combination
with the static parameters, namely, active power, reactive
power, and voltage, on the low-voltage side. By utilizing the
power fow model, the voltage values on the high-voltage
side can be calculated, and the residuals between the cal-
culated and true values can be used to construct a loss
function for optimization methods. Te optimization
methods for parameter identifcation can be generally
classifed into two categories, namely, the gradient-free
methods [19–25] and gradient-based methods [26, 27].
First, in gradient-free methods, the heuristic or biomimetic
optimization rules are designed such as particle swarm
optimization (PSO), genetic algorithm (GA), ant colony
algorithm, Aquila optimizer (AO) [28], nuclear reaction
optimization (NRO) [29], and Pareto-like sequential sam-
pling heuristic method (PSS) [30]. Te performance of these
heuristic algorithms is largely dependent on the initializa-
tion. On the other hand, the gradient-based method is
usually constructed by combining the physical model of
PDN and the neural network with the backward propagation
of the loss function. Benefcial from the chain rule and
automatic derivative of the loss function with respect to the
parameters to be optimized, the gradient-based method is
a deterministic approach. Terefore, many advanced gra-
dient descent algorithms can be utilized to accelerate the
optimization. In addition, researchers pay more attention to
data preprocessing methods, including the utilization of
clustering algorithms and hypothesis testing [31, 32].

In previous work, we proposed an adaptive gradient-
based optimization (AGBO) algorithm for parameter iden-
tifcation in PDN. In AGBO, a physical model based on the
power fow calculation is incorporated into the neural net-
work, and the input data are the numerical features obtained
from experimental measurement. However, besides the nu-
merical features, the experimental observations of PDN also
contain many categorical features such as recording duration
and peak-valley electricity. It should be noted that such
categorical features are usually hard to be utilized directly in
heuristic algorithms, but the neural network-based methods
have a great advantage on feature embedding and extraction.
Terefore, in this work, based on the analysis of the physical
model in PDN, we propose an extensive gradient-based
optimization method for parameter identifcation in PDN,
and we call this new model AGBO-Pro. Te proposed model
can utilize not only the numerical features as before but also
the categorical information, which is rarely used in previous
works. Based on the abovementioned points, this paper
mainly has the following contributions:

(1) An extensible gradient-based optimizationmethod is
proposed, which is constructed with customized
neural network layer and loss function, and it ach-
ieves a higher and more robust performance in
parameter identifcation problems of PDN.

(2) In the physical-informed multihead neural network,
we separate the experimental measurements into the
numerical features and categorical features. After
several manipulations, the categorical features are
transformed to a weight distribution and in-
corporated into the numerical features via a linear
transformation. Such a treatment is rarely studied or
neglected by other investigations.

(3) Te performance in three evaluation functions of this
hybrid method during the numerical calculation is
much better than that of several individual opti-
mization algorithms.

Tis paper is organized as follows. Section 2 introduces
the identifcation equations of power fow model in PDN
and proposes the AGBO-Pro optimization method. Te
experimental data and calculation details are given in Sec-
tion 3. Te results and discussions are given in Section 4.
Finally, Section 5 gives a brief conclusion.

2. Materials and Methods

2.1. Power Flow Model Calculation. Te fundamental prin-
ciples of PDN analysis can be found in references
[20, 31–33]. To streamline the computational process, the
assumption of balanced three-phase condition is made as
a prerequisite for power fow calculations in this work. Te
schematic diagram of power fow calculation circuit model is
shown in Figure 1.

In Figure 1, Pd, Qd, and Ud represent the active power,
reactive power, and voltage on the high-voltage side of the
transformers at bus D, respectively. Tese three parameters
can be obtained directly by real-time measurements. Other
parameters, such as transformer electrical Rd, transformer
resistance Xd, transformer conductance Gd, transformer
electrical susceptance Bd, line resistance Rcd, and line re-
actance Xcd, are in general hard to be detected in PDN
calculation and satisfy the following equations:
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where ΔUT
d and δUT

d in equation (3) are the longitudinal and
transverse components of the transformer impedance
voltage drop at bus D. PLd, QLd, and ULd represent the active
power, reaction power, and voltage on the low-voltage side
of the transformers at bus D, respectively. ΔUT

d and δUT
d can

be obtained by the following equations:
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Te equation of bus C can be expressed as equations
(6)–(8):
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where ΔUT
cd and δUT

cd in equation (6) are the longitudinal
and transverse components of the transformer impedance
voltage drop at bus C.

2.2. Teoretical Framework of AGBO-Pro for Parameter
Identifcation in PDN. Te schematic diagram is shown in
Figure 2, where it is combined with gradient-based neural
network (NN) and gradient-free optimization method. Te
inputs of the framework are experimental measurements of
PDN, which can be divided into several blocks (or felds)
including numerical features and categorical features. Each
block can be processed via a customized way and then
connected with customized layers. Te loss function for
gradient-based optimization is also fexible.

2.2.1. Physical-Informed Multihead Neural Network. Te
experimental measurements of PDN can be classifed into
two categories, namely, the continuous (or numerical)
features and discrete (or categorical) features such as
measurement time, primary time type, and secondary time
type. Te numerical and categorical features are processed
with diferent treatments by introducing a multihead neural
network, which is shown in Figure 3. It is shown that the
input layer of NN is separated into two blocks; the frst
includes numerical features, which are defned as
X1 � (PLd,i, QLd,i, ULd,i) representing the set of the active

power, reaction power, and voltage on the high-voltage side
of the transformers, and the subscript i represents the sample
points for i � (1, 2, · · · , N). Te other includes categorical
features X2 � (Ti, Pi, Si · · ·), whereTi and PVirepresent the
measurement and peak-valley period, respectively. It is
noted that the recording duration has 24 categories, and the
peak-valley electricity has 3 categories (i.e., high, medium,
and low).

After the input layer of NN, the numerical features X1 are
fed into the PDN model, while the categorical features are frst
encoded (i.e., one-hot encoding) and then imported into an
embedding layer to transform the sparse feature matrix into
a dense matrix. After the embedding layer, we utilize the max-
min normalization to scale the categorical features into
ω1 � [ω1,0,ω1,2, · · · ,ω1,i] ∈ [0, 1], which can be seen as
a probability distribution. Ten, the numerical and categorical
features are merged with a linear combination as follows:

Ymerge � ω1 · X1 + η, (9)

where η represents the noise term, which is subject to the
normal distribution, i.e., η ∼ N(0, 1). With the help of
maximum likelihood estimation, the loss function of this
work is defned as
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where yi and y
⌢

i represent the theoretical calculation value of
PDN and true value by experimental measurement, re-
spectively. In addition, to avoid gradient vanishing during
the backward propagation of NN, a nonlinear trans-
formation, namely, sigmoid activation function rather than
linear rectifcation function (ReLU), is utilized:

σ(x) �
1

1 + e
− x. (11)

Terefore, the loss function is further modifed as
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where U
⌢

c,i represents the true value of voltage on the high-
voltage side.

Te above loss function is also known as the Euclidean
distance measuring the diference between theoretical cal-
culation and experimental observation. In this work, we also
utilize a Pearson correlation loss function, which is defned
as
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In the previous work, we have derived the gradients of
the loss function with respect to Rd, Xd, Gd, Bd, Rcd, and Xcd.
According to the PDN model, the loss function can be

ac
Uc Ud

PLc + jQLc

ULc

PLd + jQLd

ULd

Pc + jQc Pd + jQd d

Figure 1: Power fow calculation circuit model.
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calculated with forward calculation; then, the back propa-
gation of the gradient of the loss function can be applied to
update the connection weight in NN.

2.2.2. Gradient-Based Optimization Algorithm. Once we
have the above gradients of the loss function with respect to
the parameters, then the gradient-based optimization can be
implemented. Te pseudocode of optimization method of
this work is shown in Algorithm 1.

2.3. Evaluation Functions of the Parameter Identifcation
Algorithm. Te underlying three functions are employed to
estimate the performance of the proposed algorithm:

(1) Mean absolute error (MAE):

MAE �
1
N
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(2) Root mean square error (RMSE):

RMSE �

�������������

1
N



N

i�1
yi − y

⌢

i 
2




. (15)

(3) Mean absolute percentage error (MAPE):
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where yi and y
⌢

i represent the ground true value and pre-
diction value, respectively.

3. Dataset and Calculation Details

3.1. Data Collection and Description. In this work, a dataset
including 1499 samples is collected via SCADA [33, 34] for
the training of the proposed model. Te voltage profles on
the high-voltage (Ua, Ub, and Uc) and low-voltage (ua, ub,
and uc) sides are presented in Figures 4 and 5, respectively.

From Figures 4 and 5, it is found that the high-voltage
sides in the dataset are similar to the three-phase balance
satisfying the equations in Section 2.1. In addition, the active
power (Pa, Pb, and Pc) and reactive power (Qa, Qb, and Qc)
profles on the low-voltage side are given in Figures 6 and 7,
respectively.

It is found from Figures 6 and 7 that the variations of
active power and reaction power show a similar trend, in-
dicating that the data collection is stable enough for pa-
rameter identifcation of PDN.

It is noted that all samples collected have four categorical
features, namely, measurement time, date type, primary time
type, and secondary time type. Te measurement time

Block N

Process NProcess 2Process 1

Block 2Block 1

Experimental
measurements

MSE
MAE
Similarity

Customized loss

Physical-informed multi-head NN
Output

Customized layer

Embedding
Residual
Encoding

Figure 2: Schematic diagram of extensible gradient-based optimization for parameter identifcation.
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represents the time information when the sample is mea-
sured, which ranges from 0 to 24 hours. Te date type
represents whether the measurement time is on a workday
and holiday. Te primary time type and secondary time type
have two diferent defnitions for daytime. Te primary time
type has three levels: peak mean hours refer to 09:00 to 12:00
and 18:00 to 21:00 daily, plateau mean hours refer to 13:00 to
17:00 and 22:00 to 23:00 daily, and valley represents 00:00 to
08:00. Te secondary time type has two levels: peak means
08:00 to 21:00, whereas valley refers to 22:00 to 07:00. Te
distribution of these four categorical features is shown in
Figure 8.

3.2. Evaluation andCalculation. In this paper, 75% samples
(1124) are split randomly as train set to identify PDN’s
parameters. Te best parameters are used to calculate
voltage per unit in C bus (denoted as Ucal) by the power
fow model. After that, the rest of 25% samples (375) are
used to evaluate the performance of parameter identif-
cation as test set through the three metrics as shown in

equations (14)–(16). Instead of directly calculating these
metrics, linear regression should be applied in this paper,
and the values of Uc and Ucal are regarded as dependent
variable and independent variable, respectively. Te
output values of linear regression are denoted by U∗cal, and
the fnal evaluations of parameter identifcation are gained
between Uc and U∗cal:

U
∗
cal � aUcal + b, (17)

where a and b are denoted as slope and bias of linear
regression. In the following discussion, the parameters of
linear regression optimized by SMBO methods are
signed as RS-LR, TPE-LR, and SA-LR, respectively. Te
upper bounds and lower bounds of the identifed pa-
rameters should be determined frstly, and they are listed
in Table 1.

To mitigate the impact of randomness associated with
AGBO and SMBO-based methods on the results in this
study, the dataset was randomly partitioned 25 times to
ensure accuracy and stability in the results.

Output Ua (or Ub, Uc)

Feature merge via
weighted average

Embedding layer

Feature encoding

Categorical features

PDN model calculation

Active power, reaction
power and voltage

Experimental measurements

Fully-connected layer

measurement time,
primary time type and

secondary time type, etc.

Figure 3: Schematic diagram of the proposed physical-informed multihead residual neural network.
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4. Results and Discussion

Before discussing the results, some hyperparameter settings
of each method are described as follows. Te prior weight
and number of started jobs are set as 1 and 20 for TPE, and
the rate of reduction in SA is 0.1 as default value. Te
learning rate is 5e− 4 in AGBO-based methods. Te max-
imum of iteration step is 1000 for all the methods in this
study. Te parameter identifcation results of AGBO and

SMBO-based methods with mean square error between Uc

and Ucal are shown in Table 2.
It can be found in Table 2 that AGBO-Pro has the best

performance with signifcantly low values of MAE, RMSE,
and MAPE compared with other metaheuristic algorithms
such as AO, NRO, and PSS. AGBO also has better results
than SMBO-based methods, but the prediction results do
not have remarkable diferences since the statistical prop-
erties between Uc and Ucal are neglected.

Input: θ0 initial parameters
f(θ) objective function to be optimized
β1, β2 decay rates for moment estimates
m0 initialized frst-order moment
υ0 initialized second-order moment
t time step
η learning rate
l∞← 2/(1 − β2) − 1 maximum length of the simple moving average

While θt is not converged do
t← t + 1
gt←∇θft(θt−1) gradient with respect to parameters at time step t

mt← βt
1 · mt−1 + (1 − βt

1) · gt update frst-order moment
υt← βt

2 · υt−1 + (1 − βt
2) · g2

t update second-order moment
mt←mt/(1 − βt

1) biased-corrected frst-order moment
lt← l∞ − 2tβt

2/(1 − βt
2) the length of the moving average

If the variance is tractable, i.e., lt > 4 then
ηt←

���������

(1 − βt
2)/vt



update the adaptive learning rate
rt←

��������������������������������
((lt − 4)(lt − 2)l∞)/((l∞ − 4)(l∞ − 2)lt)


the variance rectifcation term

θt← θt−1 − tηt mtrt update parameters
Else

θt← θt−1 − t mt

End while
Return θt

ALGORITHM 1: Adaptive gradient-based optimization methods.
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Figure 4: Ua, Ub, and Uc on the high-voltage side.
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Other recent studies also have proposed the prediction
results with the same metrics and the same dataset in this
paper, such as the methods of MCMC and SMBO combined
with clustering and hypothesis testing (denoted as MCMCC
and SMBOC). Li et al. [32] published the best results of MAE
values of MCMCC and SMBOC being 62.467± 0.366 and
61.868± 0.322, respectively. In another paper [31], the values
of MAE computed by MCMCC and SMBOC are
62.136± 0.336 and 61.268± 0.311, respectively.

Based on the previous study [26], the line transformation
should be implemented to Ucal before calculating loss
function. Te parameter identifcation results with linear
transformation are listed in Table 3.

All methods perform better in Table 3 than the results in
Table 2, which indicates that the linear transformation be-
tween Uc and Ucal has an important contribution to identify

PDN’s parameters. Moreover, the results between
AGBO-Pro and AGBO mean that the supplementary cat-
egorical information such as measurement time, date type,
primary time type, and secondary time type plays an im-
portant role in PDN’s parameter identifcation and the key
categorical information can be merged by AGBO-Pro
proposed in this work.

Leaning rate, the size of the embedding layer dimension,
and the number of hidden layers are three critical hyper-
parameters of AGBO-Pro; therefore, the PDN’s parameter
identifcation performance under diferent hyperparameters
has been investigated in this section. Te performances of
various learning rates are displayed in Table 4.

It can be found that the learning rate has a remarkable
infuence on AGBO-Pro; when the learning rate is set to
5e− 3, the identifcation performance is optimal, and the
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Figure 7: Qa, Qb, and Qc on the low-voltage side.
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Figure 8: Te distribution plot of measurement time, date type, primary time type, and secondary time type among samples.

Table 1: Te upper and lower bounds of the identifed parameters.

Parameter name Abbreviation Upper bound Lower bound Unit
Line resistance Rcd 0.5 0.005 Ω/km
Line reactance Xcd 0.5 0.005 Ω/km
Transformer resistance Xd 20 5 Ω/km
Transformer reactance Rd 10 0.8 Ω/km
Transformer conductance Gd 8e− 6 4e− 6 S
Transformer electrical susceptance Bd 8e− 5 2e− 5 S
Slope of linear regression a −5 5 —
Bias of linear regression b 500 1000 —
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value of learning rate between 1e− 2 and 1e− 3 is suggested
in this paper. Te size of embedding layer dimension is
investigated subsequently under the optimal value of
learning rate and listed in Table 5.

Since the dimension of categorical features is small, the
embedding dimension of the neural network is less than 128
in this work. According to the results in Table 5, the change
of the embedding dimension has only a minor impact on the
identifcation performance, and the optimal size of the

embedding dimension is chosen as 64, 32, 32, and 32 for the
four categorical features, respectively. AGBO-Pro include
the hidden layer to leaning the information of categorical
features after embedding, and the infuence of the number of
the hidden layers are shown in Table 6.

Having more hidden layers in the network implies
a larger number of parameters, slower computation speed,
and a higher risk of overftting. Combining the results from
Table 6, it can be found that a single hidden layer achieves

Table 2: Te results of parameter identifcation with the loss function of mean square error.

Method MAE RMSE MAPE
AGBO-Pro∗ 25.415 ± 0.855 32.511 ± 1.050 0.415 ± 0.014
AGBO 64.100± 0.474 65.791± 0.478 1.047± 0.008
RS 65.570± 0.746 67.148± 0.699 1.071± 0.012
TPE 64.689± 0.648 66.355± 0.633 1.057± 0.011
SA 65.894± 0.983 67.439± 0.913 1.077± 0.016
AO 64.5001± 0.7016 66.1795± 0.6854 1.0539± 0.0115
NRO 64.5174± 0.6998 66.1954± 0.6837 1.054± 0.0114
PSS 64.6944± 0.6984 66.3599± 0.6847 1.0571± 0.0114
∗AGBO-Pro uses mean square loss to ensure fairness in comparison. Te bold values indicate that the AGBO-Pro method gains the lowest values in all three
evaluation functions, viz. MAE, RMSE and MAPE, indicting its best performance.

Table 3: Te results of parameter identifcation with linear transformation.

Method MAE RMSE MAPE
AGBO-Pro-LR∗ 5.131 ± 0.093 6.514 ± 0.152 0.084 ± 0.002
AGBO-LR 5.247± 0.079 6.593± 0.111 0.086± 0.001
RS-LR 6.447± 0.801 8.054± 0.958 0.105± 0.013
TPE-LR 6.078± 0.753 7.589± 0.830 0.099± 0.012
SA-LR 6.970± 1.111 8.682± 1.318 0.114± 0.018
∗Te results of AGBO-Pro with Pearson correlation coefcient loss. After the linear transformation labeled as “AGBO-Pro-LR,” the optimization method
proposed in this work still has the best performance.

Table 4: Te performance of AGBO-Pro under diferent learning rates.

Learning rate MAE RMSE MAPE
5e− 2 5.850± 0.192 7.365± 0.266 0.0956± 0.00315
1e− 2 5.486± 0.242 6.916± 0.266 0.0897± 0.0028
5e− 3 5.131 ± 0.093 6.514 ± 0.152 0.0839 ± 0.0015
1e− 3 5.486± 0.172 6.916± 0.242 0.0897± 0.0028
1e− 4 8.231± 0.327 11.121± 0.493 0.135± 0.0053
1e− 5 8.545± 0.057 11.454± 0.326 0.140± 0.0009
Te bold values indicate that with the learning rate 5e− 3, the model has the lowest values in three evaluation functions.

Table 5: Te performance of AGBO-Pro under diferent sizes of the embedding layer dimension.

Embedding dimension MAE RMSE MAPE
Measurement time: 32

5.370± 0.201 6.751± 0.279 0.0878± 0.003Date type: 16
Primary time type: 16
Secondary time type: 16
Measurement time: 64

5.131 ± 0.093 6.514 ± 0.152 0.0839 ± 0.001Date type: 32
Primary time type: 32
Secondary time type: 32
Measurement time: 128

5.224± 0.120 6.596± 0.209 0.0854± 0.002Date type: 64
Primary time type: 64
Secondary time type: 64
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Table 6: Te performance of AGBO-Pro under diferent number of the hidden layers.

Embedding dimension MAE RMSE MAPE
1 hidden layer 5.131 ± 0.093 6.514 ± 0.152 0.084 ± 0.002
2 hidden layers 5.574± 0.285 7.048± 0.344 0.091± 0.005
3 hidden layers 5.545± 0.279 7.052± 0.397 0.091± 0.005
Te bold values indicate that with one hidden layer, the model gains the best performance.

Lo
ss

0 200 400 600 800 1000
Epoch (Iteration step)

0.4

0.3

0.2

0.1

(a)

Lo
ss

0 200 400 600 800 1000
Epoch (Iteration step)

8500

8000

7500

7000

6500

6000

(b)

–0.90

–0.88

–0.92

–0.94

–0.96

Lo
ss

0 200 400 600 800 1000
Epoch (Iteration step)

(c)

–0.90

–0.92

–0.94

–0.96

Lo
ss

0 200 400 600 800 1000
Epoch (Iteration step)

(d)

–0.91

–0.92

–0.93

–0.94

–0.95

–0.96

–0.97

Lo
ss

0 200 400 600 800 1000
Epoch (Iteration step)

(e)

Figure 9: Te convergence plot of AGBO-Pro (a), AGBO (b), RS (c), TPE (d), and SA (e).
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better identifcation performance. Te convergence plots of
AGBO and SMBO-based methods are displayed in Figure 9.

Te AGBO-based methods converge after 200 iterations;
compared with the SMBO-based methods, the convergence
plots of AGBO-based methods are much smoother and
stable, since the searching direction for parameter update is
deterministic to the gradient-based optimization method,

such as AGBO and AGBO-Pro. After 25 repeated splitting
datasets, the distribution plots of the identifed PDN’s pa-
rameters from AGBO-Pro-LR are shown in Figure 10. It can
be found that all the identifed parameters are roughly
distributed within a relatively fxed range, providing a data
foundation for the subsequent parameter analysis in future
research.
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Figure 10: Te distribution plot of Rd (a), Xd (b), Gd (c), Bd (d), Rcd (e), and Xcd (f ).
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5. Conclusion

In this work, we propose an extensible gradient-based op-
timization method for parameter identifcation in PDN
calculation and analysis. A physical-informed multihead
neural network is adopted to treat the numerical features
and categorical features separately. Te two kinds of features
are merged via a weighted average. After several forward-
backward calculations, the similarity loss function with
respect to the six parameters to be identifed achieves a fast
convergence.

We compare the proposed method (namely, AGBO-Pro
model) with the original AGBO model and several heuristic
algorithms such as RS, TPE, SA, AO, NRO, and PSS. Te
numerical calculations show that the errors by AGBO-Pro
are the lowest in all three evaluation functions, i.e., MAE,
RMSE, and MAPE, with a faster and more stable conver-
gence of the loss function. By further taking a linear
transformation of the loss function, the method of this work
has a lower variance in 25 repeat experiments, showing
a much more robust performance in parameter
identifcation.

In addition, the variations in hyperparameters of opti-
mization method such as the number of hidden layers and
embedding layers, learning rate, and weight decay are also
systematically investigated. It is found that the method
proposed in this work achieves more stable and robust
performance to identify PDN parameters. Tis work shows
an efective exploration in incorporating the numerical and
categorical features of experimental measurement into
gradient-based optimization method.
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