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More and more renewable energy sources are integrated into novel power systems. Te randomness and fuctuation of such
renewable energy sources bring challenges to the static stability and safety analysis of novel power systems. In this work,
a multilayer deep deterministic policy gradient is proposed to address the fuctuation of renewable energy sources. Te proposed
method is stacked with multilayer deep reinforcement learning methods that can be continuously updated online. Te proposed
multilayer deep deterministic policy gradient is compared with other deep learning algorithms. Te feasibility, efectiveness, and
superiority of the proposed method are verifed by numerical simulations.

1. Introduction

More and more countries are joining carbon-peaking and
carbon-neutral programs [1]. Building a new type of power
system with mainly renewable energy, or even a 100% re-
newable energy power system, has become imperative [2, 3].
Although the carbon emissions of renewable energy are very
small, the dispatch center of the power system has to sufer
from the dispatch difculties caused by the fuctuation of
renewable energy [4]. Tere are already developed countries
that have to restart their thermal power generators to meet
the demand for electricity for living and production
activities [5].

An increasing number of sensors have been installed in
novel power systems [6]. Tese sensors bring a huge amount
of data to the dispatch center [7]. Te current methods of
data processing are still far from adequate to fully utilize the
data that the dispatch center can receive. A variety of
methods that do not rely on traditional models, i.e., data-
driven methods, are constantly being implemented into
novel power systems [8].

Currently, a data-driven approach cannot avoid in-
volving deep learning methods [9, 10]. Deep learning can be

classifed as convolutional neural networks [8], deep neural
networks [11], deep reinforcement learning [12], and deep
forest algorithms [13]. Deep learning can in turn be classifed
as classifcation algorithms, prediction algorithms, and
control algorithms [14]. Te deep reinforcement learning
method is a control method. In this work, the deep re-
inforcement learning method is applied to solve the safety
and stability control problems of novel power systems.

Deep reinforcement learning is developed through re-
inforcement learning. Te series of reinforcement learning
methods evolved from being trained to get a look-up table
method to an actor-critic network method consisting of
a deep neural network or a convolutional neural network
[15]. Although it contains deep neural networks or con-
volutional neural networks internally, deep reinforcement
learning is still a control- or policy-based method in
general [16].

Te deep deterministic policy gradient (DDPG) method
is a deep reinforcement learning method based on actor-
critic that has been applied very efectively [17]. For example,
DDPG can obtain small energy costs in peer-to-peer energy
trading [18]. In general, a well-trained deep neural network
can represent the control system signal at a specifc time scale
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[19]. Terefore, to obtain better control performance, a deep
reinforcement learning method based on the actor-critic
structure capable of observing control signals at multiple
time scales is proposed in this study. In this study, DDPG is
chosen as the control method mainly based on (1) the fact that
the output of DDPG is a deterministic strategy while proximal
policy optimization (PPO) is a probability distribution; (2) the
critic output in PPO is a value function, and the input is only
state, while the critic output in DDPG is a behavior-state value
similar to deep Q-networks (DQN); therefore, the input of
DDPG contains action. Te characteristics of diferent types of
deep reinforcement learning methods are given in Table 1.

Recently, numerous deep reinforcement technologies
have been combined to achieve better control performances
in more complex scenarios. For example, traditional con-
trollers + deep reinforcement learning [4], modal decom-
position + generative adversarial networks [12], and twin-
delayed DDPG+DDPG [20] are combined to address the
frequency control problems of novel power systems; Markov
chain and isoprobabilistic transformation are combined for
capacitor planning [21]. Overall, the primary contributions
of this work are summarized as follows:

(1) Tis work proposes a deep reinforcement learning
method based on multilayer DDPG. Te proposed
MDDPG can represent and predict control signals at
multiple time scales using multiple deep neural
networks. Te proposed MDDPG observes more
state variables of the control system, and thus has
a stronger ability in responding to stochastic
perturbations.

(2) Tis work is the frst application of a deep re-
inforcement learning method based on actor criti-
cism to the stability control of novel power systems.
Te proposed MDDPG can obtain better power
system stability control performances through
multiple time scales of representation and
observation.

(3) Te MDDPG proposed in this study is also
a framework for combining multiple deep re-
inforcement learning. Te proposed framework can
integrate deep reinforcement learning with diferent
characteristics or diferent parameters.

Te stability control model of novel power systems is
presented in the next section. Ten, the next section shows
the proposed MDDPG method. Ten, the simulation cal-
culations and their results are shown. Te fnal section
concludes this study.

2. Model of Rotor Angle Stability Control of
Novel Power Systems

Te modeling process of angle stability control of novel
power systems is described in this section.

2.1. Model of Single-Machine Infnite Bus System. A single
infnity system is one of the simplest and most basic systems
in power systems with infnite power, constant voltage, and

constant frequency [22]. A classical generator model is
shown in Figure 1. EB is infnity bus voltage; Et is generator
terminal voltage; Xd

′ is transient reactance; XE is the re-
actance of external network; δ is angle over infnity bus
voltage EB; and E′ is reference vector. If the system is afected
by a disturbance, δ will be changed.

Te stator current It is obtained as

It �
E
′∠0° − EB(cos δ − j sin δ)

jXT

. (1)

After the stator resistance is ignored, the air gap power P

is equal to the terminal power Pe. Te air gap torque is equal
to the air gap power when expressed per unit. Ten,

Te � P �
E
′
EB

XT
sin δ. (2)

Substituting the initial conditions δ � δ0, linearize
equation (2) as

∆Te �
zTe

zδ
∆δ �

E
′
EB

XT
cos δ0(∆δ) � Ks. (3)

Te motion equations of rotor rotation angle and angle
deviation of synchronous generator in per unit, respectively,
are

d

dt

∆ωr

∆δ
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �

−
Kd

2H
−

Ks

2H

ω0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∆ωr

∆δ
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ +

1
2H

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∆Tm. (4)

Te control block diagram of a single infnity bus system
represented by the classical generator model is represented
in Figure 2.

In Figure 2, Ks is synchronous torque coefcient; KD is
damped torque coefcient; H is inertia constant; ∆ωr is the
standardized value of angular velocity ofset; ∆δ is rotor
angular ofset; s is Laplace operator; and ω0 is rotor reference
speed. Te expression for the rotor angular ofset is obtained
from Figure 2 as follows:

∆δ �
ω0

s

1
2Hs

−Ks∆δ − KDs
∆δ
ω0

+ ∆Tm  . (5)

Considering the efect of the variation of system exci-
tation fux on system performance, and neglecting the efect
of damping winding on the circuit, the excitation voltage is
assumed to be constant. Te rotor angle δ is the angle at
which the q-axis exceeds the reference quantity EB, δi is the
sum of the internal angle and the angle at which Et exceeds
EB. Te equivalent circuit related to the magnetic chain and
current of the synchronous motor is shown in Figure 3.

Te magnetic chain of the stator and rotor can be
expressed as

ψd � −Llid + Lads −id + ifd(  � −Llid + ψad,

ψq � −Lliq + Laqs −iq  � −Lliq + ψaq,

ψfd � Lfdifd + Lads −id + ifd  � Lfdifd + ψad,

(6)
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where ψad and ψaq are the air gap magnetic chains; Lads

and Laqs are the saturation values of mutual inductances;
Ll is the stator leakage inductance; and Lfd is the rotor
circuit inductance. Te excitation current is expressed
as

ifd �
ψfd − ψad

Lfd

. (7)

Te air gap magnetic chain of d-axis is expressed by ψfd

and id, as

Table 1: Te classifcation of deep reinforcement learning methods.

Type Action space Methods
Value-based Discrete Q learning, DQN, state-action-reward-state-action
Policy-based Discrete or continuous Policy gradient
Actor-critic Discrete or continuous Actor-critic, PPO, trust region policy optimization
Actor-critic Continuous DDPG, twin-delayed DDPG, soft actor-critic

Et

E <́δ EB<0
XT

Xd́
XE

It

Figure 1: Classic generator model.

-
ΔTe

ΔTm + 1
2Hs+KD

ω0

S

K1

KS

Δδ

Figure 2: Control framework of single-machine infnite bus system.
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LfdLads
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ψfd

ψadψd

id
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Figure 3: Equivalent circuit diagram of motor magnetic chain and current.
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ψad � −Ladsid +
Lads

Lfd

ψfd − ψad  � Lads
′ −id +

ψfd

Lfd

 ,

(8)

where

Lads
′ �

1
1/Lads + 1/Lfd

. (9)

Since the rotor circuit is not considered in q-axis, the air-
gap magnetic chain is expressed as

ψaq � −Laqsiq. (10)

Te air gap torque is written as

Te � ψadiq − ψaqid. (11)

Te corresponding terms cancel is

id �
XTq ψfd Lads/Lads + Lfd  − EB cos δ  − RTEB sin δ

D
,

iq �
RT ψfd Lads/Lads + Lfd  − EB cos δ  + XTdEB sin δ

D
,

(12)

where

RT � Ra + RE,

XTq � XE + Laqs + Ll  � XE + Xqs,

XTd � XE + Laqs
′ + Ll  � XE + Xqs

′ ,

D � R
2
T + XTqXTd,

(13)

where Xqs and Xds′ are the reactance saturation values. Te
reactance value is equal to the inductance value per unit. Te
perturbation values is

∆id � m1∆δ + m2∆ψfd,

∆iq � n1∆δ + n2∆ψfd,
(14)

where

m1 �
EB XTq sin δ0 − RT cos δ0 

D
,

n1 �
EB RT sin δ0 + XTq cos δ0 

D
,

m2 �
XTq

D

Lads

Lads + Lfd 
,

n2 �
RT

D

Lads

Lads + Lfd 
.

(15)

Ten,

∆ψad � Lads
′ −∆id +

∆ψfd

Lfd

  �
1

Lfd

− m2 Lads
′ ∆ψfd − m1Lads

′ ∆δ,

∆ψaq � −Lads∆iq � −n2Lads∆ψfd − n1Lads∆δ.

(16)

Ten,

∆ifd �
∆ψfd − ∆ψad

Lfd

�
1

Lfd

1 −
Lads
′

Lfd

+ m2Lads
′ ∆ψfd +

1
Lfd

m1Lads
′ ∆δ,

∆Te � ∆ψad0∆iq + ∆ψad∆iq0 − ∆ψaq0∆id − ∆ψaq∆id0.

(17)

Assume that
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K1 � n1 ψad0 + Laqsid0  − m1 ψaq0 + Laqs
′ iq0 ,

K2 � n2 ψad0 + Laqsid0  − m2 ψaq0 + Laqs
′ iq0  +

Laqs
′

Lfd

iq0,

∆Te � K1∆δ + K2ψfd.

(18)

Te fnal system equation is written as

∆ _ωr

∆ _δ

∆ _ψfd

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

−
KD

2H
−

K1

2H
−

K2

2H

ω0 0 0

0 −
ω0Rfd

Lfd

m1Lads
′ −

ω0Rfd

Lfd

1 −
Lads
′

Lfd

+ m2Lads
′ 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∆ωr

∆δ

∆ψfd

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

1
2H

0

0

0

0

ω0Rfd

Ladu

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∆Tm

∆Efd

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦. (19)

Te prime-mover and exciter control are ∆Tm and ∆Efd,
respectively. If the air-gap torque output from the prime-
mover and excitation voltage output from the exciter are
constants, the value ∆Tm and ∆Efd are zeros. If the fnal
system equation is a classical generator model, both Rfd and
Ra are equal to 0, Xq � Xd

′. In the above equations, Lads and
Laqs are the saturated values of mutual inductance Lad and
Laq, respectively. Ladu and Laqu are the unsaturated values of
mutual inductance Lad and Laq, respectively.Te initial static
values of system variables are indicated by the subscript 0.

Te variation of ψfd depends on the equation of the
excitation circuit. Ten,

∆ψfd �
K3

1 + pT3
∆Efd − K4∆δ , (20)

where

K3 �
Lfd

1 − Lads
′ /Lfd + m2Lads

′ Ladu

,

K4 �
Ladu

Lfd

m1Lads
′ ,

T3 � K3Td0′
Ladu

Lffd

.

(21)

Lffd is the rotor circuit self-inductance. Te derivative
operator p is replaced by the Laplace operator s as

∆ψfd �
K3

1 + sT3
∆Efd − K4∆δ . (22)

Tus, a control block diagram with stable excitation
voltage representation is obtained in Figure 4. If ∆Efd is
zeros, K4 can be set as negative for large local load, which is
supplied partly by generators and remote large system
(Figure 4).

Te values in parentheses are written in the following
form as

ψad0 + Laqsid0 � eq0 + Raiq0 + Xqsid0 � Eq0,

ψaq0 + Laqs
′iq0 � −Laqsiq0 + Laqs

′iq0 � − Xq − Xd
′ iq0.

(23)

Eq0 is the prefault value of the voltage after Ra + jXq. Te
expanded form of K1 constant is

K1 �
EBEq0

D
RT sin δ0 + XTd cos δ0(  +

EBiq0

D
Xq − Xd

′  XTq sin δ0 − RT cos δ0 . (24)

Similarly, the expansion of K2, K3, T3, and K4 is cal-
culated as
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K2 �
Lads

Lads + Lfd

RT

D
Eq0 +

XTq Xq − Xd
′ 

D
+ 1⎛⎝ ⎞⎠iq0

⎡⎢⎢⎣ ⎤⎥⎥⎦,

(25)

K3 �
Lads + Lfd

Ladu

1
1 + XTq/D Xq − Xd

′ 
,

T3 �
Td0s
′

XTq Xq − Xd
′ /D + 1

,

K4 � Ladu

Lads

Lads + Lfd

EB

D
XTq sin δ0 − RT cos δ0 .

(26)

If the infuence of saturation is ignored, K4 can be
simplifed to

K4 �
EB

D
Xd − Xd

′(  XTq sin δ0 − RT cos δ0 . (27)

2.2.Model of AutomaticVoltage Regulation. Te input signal
to the excitation system is the generator terminal voltage Et.
Et is represented by the state variables ∆ωr, ∆δ, and ∆ψfd.

E
2
t � e

2
d + e

2
q. (28)

In the case of small perturbations,

Et0 + ∆Et( 
2

� ed0 + ∆ed( 
2

+ eq0 + ∆eq 
2
. (29)

Neglecting the second-order term for all perturbation
values, then

Et0∆Et � ed0∆ed + eq0∆eq. (30)

Terefore,

∆Et �
ed0

Et0
∆ed +

eq0

Et0
∆eq. (31)

With the value of the disturbance, the stator voltage
equations are written as

∆ed � −Ra∆id + Ll∆iq − ∆ψaq,

∆eq � −Ra∆iq − Ll∆id + ∆ψad.
(32)

Ten,

∆Et � K5∆δ + K6∆ψfd, (33)

where

K5 �
ed0

∆Et0
−Ram1 + Lln1 + Laqsn1  +

eq0

∆Et0
−Ran1 − Llm1 − Lads

′m1 ,

K6 �
ed0

∆Et0
−Ram2 + Lln2 + Laqsn2  +

eq0

∆Et0
−Ran2 + Llm2 + Lads

′ 1
Lfd

− m2  .

(34)

Te model of the thyristor excitation system with auto-
matic voltage regulation (AVR) is shown in Figure 5, where
EFMAX and EFMIN are the upper and lower limits of the ex-
citation output voltage, respectively;TR is the time constant of
the terminal voltage transducer; Vref is the system reference

voltage; and v1 is the output of the terminal voltage trans-
ducer. Te thyristor excitation system contains only the
necessary connections for the specifc system and uses a high-
gain exciter. Te limiting and protection circuits are omitted
(Figure 5) because they do not afect the small-signal stability.

K3

1+sT3

+

-

ΔTe

ΔTm

+
1

2Hs+KD

ω0
S

K1

K4

-

+

ΔEfd Δδ+
K2

Δψfd

Figure 4: Control framework of single infnity system with constant excitation voltage.
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Considering the efect of the excitation system, the
equation of the excitation circuit is

p∆ψfd � −
ω0Rfd

Lfd

m1Lads
′ ∆δ −

ω0Rfd

Lfd

1 −
Lads
′

Lfd

+ m2Lads
′ ∆ψfd −

ω0Rfd

Ladu

KA∆v1. (35)

Because the exciter is a frst-order model, the order of the
whole system is increased by one order on top of the original
one; the newly added state variables are ∆v1. Since p∆ωr and

p∆δ are not afected by the exciter, the entire state-space
model of the power system is written in the form of the
following vector-matrix:

∆ _ωr

∆ _δ

∆ _ψfd

∆ _v1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

−
KD

2H
−

K1

2H
−

K2

2H
0

ω0 0 0 0

0 −
ω0Rfd

Lfd

m1Lads
′ −

ω0Rfd

Lfd

1 −
Lads
′

Lfd

+ m2Lads
′  −

ω0Rfd

Ladu

KA

0
K5

TR

K6

TR

−
1

TR

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∆ωr

∆δ

∆ψfd

∆v1
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+

b1

0

0

0
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∆Tm. (36)

If the mechanical torque input is constant, ∆Tm is 0.
Gex(s) is the transfer function of the AVR and the exciter.
Gex(s) is applied to any type of exciter, be expressed in terms
of KA as

Gex(s) � KA. (37)

2.3.Model ofPowerSystemwithAutomaticVoltageRegulation
andPower SystemStabilizer. Te PSS, which is an additional
excitation control technique to suppress low-frequency
oscillations of synchronous generators by introducing ad-
ditional feedback signals, has been utilized to improve the
stability of power systems. Te control block diagram of the
excitation system, including AVR and PSS, is shown in
Figure 6. Te PSS shown in Figure 6 includes three links:
a phase compensation link, a signal fltering link, and an
amplifcation link. Te phase compensation link properly
provides a phase lag characteristic to compensate for the

phase lag between the exciter input and the air gap torque of
the generator. Since the signal link is a high-pass flter with
a large time constant TW, the oscillating signal ωr does not
change as the oscillating signal passes through.Te stabilizer
gain KSTAB determines the magnitude of damping generated
by PSS. Adding perturbation values to the signal-fltering
module has

∆v2 �
pTw

1 + pTw
KSTAB∆ωr( . (38)

Hence,

p∆v2 � KSTABp∆ωr −
1

Tw
∆v2. (39)

Figure 6 shows that

∆Efd � KA ∆vs − ∆v1( . (40)

Terminal voltage
transducer Exciter

1
1+sTR

KA

Vref

v1Et Efd

EFMAX

EFMIN

+
-

Figure 5: Tyristor excitation system with AVR.
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After adding PSS, the whole state-space model is
expressed as the following vector matrix if ∆Tm � 0, then

∆ _ωr

∆ _δ

∆ _ψfd

∆ _v1

∆ _v2

∆ _vs

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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�

−
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−

K1

2H
−

K2

2H
0 0 0

ω0 0 0 0 0 0
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Lfd
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′ −

ω0Rfd

Lfd
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′

Lfd
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′  a34 0

ω0Rfd
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0
K5
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K6
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−
1

TR

0 0

−KSTAB
KD

2H
−KSTAB

K1

2H
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K2

2H
KSTAB 0 −

1
TW

0

−KSTAB
T1

T2

KD

2H
−KSTAB

K1

2H

T1

T2
−KSTAB

K2

2H

T1

T2
0 −

T1

T2

1
TW

+
1

T2
−
1

T2
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∆ωr

∆δ

∆ψfd

∆v1

∆v2

∆vs
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. (41)

Te control framework of power systems containing
AVR and PSS is obtained, as shown in Figure 6.

3. Multilayer Deep Deterministic
Policy Gradient

Reinforcement learning is an algorithm that performs ac-
tions based primarily on feedback from the environment. By
continuously interacting with the environment, the agent
continuously “tries and fails” with one or more learning
strategies to maximize the gain and achieve a specifc goal
problem [23]. Te interaction between the agent and the
environment means that the agent observes the state s of the

environment, performs an action a, changes the state of the
environment, and returns a reward r and a new state s′ to the
agent [24].

Te mathematical basis of reinforcement learning is
aMarkovian decision process (MDPs) [25]. AnMDP usually
consists of a state space, an action space, a state transfer
matrix, a reward function, a policy function, and a discount
factor. In an episode, write down all the rewards as:
R1, . . . , Rt, . . . Rn. Assuming a discount rate of c ∈ [0, 1], the
discounted return Ut can be defned as

Ut � Rt + c · Rt+1 + c
2

· Rt+2 + · · · + c
n− t

· Rn, (42)

Terminal voltage
transducer Exciter

1

1+sTR

1+sT1

1+sT2

1+sT1

1+sT2
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v2
vsΔωr

Et Efd

Power system
stabilizer
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+
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Figure 6: Tyristor excitation system including AVR and PSS.
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at t, when the episode is not over, Ut is an unknown random
variable whose randomness comes from all states and ac-
tions after the moment t. Te action-value function is de-
fned as

Qπ st, at(  � E Ut

St � st, At � at . (43)

Te expectation in equation (43) eliminates all states
St+1, . . . , Sn with all actions At, . . . , An after the moment t.
Te optimal action-value function utilizing a maximization
elimination strategy π is

Q∗ st, at(  � max
π

Qπ st, at( ,∀st ∈ S, at ∈ A. (44)

In equation (97), S is the set of all states, and A is the set
of all actions.

To address the problem that DQN applied to continuous
action spaces can sufer from dimensional catastrophe, the
deterministic policy gradient (DPG) is proposed [26]. Te
DPG method is the most common reinforcement learning
for doing continuous control actions. DDPG simply com-
bines DQN and actor-critic. DDPG, which can also be
described as a combination of DPG and DQN, can combine
the successful structure of DQN with actor-critic to improve
the stability and convergence of DDPG. Since DDPG is
based on DPG and has deep learning integration, DDPG can
characterize high-dimensional data. Te DPG is based on
deep Q-learning, which employs a neural network μ(s; θ) to
provide action and another neural network q(s, a; w) to
evaluate the performance of the actions for improving the
accuracy of performed actions. μ(s; θ) and q(s, a; w) are
called the strategy and value networks, respectively
(Figure 7).

Collecting experience with behavior policy, assume
behavior policy is

a � μ s; θnow(  + ε, (45)

where μ(s; θnow) is the determined policy network; ε is the
added noise, ε ∈ Rd. Te behavior policy is implemented to
control the interaction between the agent and the envi-
ronment; the trajectory (st, at, rt, st+1) of the agent is stored
in the experience replay array; the collected experience is
reused for training (Figure 8).

In the training process of the policy network, the policy
network outputs an action a for a state s, and then the value
network evaluates the action a output by the policy network
to obtain the value of the evaluation q(s, μ(s; θ); w). A higher
evaluation of the value network means more accurate action
given by the policy network. Hence, the objective function is
defned as the expectation of the evaluation value.

J(θ) � ES[q(S, μ(S; θ); w)]. (46)

Te learning of policy network transforms is a problem
of maximizing solution, i.e.,

max
θ

J(θ). (47)

Te gradient is calculated using one observation d of the
random variable S at each iteration.

gj � ∇θq sj, μ sj; θ ; w , (48)

where gj is called the determined policy gradient, which is
derived by applying the chain rule, as

∇θq sj, μ sj; θ ; w  � ∇θμ sj; θ  · ∇aq sj, aj; w , (49)

where aj � μ(sj; θ). A state sj is randomly selected from the
experience replay array at each iteration, aj � μ(sj; θ);
gradient ascent is employed to update the parameters of the
policy network, as

θ← θ + β · ∇θμ sj; θ  · ∇aq sj, aj; w , (50)

where β is the learning rate of policy networks. To bring the
value network q(s, a; w) closer to the true value function
Qπ(s, a), temporal-diference (TD) is utilized to train value
networks for more accurately evaluating the actions of policy
network output. A trajectory (sj, aj, rj, sj+1) of an agent is
selected from the experience replay group at each iteration;
the value network evaluates the output action by the policy
network, as

qj � q sj, aj; w ,

qj+1 � q sj+1, aj+1; w .

⎧⎪⎨

⎪⎩
(51)

Calculate TD targets as

yj � rj + c · qj+1. (52)

Ten, the loss function is

L(w) �
1
2

q sj, aj; w  − yj 
2
. (53)

Calculate gradients as

∇wL(w) � qj − yj  · ∇wq sj, aj; w . (54)

Update the parameters of the value network with gra-
dient descent as

w←w − α · ∇wL(w). (55)

After the loss function L(w) is reduced, the pre-
diction of the value network is closer to the target value
function, where α is the learning rate of the value
network.

Te deterministic policy gradient sufers from the same
overestimation problem as DQN, leading to difculty in
convergence during the training process. DPG is combined
with deep learning as DDPG [26]. DDPG adds a policy target
network and a value target network to the DPG; thus, two-
goal networks are applied to calculate TD goals. Te policy
target and value target networks have the same structure as
the policy network and value networks with diferent pa-
rameters. Te DDPG policy network is updated in the same
way as the DPG.

However, the parameters of the value network are
updated diferently. Te evaluation of the trajectory of the
agent at moment j is calculated by the value network; the
evaluation of the trajectory at the next iteration is calculated
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by μ(s; θ− ) and q(s, a; w− ). Tus, the evaluation of the two
moments is obtained as follows:

qj � q sj, aj; w 

qj+1 � q sj+1, aj+1′; w
−

 

⎧⎪⎨

⎪⎩
, (56)

where aj+1′ � μ(sj+1; θ
− ).

Update the parameters of the value network as

w←w − α · ∇wL w, w
−

( ). (57)

Te target policy and target value networks are updated
by a weighted average as follows, where τ is the hyper-
parameter (Figure 9):

θ−←τ · θ +(1 − τ)θ−
,

w
−←τ · w +(1 − τ)w

−
.

(58)

TeMDDPG consists of multiple DDPGs, which contain
two critic networks and two actor networks, (Figure 10).Te
MDDPG equally sums the actions by each DDPG to produce
a new action at

′ with a given state st. Te training steps of the
MDDPG are shown in Algorithm 1.

In this study, two DDPGs applied to a power-stable stack
are trained and updated simultaneously. In this study, the
rlMultiAgentTrainingOptions() function in MATLAB is
adopted in conjunction with the train() function to train
these two agents simultaneously. Moreover, the proposed
method is an integral control algorithm.Tis integral control
algorithm requires the cooperation of two agents to com-
plete an output action.

4. Results and Discussion

Te simulation studies performed in this work are accom-
plished on a laptop with an AMD 8500H processor, 32GB
RAM, and 3060 GPU. To verify the feasibility and efec-
tiveness of the proposed method, a disturbance input is

designed, as shown in Figure 11. Te designed disturbances
fuctuated very sharply from 40 s to 50 s. Te dramatically
varying disturbance in Figure 11 is designed to verify
whether the proposed method can stochastically adapt to
complex disturbances to keep static safety and stability
analysis of novel power systems.

Te parameters of this novel power system are set as
follows: K1 � 1.591, K2 � 1.5, K3 � 0.333, K4 � 1.4187,
K5 � −0.12, K6 � 0.3, KD � 0, KA � 200, KSTAB � 9.5,
H � 3.0, T1 � 0.154, T2 � 0.033, T3 � 1.91, TW � 1.4, and
TR � 0.02.

In this work, the proposedMDDPGmethod is compared
with the traditional proportional-integral-derivative and the
traditional Q-learning methods. For a fair comparison,
a similar or the same parameter is adopted for the re-
inforcement learning family of methods.

Te parameters of the proportional-integral-derivative
(i.e., 0.7102, 25.8658, 0.0326) utilized in this study are op-
timized by a particle swarm optimization algorithm with
a total population of 200 and the number of iterations of 200.
Te three parameters of this conventional algorithm are
coupled with each other. Tese three parameters must be
fully tuned in a wide range to obtain a high-performance
control performance. Te control parameters obtained by
the optimization algorithm are superior when both the
number of iterations and the population size of the chosen
optimization algorithm exceed 100.

Te parameters of the reinforcement learning series
employed in this study are set as follows. Te more the
number of actions in the action matrix, the more training
time is required to compute the memory, which may even
exceed the computer memory. Although the smaller the
number of actions in the action matrix, the smaller the
computation memory, the faster the computation time, and
the lower the accuracy. After extensive testing, the action
matrix in this work is a 16-equivalent value between −0.1 and
+0.1. Te properties of setting the number of rows and

State s

Police network
(Parameter: θ)

Value network
(Parameter: μ)

Value
q (s,a;w)

action a = μ (s;θ)

Figure 7: Diagram of DDPG.

Target police
μ (s;θnow)

(s1,a1,r1,s2)
(s2,a2,r2,s3)
(s3,a3,r3,s4)...

Experience replay array
Environment

Behavior police
a = μ (s;θold)+ε

sa

ExperienceTrain

Figure 8: Separate experience gathering and policy updating.
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columns of the Q-value matrix and the P matrix are similar
to the characteristics of establishing the number of actions in
the action matrix. Terefore, after numerous tests, both the
Q-value matrix and the probability P matrix in this work are
16-row, 16-column matrices. Although higher learning rates
imply faster convergence and inaccurate control actions, and
lower learning rates imply slower convergence and longer
training times, the proposed algorithm can characterize the
input-output relationship of the system after a long period of
online training iterations. Terefore, the learning rate,
discount factor, and probability update rate are set to default
values that are set by most references.Te learning rate is 0.1.
Te discount factor is 0.05.Te probability update rate is 0.9.
Te number of hidden layer units inside the actor and critic
networks is set to [30 30].

Te rotor angle deviations obtained by the compared
algorithms are shown in Figure 12. Te proposed MDDPG
obtains the smallest rotor angle deviation. Te reason why
the Q-learning method based on the key-value pair type has
not achieved a higher control performance than the pro-
portional-integral-derivative is that the Q-learning method
has too few action values. Although the number of proposed
MDDPG actions is small, the MDDPG has strong prediction
capability, which obtains better control performances.

Te controller outputs given by the three comparison
algorithms are shown in Figure 13. Te conventional pro-
portional-integral-derivative controller gives a smooth
output curve. Reinforcement learning gives control actions
that are too trial-and-error. Te control commands given by
the MDDPG proposed in this work appear to be irregular

Target value
network

Target police
network

TD target

ŷ
Compute Value

network
Police

network
Update

Update

Update
Update

Figure 9: Relationship between four neural networks.
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Figure 10: Structure of MDDPG.
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(1) Randomly initialize the parameters θt of policy network and θt of the target network.
(2) Randomly initialize the parameters θ−

t of the policy target network and θ−
t of the target network.

(3) Randomly initialize the experience replay matrix.
(4) Execute the platform corresponding to the environment by the initial action in one step.
(5) Obtain initial state st from the environment.
(6) For i from 1 to maximum iteration N
(7) Obtain the actions at from all policy networks through the received state st.
(8) Obtain new action at

′ by summing the actions at output from all policy networks and the agent performs the action at
′ based on

the received state st.
(9) Obtain reward value rt and next state st+1 from the environment.
(10) Deposit the quadratic array of trajectories (st, at

′, rt, st+1) of the agent into the experience replay matrix.
(11) Update sampling priority.
(12) Randomly sample M samples from the experience replay matrix and calculate the current target value yi.
(13) Calculate TD error and TD target.
(14) Update the parameters θt and wt of policy and value networks by gradient ascent and descent, respectively.
(15) Set a hyperparameter τ, update the parameters θ− and w− of target policy and target value networks by weighted average.
(16) End for
(17) Save the trained model/networks.

ALGORITHM 1: Training steps of MDDPG.
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Figure 13: Controller output curves obtained by compared
methods.
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but can give better control results. TeMDDPG proposed in
this work gives actions between 40 and 50 s, which can
eliminate the sharp disturbances.

Te experiments of MDDPG for the angle stability
control of power systems show that the control performance
is more stable than other algorithms.TeMDDPG processes
more information and decomposes the high-dimensional
input vector into multiple low-dimensional input vectors,
efectively avoiding dimensional disasters. In addition,
Figure 13 shows that (1) the conventional controller with
very smooth and continuous control instructions obtains
power angles with larger fuctuations in the end; a conven-
tional controller with only three parameters is difcult to
obtain the optimum in both steady-state values and con-
vergence speed simultaneously. (2) Q-learning with strong
random fuctuation can give trial-and-error signals with
large fuctuation and a long convergence period. (3) Te
MDDPG that balances trial-and-error fuctuations and
control performance can achieve smaller control errors than
the traditional controller and Q-learning.

Te method of principal component analysis could be
considered to solve the coupling problems of the inputs of
MDDPG. Exploring an MDDPG that can handle multidi-
mensional information while reducing the computational
memory and computational time of the system is an im-
portant direction.

Te defciencies of this proposed MDDPG are sum-
marized as follows: (1) Te MDDPG processes more in-
formation with more computation memory and longer
computation time. (2) Meanwhile, MDDPG splits the high-
dimensional vectors into several low-dimensional vectors as
inputs, which weakens the coupling of input information.
(3)TisMDDPG has a total of eight networks that need to be
trained and updated. Te network number in this MDDPG
is more than that of the normal deep reinforcement learning
methods.

5. Conclusions

In this work, a reinforcement learning algorithm called
MDDPG, which combines several DDPGs, is proposed to
solve the rotor angle stability control of novel power systems.
Te test results verify the feasibility and efectiveness of the
MDDPG. Te primary characteristics of the methods are
outlined as follows:

(1) TeMDDPG combines multiple DDPGs and applies
multiple deep neural networks with high adapt-
ability, high fault tolerance, and self-organization
capability. When the system is under diferent
perturbations, an MDDPG can control the output of
the system rotor angle stably with an error less than
proportional-integral-derivative and Q learning.

(2) Te MDDPG can transform the high-dimensional
input into multiple low-dimensional inputs. Te
output action of MDDPG is deterministic, is the
action superposition of each DDPG output, and
provides accurate control continuously in real time
with short systemic stability time.

(3) Te MDDPG provides accurate control. In the listed
example, the system rotor angle stability control
error is smaller than in comparison with other
algorithms.

Future work could be improved in the following three
ways: frst, the proposed MDDPG framework could be in-
corporated into other more efective deep reinforcement
learning methods; second, the proposed multilayer frame-
work could be reduced to a deep reinforcement learning
method composed of multiple deep neural networks; and
fnally, the static safety and stability problem of the novel
power system could be combined with the dynamic safety
and stability problem to be solved by deep reinforcement
learning simultaneously.
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