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Tis paper presents a comparative study on the implementation of incentive-based demand response programs in power grid
management, comparing the results obtained from linear and nonlinear models.Te challenges faced by power grids in balancing
supply and demand and managing price spikes during peak periods are addressed, and demand response programs are proposed
as an efective strategy.Te focus is on implementing incentive-based programs where load serving entities determine the optimal
incentive price and demand reduction. A novel approach is presented for simulating consumer behavior based on the price
elasticity of demand and consumers’ utility function, incorporating both linear and nonlinear economic models. Te calculation
of demand reduction aims to maximize consumers’ welfare, while the determination of the optimal incentive price maximizes the
proft of the load serving entities. Real data are utilized, and the proposed models are implemented using the mixed-integer
nonlinear programming (MINLP) method.Te results demonstrate the efectiveness of providing incentives to consumers during
peak hours compared to other approaches, with a comparison between the linear and nonlinear models.

1. Introduction

1.1.MotivationandIncitement. Te smart grid has become an
important part of modern society and the economy by in-
creasing the interconnection of electricity with other sectors,
including transportation, communication, and distributed
energy resources (DERs) [1]. Te integration of DERs has
revolutionized the energy infrastructure, ofering a sustainable
and cost-efective solution to replace fossil fuel-based gener-
ation and enabling decentralized networks [2]. One critical
distributed resource is demand response programs (DRPs),
which balance supply and demand without changing power
generation. DRPs incentivize changes in electricity usage
patterns, reducing operating costs, greenhouse gas emissions,
improving grid efciency, and defending against cyberattacks
such as false data injection (FDIA) [3–6].

With two-way communication, smart meters, and home
energy management systems (HEMS), optimal demand-side
planning and management are considered suitable solutions
for implementing DRPs [3]. By exchanging data with
consumers, power companies can implement DRPs, re-
ducing the need for additional generation and transmission
capacity expansion [8]. Such programs can also help facil-
itate retail choice and promote competition, ultimately
leading to lower energy costs and prices that more closely
refect those of a free market [9–11].

However, implementing DRPs requires investment from
various stakeholders. Consumers bear costs such as in-
stalling smart meters, telecommunications infrastructure,
peak load control, HEMS, and investing in renewable en-
ergy. Tey are also responsible for operation and mainte-
nance costs [6]. Meanwhile, system operators or service
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providers should pay for training consumers and telecom-
munications infrastructure on the control side, among
others [12].

In summary, the shift towards DERs and DRPs ofers
limitless potential for reshaping the energy landscape and
creating a sustainable energy system that is environmentally
friendly and economically viable. However, it requires in-
vestment from various stakeholders, and careful planning
and management are necessary to ensure efcient
implementation.

Generally, DRPs are divided into two basic categories:
price-based demand response programs (PBDRPs) and
incentive-based demand response programs (IBDRPs).
PBDRP ofers the same price rate over a time period for all
consumers with diferent consumption levels, which is one
of its disadvantages [13, 14].

As a fundamental part, IBDRPs play a signifcant role in
improving network performance, system reliability, and cost
management. Tese programs aim to reduce consumer
demand in response to price spikes, emergencies that
threaten grid reliability, or critical peak hours [13, 14].
Unlike the PBPRP, these programs provide more fexibility
for electric utilities to access responsive resources in addition
to paying incentives to consumers instead of paying elec-
tricity bills at diferent prices during the day [14]. Moreover,
these programs are more attractive to consumers than
PBDRPs because people are motivated to accept an incentive
program to receive more encouragement [15]. However,
IBDRPs account for about 93% of peak demand reduction
for available resources in the United States [16].

Today, in a competitive electricity market, the load
serving entity (LSE) plays a critical role in establishing a link
between wholesale markets and retail consumers to connect
to an optimal operating framework. Teir purpose in
establishing this connection is to maximize their proft based
on the uncertainties such as the electricity price and the
consumer’s demand [17]. Te LSE participates in wholesale
markets such as the real-time market and buys electricity at
variable wholesale prices for retail consumers such as res-
idential and small business consumers. Ten, retail price
signals are sent to consumers’ smart meters through the
advanced metering infrastructure (AMI) [18]. After re-
ceiving the price and establishing two-way communication
between HEMS and the smart meter, HEMS controls the
demand consumption of controllable appliances during
peak hours by moving, disconnecting, or reducing the de-
mand for these devices. Tis causes consumers’ electric
utilities cost reduction [19].

Tese programs must be optimally implemented to take
full advantage of the potential of IBDRPs. Terefore, the
problems in this feld can be designed as an optimization of
IBDRP implementation by the LSE.

1.2. Literature Review. It is evident that IBDRPs play
a fundamental role in balancing electricity supply and de-
mand. Te implementation of these programs has been
shown to ofer benefts such as reducing greenhouse gas
emissions, preventing or postponing costs associated with

investment in the generation, transmission, and distribution
sectors, and reducing consumer bill payments. However,
there are challenges in optimizing IBDR, such as minimizing
peak demand during critical periods while maximizing the
proft of the LSE. Various researchers have proposed dif-
ferent IBDR models with diferent features and goals, in-
cluding three-level hierarchical models, consumption
management contracts, and interruptible load program
models. Although some of these models have been criticized
due to their assumptions or potential negative consequences,
they hold promising potential in mitigating the challenges
faced by the electricity market today, such as renewable
energy uncertainty and price spikes.

Yu and Hong propose a three-level hierarchical model
for IBDR that includes a system operator, aggregator, and
consumer level. Te model incentivizes the aggregator to
implement IBDR on consumers by ofering them a payment.
Once motivated, the aggregator acts as an intermediary and
reduces consumers’ demand to maximize their own proft
from exchanging DR with the system operator while min-
imizing consumers’ incentive payments [20]. Pratik and
Debapriya discuss new approach to managing energy in
microgrids.Te approach involves using both an IBDRP and
a reconfguration method to minimize costs and maximize
profts for themicrogrid operator. However, the reduction of
energy demand resulting from DR programs can cause
discomfort for consumers, which is modeled in terms of cost
[21]. Additionally, Yu et al. introduce an IBDRP that allows
consumers to reduce their demand in exchange for in-
centives that can be used as capacity resources in the
wholesale market [22]. Consumers are incentivized to re-
duce their demand only if the aggregator calls upon them;
otherwise, they face heavy penalties. Asadinejad et al.
designed the IBDR model to address the negative impact of
high price fuctuations on consumer satisfaction, LSE proft,
and overall stress on the power system.Te model calculates
the optimal incentive price to encourage consumers to
change their consumption patterns to prevent market price
fuctuations. Tis model assumes a fxed incentive price of
$10/MWh higher than the fxed retail price and a linear
relationship between the reduction in load and the incentive
price [23]. Asadinejad and Tomsovic aimed to maximize LSE
proft and designed an optimal DR plan using TOU and
IBDR based on price elasticity to reduce the optimal demand
during times where wholesale price increases above retail
price. In the IBDR section, they consider a linear re-
lationship between load reduction and incentive price [16].
Chai et al. present an IBDR model that maximizes retailers’
profts during price spikes and peak consumption time by
considering the consumer utility function and demand price
elasticity. Te model determines the optimal demand re-
duction by solving the consumer proft optimization model
and fxing a certain incentive price. Te optimal incentive
price is then calculated by using the result of optimal de-
mand reduction in the retailer’s proft function and ex-
amining the efect of the incentive price on the retailer’s
proft [11]. Wang et al. proposed a two-level hierarchical
model that uses controllable thermal loads, such as heating
and air conditioning systems, as fexible sources for IBDR.
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Te system operator determines the incentive received by
the aggregator for reducing the load. Te aggregator then
maximizes its proft from the revenue received from the
system operator and the consumer’s payment [24]. Salah
et al. suggested an optimization model to calculate the
optimal incentive price ofered to consumers for their
participation in IBDRP. Tis model is designed based on the
consumers’ behavior and preferences in response to the
IBDR implementation. Finally, the LSE pays the incentive
price set by the IBDR implementation model to the con-
sumers to maximize the total LSE proft [25]. Muthirayan
et al. designed an IBDRmechanism for balancing supply and
demand during high price periods. Te system operator
recruits DR providers, who are either individual consumers
or aggregators of DR services, to reduce load when the
market price exceeds a threshold market clearing (TMC)
price. Te proposed DR mechanism involves self-reported
baseline, randomized selection, and penalty for uninstructed
deviations, with predetermined incentives for consumers.
Te mechanism controls baseline infation for a quadratic
utility function and signifcantly reduces SO costs. Te self-
reported baseline approach is more cost-efective than
conventional methods, despite concerns about fatigue and
lack of knowledge [26]. Chaman Lal et al. proposed
a decentralized scheme for real-time IBDR using HEMS
scheduling. It presents algorithms to increase fexibility,
reduce errors, and ensure fairness for participants. Real-time
IBDR is essential for managing power balance during un-
certain scenarios. Te paper discusses a three-level frame-
work for implementing demand response and analyzes the
impact of HEMS on real-time IBDR [27]. Malehmirchegini
and Farzaneh suggested a multiobjective mathematical
modeling approach to determine the optimal incentive rates
for customers (CUs) participating in IBDRPs, taking into
account price elasticity of demand and day-ahead wholesale
electricity market price. Te social aspect of IBDRP par-
ticipation is also addressed by estimating CUs’ satisfaction
level with respect to four attributes: comfort, fexibility,
energy security, and environmental protection, using the
Kano model [28]. Tis paper introduces a novel incentive-
based demand response scheme for electricity markets,
addressing the challenges of future energy grids. Te scheme
facilitates energy trading between a service provider and
customers, with the provider acting as a price maker by
selling capacity resources obtained from consumers in ex-
change for demand reductions. Trough optimization using
GAMS and NLP, the scheme achieves signifcant demand
reduction during high-priced peak periods. Deepan et al.
introduced a novel incentive-based demand response (DR)
program using a self-reported baseline mechanism. Con-
sumers report their baseline, and during DR events, a ran-
dom selection of consumers achieves the required load
reduction.Tose who comply are rewarded, while deviations
from the baseline are penalized to control infation. Te
selection probability can optimize the system operator’s cost,
resulting in a cost-efective design. Fu et al. proposed
a bilevel bidding model for electricity retail companies to
maximize profts while accounting for demand response
uncertainty. Te model incorporates price-based and

incentive-based demand response, enabling companies to
determine optimal bidding strategies, including prices and
capacities, to achieve maximum proft and mitigate energy
price volatility [29]. Gul and Suchitra presented a novel
incentive-based demand response scheme. Te scheme in-
volves a service provider acting as a price maker and selling
capacity resources obtained from consumers through de-
mand reductions to the wholesale market. Consumers
provide demand reductions in exchange for incentives. Te
interaction between the service provider and consumers is
formulated as optimization problems solved using GAMS
with nonlinear programming. Te approach focuses on
reducing demand during peak periods when energy prices
are high [30]. Rana et al. focused on the efcient manage-
ment of electricity grids through demand response (DR)
programs, specifcally in the context of a community
microgrid (CMG). Te study considers an incentive-based
DR model where an aggregator provides fexibility to the
CMG. Te objective is to minimize the cost of fexibility
management, which includes incentives for shifting de-
mands and penalty payments for contractual violations. To
achieve this, a two-stage optimization approach is adopted,
utilizing a biobjective formulation followed by a single
objective formulation [31]. Fotouhi Ghazvini et al. aimed to
maximize the daily proft of the LSE while minimizing peak
demand to avoid electricity purchases during market risk
times [32]. To achieve this, the LSE calculated the optimal
hourly incentive price for residential consumers based on
generation capacity. However, the efect of distribution
system operators on designing the optimal incentive price
was not considered in their study. Currently, the electricity
market faces two signifcant challenges: the entry of ex-
pensive power plants into the grid during peak hours and
renewable energy uncertainty, which can cause wholesale
prices to soar above retail prices. Tis price spikes poses
fnancial risks to both LSEs and consumers and threatens the
power grid’s reliability. To mitigate these issues, Vu et al.
proposed an IBDR model to minimize LSEs’ fnancial losses
during peak hours [33]. Te IBDRP incentivizes consumers
to reduce their energy consumption during peak hours
below their baseline demand response level by ofering
incentives. Te model utilizes a linear approach to optimize
the problem and accounts for limited consumer response
related to the IBDR implementation.

Numerous studies have been performed on diferent
models of IBDR to determine the optimal incentive price
and load reduction, as well as the impact of these programs
on consumer behavior and LSE proft. Te novelty of this
paper lies in proposing nonlinear economic voluntary in-
centive models that consider the efect of the incentive price
paid on electricity consumption to maximize the welfare of
consumers participating in IBDR. In most cited papers such
as [34], the relationship between incentive price and optimal
load reduction is assumed linear. However, residential
electricity consumption is variable and dependent upon
consumer behavior, which plays a signifcant role in energy
consumption [35]. Terefore, understanding consumer
behavior and determining the appropriate incentive price to
encourage consumers to participate in the program is
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particularly essential [36]. By utilizing these models, it is
possible to fnd the best balance between incentivizing
consumers to participate and maximizing the LSE’s profts.
Overall, this paper presents a novel approach by considering
consumer behavior to develop an efective incentive model
for IBDR programs that can both maximize consumer
welfare and LSE profts.

1.3. Contribution and Paper Organization. Te goal of this
study is to propose an efective incentive pricing scheme for
managing residential and small business sector electricity
consumption in response to price spikes, emergencies, or
peak demand, while ensuring the welfare of consumers.

Te contributions of this paper are outlined below in
a bulleted format.

(i) A nonlinear IBDR model is extracted from con-
sumers’ utility functions based on the efect of
consumer behavior on electricity consumption

(ii) An optimization algorithm is developed to mini-
mize consumer costs and maximize utility profts,
ensuring a mutually benefcial outcome

(iii) Variable optimal incentives are determined based
on factors such as the wholesale price, system op-
erator price, and the level of IBDR implementation

(iv) Emphasis is placed on the coordination between the
utility and system operator to ensure the reliability
of the system

(v) Finally, this scheme provides a structured frame-
work for retailers to select the most appropriate
regions for IBDR implementation, resulting in
better decision-making and optimized resource
allocation

Tese contributions put forth an efective and holistic
approach to managing residential and small business sector
electricity consumption, which can beneft both the utility
company and its consumers.

Tis paper is divided into fve main sections as follows.
Section 2 presents nonlinear economic loadmodels based on
utility functions. In Section 3, the LSE proft function,
considering nonlinear models, is demonstrated. Simulation
results are presented and discussed in Section 4. Finally,
conclusion points are drawn in Section 5.

2. Demand Response in the IBDR Model

Te problem and studied system are presented in this section.
Tis paper aims for reducing consumer demand by developing
the optimal incentive price in critical times. In the power
system, each consumer has independent behavior, and their
energy demand depends on various parameters, including their
priorities, weather conditions, and electricity prices. For this
reason, a proper understanding of consumer behavior and how
consumers respond can help to develop DR programs [32, 33].

Consumer utility functions are used to model the impact
of consumers’ behavior on the implementation of the
program. According to this function, linear and nonlinear

economic voluntary incentive models were extracted as
a function of consumer behavior to determine the efect of
the incentive price on electricity consumption. Based on
these derived economic models, voluntary incentive-based
programs are proposed to maximize consumer welfare.
Ten, these models are used to fnd the optimal incentive
price and load reduction by maximizing the LSE proft.

Four demand functions are illustrated in Table 1. Te
table provides the formula of some demand functions in
terms of D and P (price and demand) for certain coefcients
such as a and b.

A simple and low-accuracy method of analyzing con-
sumer behavior and utility functions is the IBDR linear
model. However, optimization problems in the power sys-
tem and related constraints tend to be nonlinear. It is
necessary to extract nonlinear models and compare their
results to the linear model for the accuracy and efciency of
the IBDR model improvement. Due to this, exponential,
logarithmic, and power nonlinear models are used. As
a result, these functions are used more often because their
formulas are simple to understand [37].

2.1. Deriving Exponential IBDR Model. In normal circum-
stances, consumers purchase their electricity at retail prices
P(t) from the LSE. According to the utility function
U(D(t), w) in Figure 1, the following equation is used to
calculate consumers’ proft S(D(t), w) [38]:

S(D(t), w) � U(D(t), w) − P(t) × D(t). (1)

By implementing IBDR during peak periods and price
spikes, consumers can reduce their consumption ∆D(t) and
receive rewards Pinc(t). Terefore, the beneft function can
be written as follows [33]:

S(D(t), w) � U(D(t), w) − P(t) × D(t) + Pinc(t) × ∆D(t),

(2)

∆D(t) � D0(t) − D(t). (3)

To efectively model consumer behavior towards IBDR,
maximizing consumer beneft is the key. Tis involves ana-
lyzing the multivariable function S(D(t), w), where D (t) rep-
resents electricity demand and w denotes consumer’s
willingness to their consumption. Te ideal value of D (t) that
maximizes consumer beneft is determined by calculating the
sensitivity of function S to changes inD (t), while keeping other
variables constant.Tis involves taking partial derivatives of the
function with respect to D (t) to assess their impact on con-
sumer beneft.Te analysis also considers the partial derivatives
of the utility function and electricity demand, evaluating their
collective infuence on the overall change. By deriving the
consumers’ beneft function from D (t) and considering these
factors, we gain a comprehensive understanding of consumer
behavior in relation to IBDR [38].

zS(D(t), w)

zD(t)
�

zU(D(t), w)

zD(t)
− P(t) +

Pinc(t) × z(∆D(t))

zD(t)
� 0.

(4)
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Ten, equation (4) is written as equation (5) after der-
ivation and sorting in accordance with equation (2) [38].

zU(D(t), w)

zD(t)
� P(t) + Pinc(t). (5)

Various nonlinear functions are used to model con-
sumer behavior, such as logarithmic, exponential, or qua-
dratic functions. Te Taylor series expansion is used for
consumers’ proft maximization [39]. Moreover, before the

implementation of IBDR, the proft function is as follows
[38]:

S D0(t), w( 􏼁 � U D0(t), w( 􏼁 − P0(t) × D0(t),

zS D0(t), w( 􏼁

zD0(t)
�

zU D0(t), w( 􏼁

zD0(t)
− P0(t) � 0.

(6)

Te price elasticity of demand E(t) shows the sensitivity
of demand to price changes as shown following relationship
[38]:

E(t) �
zD(t)

zP(t)
×

P0(t)

D0(t)
. (7)

Based on the exponential demand function of Table 1
and the second-order Taylor series expansion, the expo-
nential model is written in the following form [37]:

U(D(t), w) � U D0(t), w( 􏼁 + P0(t) × D(t) × 1 +
1

E(t)
ln

D(t)

D0(t)
􏼠 􏼡 − 1􏼢 􏼣􏼨 􏼩. (8)

Deriving from equation (8), we have the following
equation:

zU(D(t), w)

zD(t)
� P0(t) × 1 +

1
E(t)

ln
D(t)

D0(t)
􏼠 􏼡 − 1􏼢 􏼣􏼨 􏼩 + P0(t) × D(t) ×

1
E(t)

×
1

D0(t)
×

D0(t)

D(t)
􏼨 􏼩. (9)

In order to extract the exponential model of the
incentive-based program, we put equation (5) in equation
(9) and sort the formula, assuming the price remains
constant before and after IBDR implementation
(P0(t) andP(t)) and equals to Pretail(t), as indicated by
equation (11); the exponential IBDR model is obtained as
follows:

P(t) � P0(t) � Pretail(t), (10)

D(t) � D0(t) × EXP E ×
P(t) + Pinc(t) − P0(t)

P0(t)
􏼨 􏼩, (11)

D(t) � D0(t) × EXP E ×
Pinc(t)

Pretail(t)
􏼨 􏼩. (12)

2.2. Deriving Logarithmic IBDR Model. Based on the as-
sumptions related to the consumers’ proft function and the
demand function of Table 1, the logarithmic model can be
represented as follows [37]:

U(D(t), w) � U D0(t), w( 􏼁 + P0(t) × D0(t)

× E EXP
D(t) − D0(t)

E × D0(t)
􏼠 􏼡 − 1􏼢 􏼣􏼨 􏼩.

(13)

Derived from equations (13) and (14), the following
equation is obtained [37]:

zU(D(t), w)

zD(t)
� P0(t) × D0(t) × E ×

1
E × D0(t)

􏼠 􏼡 × EXP
D(t) − D0(t)

E × D0(t)
􏼠 􏼡. (14)

According to the same process as in the previous model,
the following equation is obtained:

D(t) � D0(t) 1 + E × ln
Pretail(t) + Pinc(t)

Pretail(t)
􏼠 􏼡􏼨 􏼩. (15)

Table 1: Linear or nonlinear demand functions.

Function Formula
Linear D� a+ b× P

Exponential D� a× eb×P

Logarithmic D� a1 + a2 × lnPb

Power D� a×Pb
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2.3. Deriving Power IBDR Model. Utilizing the exponential
function of the demand function and the work process as
described in the previous two models, we achieve the fol-
lowing relations [37]:

U(D(t), w) � U D0(t), w( 􏼁 +
P0(t) × D(t)

1 + E
−1 ×

D(t)

D0(t)
􏼠 􏼡

E−1

− 1
⎧⎨

⎩

⎫⎬

⎭, (16)

zU(D(t), w)

zD(t)
�

P0(t)

1 + E
−1 ×

D(t)

D0(t)
􏼠 􏼡

E−1

− 1
⎧⎨

⎩

⎫⎬

⎭ +
P0(t) × D(t)

1 + E
−1 ×

E
− 1

D0(t)
×

D(t)

D0(t)
􏼠 􏼡

E−1− 1⎧⎨

⎩

⎫⎬

⎭, (17)

P(t) + Pinc(t)

P0(t)
�

D(t)

D0(t)
􏼠 􏼡

E−1

−
1

1 + E
− 1􏼠 􏼡. (18)

For small demand elasticities and using assumption
equation (10), the fnal power IBDR model is given by the
following equation:

D(t) � D0(t) ×
Pretail(t) + Pinc(t)

Pretail(t)
􏼠 􏼡

E

. (19)

Figure 2 compares linear, exponential, logarithmic, and
power models based on the changes in elasticity from 0 to
−0.3. Te power model experiences fewer load reductions
than the others. Load reduction rates in the four models
become similar at low elasticity values but diverge as elas-
ticity increases. Also, the diference between the four curves

is small since the Taylor expansion omits the second term
due to the low elasticity in the four models.

3. Load Serving Entities’ Profit

Usually, the wholesale price Pwholesale(t) is lower than the
retail price. Terefore, the LSE income is derived from the
diference between the two prices. However, there are times
when unexpected factors such as high demand (demand D0
is more than supply Ds) or price spikes prevent the LSE from
providing electricity to its consumers, resulting in outage
costs. In this regard, the LSE cooperates with the system
operator to implement IBDR and receives incentive price
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Figure 1: Utility function based on consumers’ consumption.
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Pdso(t). As a result, we assume that equation (20) represents
the LSE’s objective function:

Profit

􏽘

24

t�1
D0(t) × Pretail(t) − Pwholesale(t)( 􏼁, D0 � Ds,

􏽘

24

t�1
D0(t) × Pretail(t) − Pwholesale(t)( 􏼁 − D0 − Ds( 􏼁 × outagecost, D0 >Ds.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(20)

In the case of D0 �DS, the following proft function is
obtained after IBDR implementation [11]:

max profit � 􏽘
24

t�1
D0(t) − ∆D(t)( 􏼁 × Pretail(t) − Pwholesale(t)( 􏼁 + ∆D(t) × Pdso(t) − Pinc(t)( 􏼁

Pinc ≥ 0,

0≤∆D(t)≤∆Dmax.
􏼨

(21)

Te fowchart of the proposed IBDR scheme is shown in
Figure 3. In Figure 3, steps 1 and 2 are designed to derive
a nonlinear IBDR scheme based on customer proft maxi-
mization, while steps 3 and 4 are presented to determine the
optimum incentive price and load reduction by using
MINLP method aimed at maximizing the LSE benefts
during times of high demand or price spikes. Te MINLP
method helps identify the optimal combination of incentive
price and load reduction to achieve this goal.

 . Simulation and Results

Tis paper focuses on the DPL area of the PJMmarket in the
mid-eastern Atlantic region of the United States, where
residential customers account for 46% of electricity con-
sumption. Te selected bus for analysis is BETHANY with
identifcation number 49865, which is a load type with
a voltage level of 69 kV and located in Bethany Beach (zip
code 19930). Tis paper presents price and demand data
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Figure 2: Comparison of 4 models based on elasticity change.
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from a peak summer day in July 2020, with a particular
emphasis on residential energy consumption (Figure 4)
[40, 41]. Furthermore, it is essential to note that the con-
sidered demand is an aggregate of consumers’ loads. Several
LSEs in this area ofer fxed-rate electricity plans for both the
short and long term. Terefore, the estimated retail price is
69.9 $/MWh [42]. In addition, the day is divided into three
periods: midpeak, of-peak, and peak period. Terefore, the
price elasticities of diferent types of demand are calculated
for each of these periods (see Table 2) [39].

Some studies such as [16, 39] have examined the po-
tential impact of implementing IBDR on reducing overall
energy load. Tese studies suggest that such implementation
could result in load reductions ranging from 10% to 40%
compared to the baseline load.

To determine which devices to prioritize during power
outages, consumer devices are usually categorized into four
main groups: critical, interruptible, noninterruptible, and
shiftable to of-peak andmidpeak times. Further analysis can
be conducted based on the operating time of these devices:

(1) Long operation period (3 hours or more): Tis cat-
egory includes appliances such as refrigerators, TVs,
computers, sound systems, lighting, and water
heaters

(2) Medium operation period (between 1 and 3 hours):
Appliances falling into this group typically include
ovens, irons, vacuum cleaners, and dishwashers

(3) Short operating period (maximum 1hour): Washing
machines and electric kettles are examples of devices
belonging to this group

By strategically disconnecting and transferring loads
from devices such as washingmachines, dryers, dishwashers,

irons, vacuum cleaners, and pool pumps, and by reducing
loads from devices such as water heaters and air condi-
tioners, it becomes possible to achieve a signifcant load
reduction of up to 30%.

In summary, the studies indicate that implementing
IBDR can lead to substantial load reductions by categorizing
devices based on their operating time and selectively
managing their power consumption during periods of high
demand or power outages.

Furthermore, GAMS software has been used to de-
termine the optimal incentive price which is lower than the
wholesale price and the amount of load reduction based on
the LSE’s objective function.

Eslaminia and Mashhadi [34] assumed a linear re-
lationship between incentive price and load reduction.
While linear modeling is easy to analyze, it lacks accuracy
especially when dealing with nonlinear functions such as
optimization in power systems and related constraints.

To improve the accuracy and efciency of the model and
its implementation on a real system, it is necessary to use
nonlinear models.Terefore, this section presents the results
of nonlinear modeling and compares them with those ob-
tained from the linear model presented in paper [34]. By
doing so, we aim to enhance the accuracy of the model and
make it more suitable for practical applications.

Overall, this research highlights the importance of ac-
curately modeling incentive-based programs for load re-
duction in power systems. Te use of nonlinear models can
signifcantly improve the accuracy of these programs and
help ensure their efectiveness in practice. In order to val-
idate the superiority of our proposed model, we have
compared our calculations with another state-of-the-art
existing scheme. Specifcally, we compared our nonlinear
modeling results with the linear model presented in paper
[34]. Our results show that the nonlinear model outperforms
the linear model in terms of accuracy and efciency.
Terefore, our proposed nonlinear model can be considered
as a better option for practical applications.

4.1. Case 1:NotReceiving Incentives from the SystemOperator.
In the frst case, the analysis compares the results of the base
case and of the linear and nonlinear models without con-
sidering the efect of the incentive price paid by the system
operator. Te focus is on the sensitivity of consumers to
IBDRPs. Te fndings indicate that without incentives from
the operator, there is a low load reduction percentage ob-
served, suggesting low consumer sensitivity to IBDRPs. In
this case, the assumption is made that the initial demand
(D0) is equal to the supply generated by power plants (Ds).
Tis implies that at the beginning of the observed period or
scenario, the total electricity demand matches the total
supply available from power generation sources.Te optimal
incentive price and the demand reduction amount were then
calculated assuming that the maximum demand reduction
was equal to 15% of the initial demand.

During peak times, supplying consumers becomes
a signifcant challenge. Terefore, demand reduction is of
major importance for the system operator during these

start

2-Deriving nonlinear IBDR model based
on customer profit maximization

3-Build Load serving entities’ profit function with its
constraints including nonlinear IBDR model

1-Build customer profit function based on
utility function

4-Calculate optimum incentive price and
load reduction considering profit

End

Figure 3: Flowchart of proposed IBDR scheme.
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times. As a result, the highest increase in proft and decrease
in cost were observed in the linear model (Table 3). Addi-
tionally, the maximum load reduction occurred at 18:00 for
all models, with the linear model achieving the greatest load
reduction (the most optimistic state) while the power model
experienced the least reduction (the most pessimistic or
conservative model).

4.2. Case 2: Receiving Incentives from the System Operator.
Tis case examines the impact of receiving incentives from the
system operator on the proftability of the LSE and the costs
borne by the company. High electricity prices during peak
hours result in increased costs for the LSE, including outage
costs. Te LSE must purchase electricity at a higher price from
the grid and sell it to consumers at a retail price. Additionally,
the LSE incurs outage costs due to supply-demand imbalances,
resulting in power cuts and an average payment of $1,000/MW
for outage power. Consequently, the LSE’s proft signifcantly
declines, leading to substantial losses for the company.
However, implementing IBDRPs with operator incentives can
help address these challenges by reducing demand, preventing
outages, and improving the LSE’s proftability. Te supply is
assumed to be 15% lower than the initial demand from 12 to 8
pm. Hence, the LSE must cut the power and pay an average of
$1,000/MW for outage power. After paying the outage cost,
Table 4 shows that the LSE’s proft has plummeted signifcantly,
and the company burdens a huge loss.

In this case, it is assumed that the initial demand,
denoted as D0 (t), is equal to the supply generated by power
plants, represented by Ds. Terefore, implementing IBDRPs
can meet consumers’ demand and prevent power outages
and outage costs. It is assumed that the incentive price paid
by the system operator is 1.5 times the wholesale market
price, and the maximum load reduction is equal to 15% of
the initial load. According to Figures 5 and 6, the incentives
given by the operator increase the incentive price and reduce
demand, proving the accuracy of the proposed models.
Figures 5 and 6 validate the proposed models by demon-
strating the impact of operator incentives on incentive price
and demand. Te fgures show that ofering incentives in-
creases the incentive price and decreases demand. During
peak hours, load reduction remains constant across all
models due to maximum constraints, limiting further de-
mand reductions. Additionally, the introduction of in-
centives from the operator signifcantly afects the LSE’s
proft and consumers’ costs, with the LSE’s proft increasing.
Overall, the optimization models successfully maximize
proft (Table 5).

4.3. Case 3: Increasing the Maximum Load Reduction Limit.
In Case 3, increasing the maximum allowable load reduction
limit has been performed to investigate the potential for
additional demand reduction and its efects. Te analysis
shows that raising the maximum load reduction results in
higher incentive prices and lower demand. It also empha-
sizes the connection between incentive prices, consumer
satisfaction, and demand reduction. Terefore, the maxi-
mum load reduction is set at a fxed percentage of 30% of the
initial load, with Ds being equal to D0. Additionally, the
system operator pays an incentive price assumed to be
1.5 times the wholesale price.
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Figure 4: Total demand and Pwholesale.

Table 2: Price elasticity of demand [34].

Time 1 am–7
am

8 am–11
pm

12 pm–9
pm

10 pm–12
am

Price
elasticity −0.08 −0.11 −0.19 −0.11
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It can be seen from Figures 7 and 8 that reducing the
maximum allowable load to 30% of the initial load resulted
in a higher incentive price and a lower demand. In Table 6,
the percentage of acceptable load reduction per model varies
at 6 pm, depending on the demand reduction. Moreover,
demand can be reduced by up to 30% to ensure consumer
satisfaction. Based on the relationship between Figures 1 and
9, it can be inferred that as consumers reduce their load, their
level of satisfaction and utility function decreases. Tis
function refects their satisfaction based on their electricity
consumption. It is essential to observe Figure 9 to un-
derstand that higher incentive prices received by consumers
during peak times, such as 6 A.M., result in greater demand
reduction through the implementation of IBDRP. In other
words, the higher the incentive price, the more willing
consumers are to reduce their demand. Furthermore, curves

for all the models overlap in the frst 5% of the load re-
duction, but after that, they diverge, and their trends difer.
In the long run, as consumption is reduced, people will show
more resistance and require higher incentive prices. It is
essential to note that the higher LSE proft observed in the
linear model does not indicate its superiority over nonlinear
models. Te linear model assumes a linear relationship
between incentives and consumption reduction, which is not
realistic. In contrast, nonlinear models capture complexities
and individual preferences better. Logarithmic and power
models provide a better ft than linear models. Te focus of
this paper is on the practical applicability of nonlinear
models in understanding incentivized energy consumption
dynamics, rather than comparing LSE profts based on
Table 6 alone. Using these models enhances decision-making
processes in this feld.

Table 3: Te LSE proft and consumers’ cost in case 1.

Model
Maximum percentage

of demand
reduction (%)

Decreasing the
consumers’ cost
compared to
the base
case (%)

Consumers’ cost
($)

Increasing the
LSE proft

compared to
the base
case (%)

Te LSE
proft ($)

Base case — — 5403.74 — 1937.5
Linear 7.94 at 6 pm 1.45 5325.53 1.01 1957.09
Exp 7.49 at 6 pm 1/37 5329.71 0.97 1956.39
Log 6.25 at 6 pm 1/16 5341.3 0.87 1954.28
Power 5.98 at 6 pm 1/11 5343.83 0.84 1953.8

Table 4: Comparison of LSE proft before and after charging outage costs.

Consumers’ cost
in base
case ($)

Consumers’ cost
based on
outage cost

($)

Te LSE
proft in
base case

($)

Te LSE
proft based
on outage
cost ($)

Consumers’ cost
in base
case ($)

Consumers’ cost
based on
outage cost

($)
5403.74 201.41 1937.5 −3265.09 5403.74 201.41

Price
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Figure 5: Optimal incentive price in case 2.
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Figure 6: Demand reduction in case 2.

Table 5: Te LSE proft and consumers’ cost in case 2.

Model
Maximum percentage

of demand
reduction (%)

Decreasing the
consumers’ cost
compared to
the base
case (%)

Consumers’ cost
(%)

Increasing the
LSE proft

compared to
the base
case (%)

Te LSE
proft ($)

Base case — — 5403.74 — 1937.5
Linear 15 at 3, 4, 5, and 6 pm 8.023 4970.19 20.10 2327.04
Exp 15 at 3, 4, 5, and 6 pm 8.02 4970.33 19.45 2314.38
Log 15 at 4 and 6 pm 7.77 4983.79 16.71 2261.17
Power 15 at 4 and 6 pm 7.63 4991.32 15.76 2242.82
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Figure 7: Optimal incentive price in case 3.
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Figure 8: Demand reduction in case 3.

Table 6: Te LSE proft and consumers’ cost in case 3.

Model
Maximum percentage

of demand
reduction (%)

Decreasing the
consumers’ cost
compared to
the base
case (%)

Consumers’ cost
($)

Increasing the
LSE proft

compared to
the base
case (%)

Te LSE
proft ($)

Base case — — 5403.74 — 1937.5
Linear 30 at 4 and 6 pm 14.99 4593.98 26.10 2443.14
Exp 27.39 at 4 and 6 pm 13.59 4669.18 23.03 2383.38
Log 17.46 at 6 pm 8.88 4928.26 16.98 2266.57
Power 15.58 at 6 pm 7.88 4977.68 15.78 2243.19
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Figure 9: Te relationship between the incentive price and the load reduction.
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4.4. Case 4: Te Proper Incentive Price Paid by the System
Operator (Pdso) for Implementation. Te analysis focuses on
determining the optimal Pdso and its impact on demand
reduction. Diferent values of Pdso were considered, in-
cluding 1.5 times, 1.75 times, and 2.0 times the wholesale
price. Te fndings show that increasing Pdso leads to
a greater reduction in demand. However, it is important to
strike a balance as excessively high incentive prices may
result in unnecessary demand reduction. Based on the
analysis, an appropriate incentivizing price of 1.75 times the
wholesale price is suggested for achieving the desired
maximum allowable load reduction of 30%. Te graph il-
lustrates the load reduction resulting from diferent values of
Pdso in both linear and power models, comparing them to
the 30% threshold in relation to the initial demand.

During of-peak hours, such as 9 AM, 11 AM, and 9 PM,
both the linear and power models experienced a decrease in
demand when the Pdso was increased by 2.0 times. However,
this reductionmay not always be necessary andmay result in
reduced demand that is not needed. Considering this, the
appropriate incentivizing price may be 1.75 times the
wholesale price, as it reduces the demand more appropri-
ately than the other two prices.

In summary, Figure 10 shows how diferent values of
Pdso afect demand reduction and provides insights into the
optimal incentive price for achieving a maximum allowable
load reduction of 30%.

5. Conclusions

In conclusion, this paper provides a comprehensive analysis
of incentive-based demand response programs in power grid
management, comparing the results obtained from linear
and nonlinear models. Te study utilizes real data from the
hottest day of the year and considers both linear and

nonlinear models to determine optimal incentives and load
reductions. Te fndings demonstrate that providing in-
centives to consumers during peak hours is a more efective
approach compared to alternative strategies such as
implementing blackouts and paying outage costs. In the frst
case, where no incentives were ofered, the maximum load
reduction resulted in a decrease of approximately 6% in the
power model’s load. However, in the second case, where
incentives were provided, it became evident that in-
centivizing consumers during peak hours aligns with the
interests of both the LSE and consumers. Furthermore, the
nonlinear model employed in this study yielded additional
insights compared to the linear model, highlighting its value
in understanding and optimizing demand response pro-
grams. Te results indicate that both Pdso and the maximum
load reduction have positive efects on consumers’ load
reductions and incremental increases in the incentives
provided (Pinc). Beyond the fnancial benefts of increased
company profts and reduced consumer billing costs, the
proposed method also addresses the issue of consumption
during peak hours and price spikes. By encouraging load
reduction during these periods, the proposed approach
contributes to a more sustainable and efcient energy sys-
tem. Overall, this research enhances our understanding of
demand response programs in power grid management and
provides valuable insights for system operators and poli-
cymakers. By considering the efectiveness of incentives and
comparing the results between linear and nonlinear models,
this study ofers practical guidance for implementing suc-
cessful demand response initiatives that beneft both energy
providers and consumers alike.
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Figure 10: Load reduction changes in the linear and power model due to the Pdso changes.
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U (D (t), w): Consumer’s utility function ($)
W: Consumer’s willingness to their consumption
D0 (t): Initial demand (MWh)
Ds: Supply generated by power plants (MWh)
D (t): Demand after implementing IBDR (MWh)
ΔDmax: Maximum load reduction after IBDRP

implementation (MWh)
ΔD (t): Load reduction after IBDRP implementation

(MWh)
E (t): Price elasticity of demand
P0 (t): Retail price before IBDRP implementation

($/MWh)
P (t): Retail price after IBDRP implementation

($/MWh)
Pinc (t): Incentive price ($/MWh)
Pretail (t): Retail price ($/MWh)
Pdso (t): Incentive price paid by the system operator
Pwholesale (t): Locational marginal price ($/MWh)
Outage cost: Payment due to power outages.
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