
Research Article
Distribution of Currents in 2× 25 kV Electric Railway
Systems under Normal Conditions

Elmer Sorrentino ,1,2 Naren Gupta,3 Miguel Montilla-DJesus,2 and Pablo Arriaga4
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Tis article shows a detailed analysis of the distribution of currents in 2× 25 kV electric railway systems under normal conditions.
Te network equations are clearly formulated in a way that enables the presentation of a novel simplifed analytical solution as well
as the traditional numerical solution of the equation set. Te simplifed analytical solution is obtained when the transformer
impedances are neglected, and under these conditions: (a) the distributions of currents are analytically deduced for cases with only
one train; (b) the distribution of currents among autotransformers and between catenary and feeder can be easily understood, as
well as the efect of the train position on the distribution of currents; and (c) the superposition method is applied for cases with
multiple trains in order to clearly explain the distribution of currents from the results with only one train. On the other hand, the
network equations are also numerically solved, including autotransformer impedances, and it is shown that their efect is very low,
especially because these impedances are typically small. Terefore, the proposed analytical method is a good tool to obtain an easy
and approximate solution for the distribution of currents in these systems, as well as an excellent tool to facilitate the un-
derstanding of that distribution.

1. Introduction

Tere are diferent electric railway systems; some of them are
fed in DC, whereas others are fed in AC, and diferent
voltage levels are currently applied around the world [1–3].
At 25 kV-AC, there are monovoltage systems (1× 25 kV,
with or without the use of booster transformers), and there
are bivoltage systems (2× 25 kV, also called autotrans-
former-fed systems). Tis article is about 2× 25 kV electric
railway systems and specifcally about the distribution of
main currents in these systems.

Te 2× 25 kV electric railway systems are fed by three-
winding single-phase transformers, whose primary is con-
nected to the high-voltage transmission system, from an
electric utility, and the secondary and the tertiary are at 25 kV
(each one), in order to feed the traction system of the electric

railway system at 50 kV, with the middle point connected to
ground (2× 25 kV).Tese windings at 25 kV feed the catenary
and the feeder. Te catenary system is the group of sub-
conductors that are directly connected to the trains, and the
feeder system is a group of subconductors that follow the rail
path in order to connect the autotransformers. Furthermore,
there are parallel paths for ground currents through rails,
ground conductors, and physical earth. Te trains are elec-
trically connected to the catenary system through panto-
graphs and to the ground system through rails. Te use of
autotransformers facilitates the transmission of high mag-
nitudes of power in long distances because there is a main
transmission of power at twice of the train voltage (25 kV).
Te 2× 25 kV electric railway system is usually applied for
high-speed trains because they are typically characterized by
long distances and high magnitudes of power.
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Te distributions of currents in 2× 25 kV electric railway
systems have been sometimes described in an oversimplifed
way [4–9], but there are also documents that consider that
those distributions of currents are not so simple [10–22].
Some simplifed distributions, dependent on train position,
are described in [10, 11] without considering the mutual-
impedances between the catenary and feeder. A load fow
algorithm is described in [12], and the problem related to the
distribution of currents among diferent subconductors of
catenary, feeder and ground is solved using a 12×12 line
impedance matrix. A simplifed load fow algorithm is de-
scribed in [13], and it is shown that the distribution of
currents at both sides of a train is dependent on train po-
sition. An approximate monovoltage equivalent model is
proposed in [14, 15] in order to simplify the problem related
to the bivoltage electrical railway system. A current-based
Newton-Raphson power fow algorithm is proposed in [16],
and it is compared with other nonlinear solving options.
Other options to solve the power fow problem in these
systems have also been studied; for example, the use of
Tévenin equivalents based on port characteristic equations
[17] and the use of an algorithm based on a modifed nodal
analysis [18]. On the other hand, the 2× 25 kV electric
railway systems have also been analyzed in order to deal with
topics that are not covered in this article; for example, to
study the distribution of currents among ground paths
[19, 20], solutions dependent on frequency [21] or elec-
tromagnetic transients [22] (obviously, these other phe-
nomena are also important, but they are not within the scope
of this article).

Te catenaries of diferent railways on the same path
have usually been grouped into a single equivalent con-
ductor to facilitate the analysis [3, 4, 6–10, 13–16, 20, 21], as it
is considered in this article. On the other hand, the sub-
conductors of the catenary of each railway in the same path
can also be grouped to obtain an equivalent conductor for
each catenary [11, 17, 18]. Tese simplifcations can be
avoided by the solution of the original N×N line impedance
matrix [5, 12, 19, 22], where N is the number of subcon-
ductors of the model and it can reach values near to 15 for
the simple case of two railways in the same path. Te so-
lution of the detailed electric network, considering the
original N×N line impedance matrices, obviously ofers a
more meticulous system representation, but the option of
grouping subconductors in equivalent conductors has been
often preferred because facilitates the system solution and
the phenomena understanding.

Te summary of the literature about this topic shows
diferent options to solve the power fow problem in these
systems [10–18]. From those solutions, the calculation of the
distribution of currents between catenary and feeder and
among autotransformers would be possible, but these details
have not been shown in the literature because the goal of
these documents has not been the analysis of this point.
Tus, the simple question about how the current of one train
is distributed through the main paths (equivalent catenary,
equivalent feeder, and ground) remains without a simple
and proper answer after the review of the literature on this
topic. Only some simplistic answers [4–9] were available

(without solving the load fow problem), but such simplistic
answers are extremely imprecise (e.g., in some references,
the train current is multiplied by assumed distribution
factors, such as 1/4, 3/4, and/or 1/2, regardless of train
position). Tis article ofers a straightforward answer to that
question, based on simple analytic equations that are also
useful for an approximate solution to the load fow problem.
Tat is, this article shows the way to compute the approx-
imated distribution of the analyzed currents, based only on
system impedances and train position, without the need for
the accurate solving of the detailed load fow problem.

Only the distribution of main currents in 2× 25 kV
electric railway systems under normal conditions is covered
in this article. Te problem related to the distribution of
main currents under fault conditions (i.e., short-circuits) is
very interesting, but it has to be covered in a future article for
the sake of clarity.

Tis article analyzes the distribution of currents in
2× 25 kV electric railway systems under normal conditions.
Te network equations are clearly formulated, in a way that
enables their numerical solution as well as the development
of a novel simplifed analytical solution. Two analytical
deductions for a simplifed problem formulation are shown,
which are very useful to obtain easy and approximate so-
lutions of the load fow, as well as for a clear understanding
about the distribution of currents between catenary and
feeder and among autotransformers. On the other hand, the
efects of the train position and the autotransformer short-
circuit impedances on the distribution of currents are clearly
explained, and a similar analysis is not available in the
previous literature. Tese contributions are important for
researchers and for professional engineers because: (a) they
ofer a clear description of the distribution of these currents
and (b) ofer a simplifed solving tool for this problem.

Te next sections of this article have been organized in
the following way: Section 2 describes the detailed models
for the numerical solution of the problem. Section 3 de-
scribes the proposed method for the simplifed analytical
solution, where the autotransformers are considered ideal
(i.e., their impedances are null, in contrast with the real
autotransformers, whose impedances are not null). Section 4
describes the numerical results, and it is split into two parts:
(a) subsection 4.1 shows the results for linear cases with ideal
autotransformers, which are identical using the analytical
deductions of Section 3 or the numerical solution of Section
2 and (b) subsection 4.2 shows the results for linear and
nonlinear cases with real autotransformers, which can only
be accurately computed using the numerical solution of
Section 2, and are useful to highlight the suitability of the
developed analytical method as an approximate solution.
Section 5 is devoted to the conclusion.

2. DetailedModels for theNumericalSolutionof
the Problem

2.1. Brief Description of 2× 25 kV Electric Railway Systems.
Figure 1 is useful to illustrate an initial description of the
2× 25 kV electric railway systems. A cell is defned by the
space between autotransformers (or between the three-
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winding main transformer and the frst autotransformer, in
the case of the frst cell). Te typical distance between au-
totransformers is around 10 km. Te number of auto-
transformers and trains shown in Figure 1, taken from
[14, 15], is higher than usual because it is intended to
represent the feeding of some cells from an adjacent sub-
station, (which is not the usual condition but is, herein,
covered since it is not an electrical system under fault
conditions).

Two or more diferent railways could be in the same
path, and each railway has a catenary (e.g., two catenaries are
typically installed for railways in the same path, which are
often applied for trains travelling in the opposite direction).
In these cases, the catenaries of these diferent railways are
usually connected in parallel at the autotransformer loca-
tions (as well as feeders, which are usually connected in
parallel at the same locations). Tus, the equivalent catenary
and the equivalent feeder of Figure 1 do not represent in
detail the catenaries and feeders of each railway in the same
path. Despite this fact, simplifed schemes (such as the one
shown in Figure 1) have been frequently analyzed in the
literature about this point [3, 4, 6–10, 13–16].

Te turns ratio of autotransformers is 2 :1 (both
windings of each autotransformer have the same number of
turns). Te currents in both windings of each autotrans-
former are identical since the magnetizing currents can be
considered negligible. In Figure 1, the currents at auto-
transformers are IATi (i� 1 to NAT; NAT: number of auto-
transformers). For the sake of simplicity, the short-circuit
impedances of autotransformers (ZAT) are assumed to be
identical for all the autotransformers.

Te trains are connected between the catenary and the
rails. In Figure 1, the currents at the trains are ITj (j� 1 toNT;
NT: number of trains). Initially, the trains are considered
here as sources of current in order to obtain a linear system.
Afterwards, the nonlinear system is solved using a very
simple iterative procedure, based on updating the assumed
train currents in order to keep the specifed values of power.

For each point in the catenary, the current (IC) is the sum
of the currents of the downstream located trains (ITj) minus
the sum of the currents of the downstream located auto-
transformers (IATi). On the other hand, for each cell, the
current in the feeder (IF) can be computed as the sum of the
currents of the downstream autotransformers (IATi).

Terefore, for each point of the railway path, the sum of the
currents of the downstream located trains is IC+ IF.

2.2. Model for Feeders, Catenaries, and Rails. Te Carson’s
line model is usually applied to the geometry of feeders,
catenaries, and rails in order to obtain the parameters of a
primitive impedance matrix (e.g., a 14×14 matrix [5], or a
12×12 matrix [15]).Tis primitive impedance matrix can be
reduced to a 2× 2 system (equivalent catenary C, equivalent
feeder F, and reference [15]). Tus, the self-impedances of
the 2× 2 system are ZC and ZF for catenary and feeder,
respectively, and ZM is the mutual impedance. Te tradi-
tional signs for voltages and currents in the line model are
shown in Figure 2(a), whereas the convenient signs for
feeder variables are shown in Figure 2(b). Tus, the main
equations for the line model are as follows:

ΔVC � VC,1 − VC,2 � ZCIC − ZMIF,

ΔVF � VF,1 − VF,2 � ZMIC − ZFIF.
(1)

VC,1 and VC,2 are the voltages at both line-ends of a
catenary segment; VF,1 and VF,2 are the voltages at both line-
ends of a feeder segment; ΔVC and ΔVF are the voltage drops
in a catenary and a feeder segment, respectively. Herein, the
arrow points of voltage correspond to points with the plus
sign of the correspondent voltages.

Te use of a 2× 2 model has been previously applied
(e.g., [14, 15]), and it is convenient for the sake of simplicity,
but the way of considering the ground currents in this model
is not evident. Due to this fact, Appendix A shows a sim-
plifed explanation of this point, even though it is not strictly
indispensable to understand this article.

2.3. Model for the Tree-Winding Transformer. Te three-
winding transformer is modelled with its conventional
equivalent circuit (Figure 3). Due to the polarity shown in
Figure 1, special attention must be paid to the signs of IF and
VF. As the net impedance connected to the primary (ZPNET)
is ZHV+ZP, the main equations for this element can easily
include the Tévenin equivalent of the source (ZHV is the
impedance of the Tévenin equivalent of the source, and
VHV is the correspondent Tévenin voltage)

IT1

IF

IAT,1 IAT,2 IAT,3 IAT,4 IAT,5

IAT,5IAT,4IAT,3IAT,2IAT,1

ZHV
IC

IT2 IT3 IT4 IT5
IT6

cell 1 cell 2 cell 3 cell 4 cell 5

VC

VF

VHV

C: catenary

F: feeder 

Figure 1: Sketch to illustrate an initial description of 2× 25 kV electric railway systems.
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VHV � VC + ZSIC + ZPNETIP,

VHV � VF + ZTIF + ZPNETIP.
(2)

2.4. Model for Autotransformers. Te node equations can be
easily formulated for catenary and feeder at autotransformer
locations. By using the signs in Figure 4, the voltage equation
for each autotransformer is as follows:

VATF,i � VATC,i + ZATIAT,i (3)

VATC,i and VATF,i are the voltages at catenary and feeder
sides of the autotransformer i, respectively.

2.5. Summary of Linear Equations. Given the source voltage
(VHV) and the currents in the trains (ITi) as known data, the
linear problem can be formulated using the autotransformer
variables (IATi, VATCi, and VATFi) as main unknowns.
Terefore, the number of unknowns is three times the NAT.

For each cell, an equation for the catenary is formulated
by expressing the downstream VATCj as a function of the
upstream VATCi (or VHV, in the case of the frst cell) and the
voltage drops in each subsection of the catenary of this cell.
Similarly, for each cell, an equation for the feeder is for-
mulated by expressing downstream VATFj as a function of
upstream VATFi (or VHV, in the case of the frst cell) and the
voltage drops in each subsection of the feeder of this cell.Te
key point is that the current at each subsection of catenary is

the sum of the currents of the downstream located trains
minus the sum of the currents of the downstream auto-
transformers (Figure 1); on the other hand, the feeder
current in each cell is the sum of the currents of the
downstream autotransformers (Figure 1). Tus, these
equations are mainly based on the mutual- and self-im-
pedances of the afore-described 2× 2 matrix, and there are
NAT equations for catenary and NAT equations for feeder.

For each autotransformer, the equation (3) relates its
variables.Terefore, theseNATequations complete the linear
system of 3NAT equations with 3NAT unknowns. Obviously,
the system dimension could be reduced using substitution
methods, but the (3NAT)× (3NAT) system was considered
convenient in order to directly obtain the required solution
of the main unknowns.

2.6.NonlinearSolution. Once the linear equations have been
properly formulated, the nonlinear problem can be easily
formulated by considering that the input data of the trains
are the values of power (STj) instead of the values of current
(ITj). Te nonlinear problem of having power data instead of

IL1

IL2

VL1,1

VL2,1

VL1,2

VL2,2

(a)

IC

IF

VC,1

VF,1

VC,2

VF,2

(b)

Figure 2: Sketch to illustrate the signs in the line model: (a) traditional line model and (b) required model in accordance with Figure 1.
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Figure 3: Traditional equivalent model for the 3-winding trans-
former. ZP, ZS, and ZT are primary, secondary, and tertiary im-
pedances (in pu).
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Figure 4: Sketch to illustrate the variables and their signs in
autotransformers.
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current data is traditional in power system analysis, and it
has been solved in diferent ways [23]. Te Gauss− Seidel’s
method [23] was applied in this work, and it is quite simple:
(a) the values of train voltages (VTj) are initially assumed in
order to compute the values of train currents
(ITj � [STj

/VTj
]∗) for the frst iteration and (b) subsequently,

the linear problem is solved, to compute the values of train
voltages for the second iteration, and this procedure is re-
peated until the diference between the computed values of
train voltages in two consecutive iterations is lower than the
tolerance value (i.e., until the convergence is reached). Tere
are previous works related to the use of nonlinear solving
methods [12–18], as well as other methods that could be
applied in the future (e.g., forward-backward sweep al-
gorithms), in order to compare diferent options, but such
comparisons are not directly related to the goal of this
article. On the other hand, diferent methods to solve
systems of nonlinear equations are currently available as
simple software tools (that could be applied if it is con-
sidered necessary). Te method herein applied is probably
the simplest one, and it was considered suitable for the
purpose of this article since it was fast and efcient for the
analyzed example.

3. Analytical Solution for Simplified Linear
Cases with Ideal Autotransformers

For the sake of simplicity, a case with only one train is
initially analyzed. In this case, there are three cell types: (a)
type-1, where the train is located; (b) type-2, downstream of
type-1 cell; and (c) type-3, upstream of type-1 cell.

Te autotransformers are considered ideal (i.e., their
impedances are null). Tus, VATC,i �VATF,i (i� 1 to NAT).
Tis condition implies that, for a given cell, the voltage drop
at the catenary must be equal to the voltage drop at the
feeder. For type-2 cells, this condition is fulflled because the
currents (and voltage drops) at the catenary and feeder are
equal to zero.

Te frst deduction is for type-3 cells (Figure 5). Te
voltage drop at the catenary (ΔVC) must be equal to the
voltage drop at the feeder (ΔVF). Terefore,

ZCIC − ZMIF � − ZMIC + ZFIF (4)

Tus,

IF

IC

�
ZC + ZM( 􏼁

ZF + ZM( 􏼁
. (5)

Tis quotient only depends on the line parameters. If the
current in the train is known (IT), another equation can be
formulated because IC+ IF is the sum of the currents of the
trains downstream (IT�IF+ IC). Tus, a linear 2× 2 system
can be solved in order to obtain IF and IC. On the other hand,
it is clear that IF must be diferent than IC because ZC is
diferent than ZF.

Te second deduction is for type-1 cells (Figure 6). IC,i is
the current through the subsection of catenary between the
train and the adjacent autotransformer nearest to the source.
As the currents at both windings of autotransformers must

be equal to each other, and the downstream currents must be
null, the current in the other subsection of the catenary (IC,j)
must be equal to IF. Again, ΔVC must be equal to ΔVF;
therefore,

mZCIC,i − (1 − m)ZCIF + ZMIF( 􏼁

� − mZMIC,i + (1 − m)ZMIF + ZFIF( 􏼁.
(6)

Tus,

IF

IC,i

�
IC,j

IC,i

�
m ZC + ZM( 􏼁( 􏼁

ZF +(2 − m)ZM +(1 − m)ZC( 􏼁
. (7)

Tis quotient depends on the line parameters and m
(wherem is the distance up to the train, in per unit of the line
length for this cell, measured from the adjacent auto-
transformer, which is nearest to the source). Again, if the
current in the train is known (IT=IC,i+ IC,j= IC,i+ IF), a linear
2× 2 system can be easily solved to obtain IF and IC,i.

IF

IC

VAT,j

VAT,j

line section

VAT,i

VAT,i

Figure 5: Sketch to illustrate the deduction for type-3 cells.
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IF
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IF

IC,j=IF I=0
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Figure 6: Sketch to illustrate the deduction for type-1 cell.
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For the frst cell, a convenient simplifcation is the as-
sumption that ZS �ZT � 0 for the 3-winding transformer.
Tus, the frst cell can be considered as type-1 or type-3,
depending on whether the train is in this cell or not.

Te case of multiple trains can be solved by superpo-
sition. Tat is, NT cases (NT: number of trains) with only one
train can be independently solved in order to superpose the
obtained currents. An advantage of this procedure is that the
solution is directly found by simple analytical equations. For
example, this feature was useful for debugging the numerical
solving algorithm described in Section 2. On the other hand,
the deductions for the cases with multiple trains could also
be obtained (similar to the deductions described for cases
with only one train); however, the number of variables is
greater, and the solution is not so simple as in the case of
only one train.

4. Numerical Results

Te numerical method described in Section 2, considering
multiple trains and real autotransformers, was successfully
verifed with the help of the solution shown in [15]. Te
numerical results for this article are obtained using the
system illustrated in Figure 1, whose main data were taken
from [15] and are included in Appendix B. Tese numerical
results are split into two subsections: (4.1) linear cases with
ideal autotransformers and (4.2) linear and nonlinear cases
with real autotransformers. Te results of subsection 4.1 are
identical when using the analytical deductions of Section 3
or the numerical solution of Section 2. Te results of sub-
section 4.2 can only be accurately computed using the
numerical solution of Section 2 and are useful to show the
suitability of the developed analytical method as an ap-
proximate solution. Finally, subsection 4.3 is devoted to
ofering a summarized analysis of results related to the
purpose of this article.

4.1. Results for Linear Cases with Ideal Autotransformers

4.1.1. Distribution of Currents for Cases with Only One Train.
In this example, only IT5 is not null for the system shown in
Figure 1, and this train is located at the cell midpoint.
IT5 �1 pu/− 10°, VHV � 1 pu/0°, and ZP �ZS �ZT � 0.Tis case
was analytically solved through the deductions in Section 3
and also numerically solved through the algorithm in Sec-
tion 2. Te numerical diferences between the results are
extremely low (i.e., insignifcant). Te main results are
shown in Figure 7. Tese results are important for under-
standing the distribution of currents.

For the sake of clarity, the step-by-step description of the
analytical solution is shown here. Step a: the current at the
catenary and the current at the feeder in cell 5 are both zero
because it is a type-2 cell. Step b: the cell 4 is a type-1 cell, and
the quotient IF/IC,i= 0.25/4° is obtained by substitution of
data (Appendix B) in equation (7) with m= 0.5. Step c: the
current at catenary and the current at feeder in cell 4 are
obtained by the solution of IF/IC,i= 0.25/4°, and
IC,i+ IF= 1 pu/− 10°. Step d: the cells 1, 2, and 3 are type-
3 cells, and the quotient IF/IC= 0.69/5° is obtained by

substitution of data (Appendix B) in equation (5). Step e: the
current at the catenary and the current at the feeder in cells 1,
2, and 3 are obtained by the solution of IF/IC= 0.69/5° and
IC+ IF= 1 pu/− 10°.

Temain results are the currents in the autotransformers
because the other currents can be obtained from them. In
this case, only IAT3 and IAT4 are not null in the autotrans-
formers. Visually, the autotransformers in Figure 7 seem to
be in parallel, but they are not in parallel. Te key point is
that the voltage drops in the catenary and feeder must be
equal to each other (line model) if the autotransformers are
considered ideal. Consequently, the afore-described “Step e”
shows that the currents in the catenary for all the type-3 cells
must be equal to each other, as well as the currents in the
feeder for all the type-3 cells must be equal to each other
(therefore, IAT1 � IAT2 � 0).

As shown in (5) and (7), these distributions of currents
are dependent on mutual- and self-impedances of the 2× 2
line impedance matrix. Actually, IC and IF are constant in cells
1, 2, and 3 of this example because the line impedances were
assumed to be homogeneous. If the line impedance matrix of
one of these cells were diferent than the line impedancematrix
of an adjacent cell (which can occur due to some maintenance
needs), then IC and IF could be diferent for those adjacent cells;
consequently, the diference of the currents would circulate by
autotransformers 1 and/or 2 in that case.

At each point of the railway path, the current in the
catenary must be the sum of the current in the feeder plus the
current through the ground paths (rails, ground conductors,
and physical earth). Tat is, for cells 1, 2, and 3, the current
through the ground path is not null (and this point has been
sometimes oversimplifed [3–9]). Te equation (5) clearly
shows that IF is equal to IC only if ZC is equal to ZF (i.e., for
type-3 cells, the current by the ground path can only be null
if ZC is equal to ZF).

On the other hand, if the train position is varied from
m� 0 to 1, the main distributions of currents are shown in
Figure 8. Te current through the subsection of catenary
between the train and the adjacent autotransformer nearest to
the source (IC,3) is equal to the train current form� 0, and it is
minimum (0.59IT5) form� 1. IC,4/IC,3 is the graphical result of
equation (7) for this example, and it indicates the ratio for
currents at both sides of the catenary for the cell where the
train is located. IAT,3/IT5 and IAT,4/IT5 indicate how much of
the train current circulates by the nearest autotransformers.

4.1.2. Distribution of Currents for a Case with Multiple
Trains. In this example: IT1 � 1 pu/− 10°, IT2 �1 pu/− 10°,
IT3 �1 pu/− 15°, IT4 �1 pu/− 15°, IT5 �1 pu/− 20°, IT6 �1 pu/
− 20°. Tese trains are located at m� 0.001, 0.9, 0.8, 0.7, 0.6,
and 0.5, respectively, and VHV � 1 pu/0° and ZP �ZS �ZT � 0.
Tis case was analytically solved using the deductions from
Section 3 for only one train and the superposition method to
obtain the sum of currents in each autotransformer. Fur-
thermore, this case was also numerically solved using the
algorithm of Section 2 (and considering simultaneously the
six trains). Te numerical diferences in the results are in-
signifcant. Te main results are shown in Table 1. Te
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current in autotransformer 1, in the case of only T1, is very
low because this train is located very near the 3-winding
transformer. On the other hand, the current in autotrans-
former 5 for the case with only T6 is exactly equal to the
correspondent result for the case of six trains (because only
this train contributes to the current in this autotransformer).
Conceptually, the superposition method is useful to see that
the currents in autotransformers are mainly due to trains
located at cells on both sides of the autotransformers.

4.2. Results for Linear and Nonlinear Cases with Real
Autotransformers

4.2.1. Results for Linear Cases with Real Autotransformers.
In this section, the autotransformer impedances (ZAT) are
included in the simulation; therefore, the results only can be

numerically obtained. Tat is, the results of this section are
not predictable with accuracy using analytical equations,
unlike the results of the previous section. For example, in
cases with only one train, the currents are not mathemat-
ically equal to zero for those autotransformers which are not
at each end of the cell with the train. Te results are herein
shown as a function of ZAT in order to show the infuence of
ZATon the distribution of currents. In practice, ZAT tends to
be very low (nearly 1%).Te highest considered value of ZAT
(5%), however, is much higher than the typical values in real
life. Te resistive part of ZAT was assumed to be 0.5% in all
these examples.

Table 2 shows the main results for examples similar to
the previous example with only one train, but ZAT is not zero
in these cases. Tat is, IT5 �1 pu/− 10°, the train is located at
the cell midpoint (m� 0.5), and VHV � 1 pu/0°, for the results
shown in Table 2. On the other hand, Figure 9 shows the

ZHV

0.20/-7°

IT5

VC

VF

VHV

0/0°

0.20/-7°

0/0°

0.59/-12°

0/0°

0/0°

0/0°

0/0°

0.20/-7°

0.20/-7°
0.20/-7°

0.20/-7°0.41/-7° 0.41/-7°0.41/-7°

0.80/-11°

0/0°

0/0°0.59/-12° 0.59/-12°

Figure 7: Currents for the example with only one train, with ZAT � 0% and the train located at the cell midpoint.
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Figure 8: Main distributions of currents as a function of train position (m) for the example with only one train and ideal autotransformers.

Table 1: Autotransformer currents (in pu) for the example with six trains and ideal autotransformers.

Case IAT1 IAT2 IAT3 IAT4 IAT5
Only T1 <0.01 0 0 0 0
Only T2 0.37/− 7° 0 0 0 0
Only T3 0.08/− 12° 0.33/− 12° 0 0 0
Only T4 0 0.13/− 12° 0.29/− 12° 0 0
Only T5 0 0 0.16/− 17° 0.25/− 17° 0
Only T6 0 0 0 0.20/− 17° 0.20/− 17°
6 trains 0.45/− 8° 0.45/− 12° 0.45/− 14° 0.45/− 17° 0.20/− 17°
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main distributions of the currents as a function of the train
position (m) for the example with IT5 �1 pu/− 10°,
VHV � 1 pu/0°, and real autotransformers (ZAT≠0). Te re-
sults for ZAT �1% are very similar to those of the ideal case,
and the diferences are amplifed as the value of ZAT is
greater.

Table 3 shows the distribution of currents for examples
similar to the previous example with multiple trains, but ZAT
is not zero in these cases. Te train currents and train lo-
cations are exactly the same as in the previous example with
multiple trains. Again, these results show that the case of
ZAT �1% gives results similar to the ideal case, and the
diferences are amplifed as the value of ZAT is greater.

Figure 10 shows the distribution of currents for the
example of six trains with ZAT �1% (which is a typical value
for these autotransformers). Results for the case with
ZAT � 0% are also shown, between parenthesis, for com-
parison purposes. It is clear that diferences in results are not
signifcant, and this point can be complemented by the fact
that the currents in trains are permanently changing.

On the other hand, results for the example of six trains
with ZAT �1% were numerically obtained using the algo-
rithm of Section 2, whereas results with ZAT � 0% can be
analytically obtained using the deductions of Section 3.Tus,
it is clear that the analytical deductions of Section 3 are
useful to obtain an approximate solution to the distribution
of currents in these systems.

4.2.2. Results for the Nonlinear Case. Table 4 shows the
distribution of currents for examples similar to the ones
shown in Table 3, but the input data are the values of the
power in each train instead of the current. For the sake of
similarity with the previous case, the input data of power
were chosen equal to the previous data of current, changing
the angle sign (that is, considering that the voltage at the
trains is relatively near to 1 pu/0°). Te input data for power
are: ST1 � ST2 �1 pu/10°, ST3 � ST4 �1 pu/15°, ST5 � ST6 �1 pu/
20°.Te remaining conditions for the simulations are exactly
the same as the previous example.Te maximum diferences

Table 2: Autotransformer currents (in pu) for the example with only one train and real autotransformers.

ZAT (%) IAT1 IAT2 IAT3 IAT4 IAT5
1.0 <0.01 0.02/− 14° 0.19/− 6° 0.19/− 6° 0.02/− 15°
1.5 <0.01 0.02/− 6° 0.18/− 7° 0.18/− 7° 0.02/− 6°
2.0 <0.01 0.03/− 3° 0.17/− 8° 0.17/− 8° 0.03/− 3°
3.0 <0.01 0.03/− 2° 0.16/− 9° 0.16/− 9° 0.04/− 0.4°
4.0 <0.01 0.04/− 2° 0.15/− 10° 0.16/− 9° 0.05/0.1o
5.0 0.01/5° 0.04/− 2° 0.15/− 10° 0.15/− 10° 0.05/− 0.1o
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Figure 9: Main distributions of currents as a function of train position (m) for the example with only one train and real autotransformers.

8 International Transactions on Electrical Energy Systems



between the results of the currents in Tables 3 and 4 are 12%,
and such diferences are mainly due to the fact that the
voltage is 1 pu/0° at the source, not at the trains. Again, these
diferences in the results are not signifcant, especially
considering that the currents in the trains are permanently
changing (due to the behaviour of drivers and/or the lo-
cations of trains). In order to approximate the efect of
voltage drops, a diference of 0.05 pu in the magnitudes and
5° in the angles was included in the input data.Te input data
of power for this second example are ST1 � ST2 � 0.95 pu/5°,
ST3 � ST4 � 0.95 pu/10°, and ST5 � ST6 � 0.95 pu/15°, and the
results are shown in Table 5. Te maximum diferences
between the results of the currents in Tables 3 and 4 are 4%.
Obviously, the diferences in the results could be greater if
the voltages in the trains are not near 1 pu. Tis condition is
not typical at all, but it is possible since these systems are
often designed to operate with minimum voltages near
0.69 pu (therefore, the nonlinear method should be the
preferred option in those atypical conditions).

4.3. Summarized Analysis of Results Related to the Purpose of
Tis Article. Te results with ideal autotransformers, as
shown in Table 1, were obtained through two independent

methods (the analytical solution shown in Section 3 and the
linear numerical solution explained in Section 2). Both
methods are alternative ways of obtaining the accurate so-
lution in the case of ideal autotransformers. Te analytical
method can be easily implemented by the simple writing of
formulas of Section 3 in a worksheet, whereas the linear
numerical solution explained in Section 2 can be easily
obtained by coding the correspondent program.

Te autotransformer impedances are very low in practice
(nearly 1%). Under these circumstances, the distribution of
current among autotransformers, and between catenary and
feeder in the case of real transformers is similar to the
corresponding results in the case of ideal autotransformers.
Tis fact can be easily verifed by the comparison of results
with ZAT � 0% and with ZAT �1% in the following places: (a)
Figure 7 and Table 2; (b) Tables 1 and 3; (c) Figures 8 and 9;
and (d) Figure 10. Terefore, the results with ideal auto-
transformers ofer an approximate solution to the distri-
bution of currents in the case of real autotransformers.

Te results of linear and nonlinear methods are similar
to each other if the train voltages are near to 1 pu. Tis fact
can be easily verifed by comparing the results of Table 3 with
those of Tables 4 or 5 (diferences in these results are

Table 3: Autotransformer currents (in pu) for the example with six trains and real autotransformers.

ZAT (%) IAT1 IAT2 IAT3 IAT4 IAT5
1.0 0.41/− 8° 0.45/− 12° 0.45/− 14° 0.43/− 16° 0.23/− 18°
1.5 0.39/− 9° 0.44/− 12° 0.44/− 14° 0.42/− 17° 0.23/− 17°
2.0 0.38/− 9° 0.44/− 12° 0.44/− 14° 0.42/− 17° 0.24/− 15°
3.0 0.36/− 11° 0.43/− 13° 0.44/− 14° 0.41/− 17° 0.25/− 15°
4.0 0.34/− 12° 0.42/− 13° 0.43/− 15° 0.40/− 17° 0.26/− 15°
5.0 0.32/− 13° 0.41/− 14° 0.43/− 15° 0.40/− 17° 0.27/− 15°
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Figure 10: Distribution of currents for the example with six trains (results with ZAT �1% are shown without parenthesis, whereas results
with ZAT � 0% are shown between parenthesis).

Table 4: Autotransformer currents (in pu) for the example with six
trains and the nonlinear method. First example.

ZAT (%) IAT1 IAT2 IAT3 IAT4 IAT5
1.0 0.43/− 10° 0.48/− 16° 0.49/− 19° 0.48/− 22° 0.25/− 24°
1.5 0.41/− 11° 0.47/− 16° 0.49/− 19° 0.47/− 23° 0.26/− 23°
2.0 0.40/− 12° 0.47/− 16° 0.49/− 20° 0.46/− 23° 0.27/− 23°
3.0 0.38/− 14° 0.46/− 17° 0.48/− 20° 0.45/− 23° 0.28/− 22°
4.0 0.36/− 15° 0.45/− 18° 0.47/− 20° 0.45/− 23° 0.29/− 21°
5.0 0.34/− 16° 0.44/− 18° 0.47/− 21° 0.44/− 23° 0.30/− 21°

Table 5: Autotransformer currents (in pu) for the example with six
trains and the nonlinear method. Second example.

ZAT (%) IAT1 IAT2 IAT3 IAT4 IAT5
1.0 0.40/− 5° 0.45/− 11° 0.46/− 14° 0.45/− 18° 0.24/− 19°
1.5 0.39/− 6° 0.45/− 11° 0.46/− 14° 0.44/− 18° 0.24/− 18°
2.0 0.38/− 7° 0.44/− 11° 0.45/− 15° 0.43/− 18° 0.25/− 18°
3.0 0.36/− 9° 0.44/− 12° 0.45/− 15° 0.42/− 18° 0.26/− 17°
4.0 0.34/− 10° 0.43/− 13° 0.44/− 15° 0.42/− 18° 0.27/− 16°
5.0 0.32/− 11° 0.42/− 13° 0.44/− 16° 0.41/− 18° 0.28/− 16°
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unimportant, especially considering that the currents in the
trains are permanently changing).

Te distribution of currents in these systems can be
clearly understood with the help of (a) Figure 7, whose
results are based on equations (5) and (7) of Section 3, and
(b) Table 1 and the values between parenthesis in Figure 10,
whose results are based on Section 3 and the superposition
method.

5. Conclusion

Te distribution of currents in 2× 25 kV electric railway
systems under normal conditions was herein analyzed in
detail. Te network equations were clearly described, and
this description enabled their numerical solution as well as
the formulation of an analytical solution for simplifed cases.
Te transformer impedances were initially neglected in
order to obtain the required simplifcation for the ap-
proximate analytical solution. Tis analytical tool facilitates
the explanation of the distribution of currents among au-
totransformers and between catenary and feeder, as well as
the efect of train position on the distribution of these
currents. Afterwards, the autotransformer short-circuit
impedances were included in order to show their efect on
the distribution of computed currents.

Te distribution of currents among autotransformers is
simple because currents circulate mainly through auto-
transformers located on both sides of one train. Te su-
perposition method is useful to explain the distribution of
currents in cases with multiple trains.

Te distribution of currents between catenary and
feeder for the cells located upstream of the trains is mainly
defned by the diferences among the impedances of the line
2× 2 model. Te distribution of currents between catenary
and feeder for the cells with trains is mainly defned by the
train location and by the impedances of the line 2 × 2
model. Obviously, the autotransformer impedances have
an efect on the results, but this efect is not signifcant for
the typical values of autotransformer impedances (around
1%).

Te trains can be modelled as constant current
or constant power. Te diferences in results can be con-
sidered negligible if the voltages in the trains are near
to 1 pu, which is the usual condition. On the other hand,
if the voltages in the trains are not near to 1 pu

(which is possible, under some unusual conditions) and the
trains need to be modelled as constant power, the nonlinear
method should be applied in order to properly compute the
currents in the electrical system. In general, modelling
trains as having a constant current can be a convenient
simplifcation, especially considering that the currents in
trains are constantly changing.

Nomenclature

IATi: Currents at autotransformers are IATi
(i� 1 to NAT; NAT: number of
autotransformers)

ZAT: Short-circuit impedances of
autotransformers (ZAT)

ITj: Currents at trains (j� 1 toNT;NT: number
of trains)

ZHV: Impedance of the Tévenin equivalent of
the source, at the connection point for the
three-winding transformer

VHV: Tévenin voltage of the equivalent source
at the connection point for the three-
winding transformer

IC: Current in the catenary
IF: Current in the feeder
ZC, ZF: Self-impedances of the 2× 2 system for

catenary and feeder, respectively
ZM: Mutual impedance between catenary and

feeder of the 2× 2 system
VC,1, VC,2: Voltages at both ends of a catenary

segment
VF,1, VF,2: Voltages at both ends of a feeder segment
ΔVC: Voltage drop in a catenary segment
ΔVF: Voltage drop in a feeder segment
IL1, IL2: Currents in the traditional line model
VL1,1, VL2,1,
VL1,2, VL2,2:

Voltages in the traditional line model

ZPNET: Net impedance connected to the primary
of the three-winding transformer

ZP, ZS, ZT: Primary, secondary, and tertiary
impedances of the three-winding
transformer

VATC,i, VATF,i: Voltage at catenary and feeder sides of the
autotransformer i

STi: Complex power in train j
VTj: Voltage at train j
IC,i: Current through the subsection of

catenary between the train and the
adjacent autotransformer nearest to the
source

IC,j: Current through the subsection of
catenary between the train and the
adjacent autotransformer most far from
the source

m: Distance up to the train, from the adjacent
autotransformer nearest to the source, in
per unit of the line length of the cell

IGk: Net ground current in section k.

IF1
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IAT,1
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IAT,2
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IAT,3

ZHV

IC1

IT

VC

VF

VHV IG1

IC2

IG2

IC3

IG3

IF4

IC4

IG4

IF2=IF3 IF2=IF3

Figure 11: Sketch to illustrate the circulation of ground currents
(IGk) in the 2× 2 line model for 2× 25 kV electric railway systems.
Arrows with solid lines are according to the sign convention of this
article, and arrows with dashed lines indicate that the usual result is
in the opposite direction.
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Appendix

A. Ground Currents in the 2× 2 Model Feeders,
Catenaries, and Rails

Te analysis of models for lines with multiple phase con-
ductors and multiple ground conductors is well-known in
the case of three-phase systems; this point was clearly un-
derstood many years ago to develop the electrical power
systems. For example, a classical textbook [24] shows a
proper way to perform the matrix reductions to group the
multiple subconductors of phase and ground, as well as to
take of the ground conductors from the line model for-
mulation. Tat is, the primitive matrix has all the details of
all the subconductors and the earth efect, and the result is a
3× 3 reduced model of the three-phase transmission lines
(phases a, b, and c; without specifc terms for ground ele-
ments). It is well-known that the 3× 3 line model of three-
phase transmission lines considers that ground currents are
the sum of phase currents, and the self- and mutual-im-
pedances of ground conductors have been included in such a
reduced model. Similarly, in the 2× 2 model of Figure 2, the
ground current is simply IL1 + IL2 (Figure 2(a)) or IC − IF
(Figure 2(b)), and this ground current is the sum of the
currents fowing through all the ground paths. Figure 11
illustrates the distribution of currents in an example with
only 3 cells, for the sake of simplicity; the currents at each
point of the catenary and feeder (ICk and IFk) can be directly
obtained using the 2× 2 model, and the net ground current
(IGk) can be easily computed as IGk= ICk − IFk at each point.

It is evident that: (a) IF4�IAT,3, IC4 � − IAT,3, IG4 � − 2IAT,3;
(b) IF3�IAT,2 + IAT,3, IC3 � − (IAT,2 + IAT,3), IG3 � − 2
(IAT,2 + IAT,3). Tus,

IC2 � IC3 + IT � IT − IAT,2 + IAT,3􏼐 􏼑,

IG2 � IG3 + IT � IT − 2 IAT,2 + IAT,3􏼐 􏼑,

IC1 � IC2 − IAT,1 � IT − IAT,1 + IAT,2 + IAT,3􏼐 􏼑,

IF1 � IF2 + IAT,1 � IAT,1 + IAT,2 + IAT,3,

IG1 � IC1 − IF1 � IT − 2 IAT,1 + IAT,2 + IAT,3􏼐 􏼑.

(A.1)

For this particular case, the application of Section 3 of
this article implies that: (a) the currents in cell 3 tend to be
negligible (IAT,3≈0); consequently, IG4≈0; (b) the ratio be-
tween the currents in catenary and feeder (IF/IC) in cell 1 is
dependent on self- and mutual-impedances of the 2× 2 line
model; consequently, IG1 is in general diferent than zero.

B. Data of the System Taken as an Example [15]

Equivalent source (utility): ZHV � 0.
3-winding transformer (SBASE � 80MVA; VBASE-

LV � 27.5 kV): ZP � j0.075 pu; ZS � j0.025 pu; ZT � j0.025 pu
Line (2× 2 matrix for the catenary/feeder system):

ZC � (0.81091 + j2.3755).10− 3 pu/km
ZF � (1.78320 + j3.8437).10− 3 pu/km
ZM � (0.33677 + j1.2436).10− 3 pu/km

Each autotransformer (SBASE � 10MVA; VBASE-

LV � 27.5 kV): ZAT � 0 or j0.05 pu in [15], whereas ZAT (in
%)� 0, 1, 1.5, 2, 3, 4, or 5 in this article (with a resistive part
equal to 0.5%).

Distance between autotransformers: 10 km.
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[15] E. Pilo, Diseño óptimo de la electrifcación de ferrocarriles de
alta velocidad (in Spanish), PhD Tesis, Universidad Pon-
tifcia Comillas de Madrid, Spain, 2003.

[16] K. Mongkoldee and T. Kulworawanichpong, “Current-based
Newton-Raphson power fow calculation for AT-fed railway
power supply systems,” International Journal of Electrical
Power & Energy Systems, vol. 98, pp. 11–22, June 2018.

[17] J. Zhang, M. Wu, and Q. Liu, “A novel power fow algorithm
for traction power supply systems based on the Tévenin
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