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Tis paper proposes a novel short-time optimization method based on a resiliency enhancement strategy for a smart distribution
network during adverse weather conditions. Te key idea is to integrate various electric vehicles (EVs) with diferent behaviour
patterns and other distributed energy resources into emergency tools of distribution network operation such as topology
reconfguration and grid-supported services. In this regard, possible management programs for three types of EVs (with diferent
levels of control potentials), energy resources, reconfguration, and demand response programs impacts on boosting resiliency are
investigated.Te framework is organized on coordination and beneft sharing among distribution system operator (DSO), private
sector, and EV owners to reduce possible side efects of failures that could be incepted by extreme weather conditions. A Monte
Carlo-based stochastic simulation for modelling uncertainties such as EVs movement, state of change, arrival/departure time to
charge stations, and weather-based failures is devised. In order to evaluate resiliency, metrics based on a multiphase method are
analysed. Te performance of the proposed method on extra beneft obtaining for DSO and private sector and also resiliency
enhancement in disturbance progress, postdisturbance degraded, and restorative state are carried out on IEEE-33 bus test system,
and obtained results are analysed in detail.

1. Introduction

1.1. Motivation. Te emergence of electric vehicles (EVs)
has opened up an interesting new research area in load and
energy storages (ESs). However, the high presence of EVs
and their potential for future cooperation with other grid
resources present challenges for grid developers [1, 2]. In this
regard, managing EVs with vehicle-to-grid (V2G) capability
is a signifcant operational issue in distribution networks.
Indeed, EVs housed in charge stations (CSs) can function as
fexible demands and energy storages when not in use [3].
So, EVs can be modelled as mobile demands or possible ESs
that could have power exchange with a network [4, 5].

Another recent topic is to optimal usage of the CSs with
distributed energy resources (DER), and in this way, DERs
can be operated to inject energy into the EVs and network.
Tis interesting topic highlighted in the recent decade, so
that DER-powered CSs have attention.

1.2. Literature Review. EVs are cooperated with DERs to
exchange energy with the grid during various possible op-
erational cases [6–10].Te charging/discharging strategies of
EVs, and especially the adopted programs under which the
EV is posed in charging/discharging conditions, are among
the main challenges of operating the CS. Moreover, the
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integration of the DERs and CSs requires coordination of
DERs generation and EVs charging/discharging behaviour.
In other words, unsuitable management could lead to in-
appropriate operation such as extra losses or voltage sag due
to feeder congestion [11]. Various researches have been
conducted in response to such challenges, among which the
following can be mentioned. In [12, 13], a stochastic method,
using Monte Carlo (MC) simulation, to model the proba-
bilistic nature of the EVs, such as daily travel distance and
charging pattern, is presented.

Technical issues on scheduling, controlling, and oper-
ating EVs are reviewed in [14]. In [15], charging/discharging
schedule of EVs is simply presented based on the market
price; however, it does not consider the efect of the pre-
sented schedule on the load profle of the network. Te
authors of [16, 17] propose methods to coordinate DERs and
EVs for the purpose of peak shaving and in sequence de-
crease in power losses and voltage sag. In [18, 19], with the
purpose of resiliency improvement, the charging program of
the EVs is modelled. Terefore, it can be concluded that the
most optimal program is obtained when the benefts of the
CS (or EV) owner and the distribution system operator
(DSO) are considered simultaneously.Tis issue is discussed
in the paper [20], and a method to share the benefts of the
program implementation is proposed.

In all the above-mentioned papers, charging/discharging
programs are mainly devised regardless of the resiliency of
the grid during special time intervals such as storms, which
is one of the drawbacks of the existing researches. In fact,
such programs are only presented with the aim of fattening
the demand profle, while in case of natural disasters, the
charging/discharging behaviour of the CS must be changed
to improve the resilience of the network. In recent studies,
grid resiliency refers to the ability of the grid to prepare,
survive, and rapidly recover itself during unexpected fault
inception, like extreme weather conditions [21–23]. It
should be noted that the development and implementation
of the charging/discharging program with the aim of im-
proving network resilience can reduce energy not supplied
(ENS) to an acceptable level and thus reduce the cost of the
DSO [24].

On the other hand, wind speed may afect the scheduling
of the wind turbines. Tus, in addition to investigating the
efect of extreme weather (like storms) on grid resilience,
changes in wind turbine (WT) generation should also be
considered. Comprehensive issues in DERs rescheduling
weather impact on the failure rate of lines can be found in
[25–27]. In the context of grid resilience improvement,
various methods such as demand response programs (DRP),
rescheduling of resources [28, 29], DER utilization, network
reinforcement, and reconfguration methods [30] have been
proposed. However, in the matter of the CS, particularly
integrated with DERs, developing an optimal and pro-
portionate charging/discharging schedule can efectively
improve network resilience. Risk-based operational plan-
ning for enhancing grid resiliency has been proposed in the
paper [21]. Furthermore, in [21, 22], resilience improvement
is obtained via infrastructure and minimization of outage
duration.

1.3. Contribution of Paper. Based on the above discussion, in
the existing research, EV management programs have been
rarely devised in order to network resilience improvement.
In view of such shortcomings, this paper presents an optimal
charging/discharging program for EVs through its benefts
of DSO and DER, and EV owners are optimally maximized.
In the proposed methodology, as per the efective role of the
EVs in improving grid resiliency, the idea of beneft sharing
between DSO and EV owner is applied to encourage EV
owners to cooperate with DSO and to enhance the resiliency
level of the network against extreme weather conditions. In
this regard, frst, a stochastic framework, on the basis of MC
simulation, is proposed to forecast changes in the line’s
failure rate to model random variables considering related
uncertainties. In the next step, a formulation for optimal
management of EVs is devised. In the proposed formulation,
while optimizing power purchases from the utility, the
benefts of all players and grid resilience in extreme weather
conditions are also maximized. However, to encourage EV
owners to optimal management and to participate in im-
proving the plan of resiliency, the idea of beneft sharing on
the basis of energy price modifcation is applied. Moreover,
the coordination of DER, reconfguration, and demand
response program (DRP) is performed.

Te resilience-oriented multiobjective optimization al-
gorithm of this paper is solved using a modifed genetic
optimization algorithm (MGO), and Pareto front solutions
are obtained. Applying hybrid sequential MC simulation
and MGO algorithm improves the accuracy of obtaining
optimal solutions set. Resiliency enhancement analysis is
evaluated byΦΛΕΠmetrics based on multiphase resilience
trapezoid method, and all disturbance progress, post-
disturbance degraded, and restorative states are assessed. In
summary, the taxonomy of the most related research works
is reported in Table 1.

2. Mathematical Formulation

In a practical situation, by employing telecommunication
technologies and innovative methods like the Internet of
Tings, it becomes possible to formulate schedules for
electric vehicles (EVs) using a combination of historical data
predictions and analyzing user behaviours. During emer-
gency situations, when the probability of failures and un-
foreseen trips in charging stations (CSs) is high, the
distribution system operator (DSO) aims to assess proba-
bilistic events and their potential consequences. Tis eval-
uation involves managing demands, resources, and EVs to
improve the resilience and economic gains of all participants
involved.

As shown in the schematic of Figure 1, at the start of the
optimization process, we gather diferent factors such as
demand, energy cost, state of charge (SOC) level, presence of
electric vehicles (EVs), and branch failure rate. By in-
corporating the probabilistic nature of these parameters, we
can achieve more realistic results. To account for the in-
fuence of these probabilistic factors in fnding a solution, we
utilize the Monte Carlo (MC) method. In the next phase, our
proposed approach estimates the risk of power outages
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caused by storms, enabling us to make adjustments to the
operational planning. It is vital to note that the transition
from economic operation to resilient operation is contingent
upon the estimated risk value, which is quantifed as the
amount of ENS in this study. In simpler terms, as the risk
increases, there is a corresponding increase in the adjust-
ments made to the primary economic scheduling in order to
minimize the anticipated ENS value. Te rescheduling
process relies on a modifed signal price that is calculated by
the distribution system operator (DSO). Trough this
mechanism, the DSO aims to reduce the penalty cost as-
sociated with ENS (in collaboration with the private sector)
and facilitate the equitable sharing of benefts using the
variable beta method for fair proft sharing. In order to
problem formulation, a mathematical model for all infu-
encing components is presented, and then, the proposed
formulation for solving the problem is explained.

2.1. EV and CSModels. As explained earlier, EVs are parked
within the CS in the charging/or discharging intervals.
However, since the EV owners might not care about their
efects on the grid operation, they do not specifcally connect
EVs to the grid. In this paper, a one-day period of EVs travel

Table 1: Te taxonomy of the studied researches.

Contribution Ref 5 6 7 9 10 11–16 13 1–15 17–19 20 21-22 27 31-32 Tis
paper

EVs probabilistic
behaviours and
movements

Yes No No Yes No No No No No Yes No No Yes Yes

Integration of the
DERs into CSs No Yes No Yes No No Yes No No No No No Yes Yes

Coordination of
DERs and EVs for
optimal operation of
CS and grid

No Yes No Yes No No Yes No No No No No Yes Yes

Management of CS
for load profle
fattering

Yes Yes Yes No Yes Yes Yes No Yes Yes No Yes Yes Yes

Optimal charging/
discharging
schedule of the EVs

Yes Yes Yes No Yes Yes Yes Yes Yes Yes No Yes No Yes

Proft sharing
between DSO and
EVCS owner

No No No No Yes No Yes Yes Yes Yes No No No Yes

Resilience
improvement of the
grid

No No No No No No No No No No Yes No No Yes

Simultaneous
investigation of the
efect of EV
management and
storm on the grid
resilience

No No No No No No No No No No Yes No No Yes

Apply Uncertainties (Monte Carlo)

Calculate Risk Level and Update Price Signal

Update profits by variable BETA

CS ProfitDSO Profit

Select Optimal Solution and Topology

Input Data

Calculate Profits obtained from Loss& ENS reduction

Optimal Scheduling & BETA

Stochastic Analysis

Figure 1: Schematic of proposed strategy.
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among several locations is considered. It is assumed that
each EV daily traveling starts from a certain point at the
beginning of the day and fnishes in the same location at the
end. Also, the aggregated storage of EV could be idle. Also, in
order to have more realistic results, it is assumed that there
are three diferent types of EVs with diferent behaviours as
shown in Figure 2.

Te frst group (trivial) alternative is based on charge in
local parking (home) and during the operational planning
period that case is driven directly to the activity and is parked
there during the activity without any power exchange. In this
case, DRP could be applied during the charge period at
home. Te second group alternative is enroute charging as
traditional vehicle behaviour in gas stations. In other words,
vehicles stop enroute to the activity at a CS, wait for the
charge process to be complete, and then continue to drive to
the activity. In this case, during extreme conditions, the
battery is only charged to 80% SOC. Normally, drivers use
only fast charging stations for this purpose. Te third group
alternative is based on leaving EV in CS near the destination.
Tis case is the best group for EV management, especially
when the driver stays at the activity for several hours. For
each group, the DSO has to consider which options are
available during various operational conditions. Simply
calculating the best management for EVs in diferent con-
ditions could lead to changes in energy consumption,
charging time, fnal cost, and resiliency of the grid. Te
alternative must also respect the energy constraints of the
vehicle. In this paper, the third group of EVs is focused on
and managed due to its behaviour. Hence, the operation
time of the CS within the grid is uncertain unless an ap-
propriate planning is made.Terefore, the uncertainties, like
duration time for EVs, are connected, and energy con-
sumption of EVs, price signals, and state of charge (SOC)
value of EVs at the charging/discharging should be con-
sidered in the management of EVs [31]. In this respect, this
paper employs the truncated normal distribution function
for modelling independent random variables, including EVs
battery capacity, the distance and duration time of EV
movements, and the parking time of the EV within the CS.

One of the main limitations of the proposed method
(and similar strategies) is its high dependability on pre-
dicting weather condition CSs allocation and behaviour of
EV’s owner. In other words, any changes in these parameters
may change results. For more realistic results (with existing
real data of drivers), the pattern recognition method could
be used [32]. Pattern recognition is a data assessment
technique that utilizes machine learning algorithms to au-
tomatically identify patterns and regularities in data. Pattern
recognition systems can identify familiar patterns rapidly
and precisely. Tey can also identify and categorize un-
familiar objects and recognize patterns and objects even if
they are partially hidden [33].

Furthermore, the remaining dependent parameters such
as arrival/departure patterns to/from CSs are calculated. Te
details of such stochastic modelling are given in [20]. An-
other parameter that afects the charging/discharging
management during EV’s presence at CS and is associated
with uncertainty is the level of SOC of EVs.Temodelling of

power charging stations for input and output is infuenced
by various uncertain factors. Tese factors include the
schedule for charging and discharging EVs, the type and
capacity of the batteries in the EVs, the SOC for each in-
dividual EV, and the percentage of vehicles present at the CS.
Tese parameters are not fxed and are subject to un-
certainty. Te access of EVs to the CS depends on the be-
haviour of the vehicle owners, and it can be described
probabilistically. In this particular study, the time of arrival
for EVs at the CSs is determined using Figure 3. Tis fgure
represents a normal probability density function (PDF) with
a mean of 13.71 and a standard deviation of 4.52 [20]. Based
on this, the percentage of EVs present at the CSs is de-
termined to be between 10% and 90%.

Te initial SOC of EV’s batteries is infuenced by un-
certain factors such as the distance traveled and the type and
efciency of the batteries. Upon an EV’s entry into the CSs,
information regarding its initial SOC rate, desired fnal SOC,
and exit time from the CS is collected. Based on this in-
formation, and considering the advantages of using EVs as
ESs and the revenue generated from battery charging for
driving purposes, an optimal charging/discharging plan is
devised for the EV during its time at the CS. To accurately
represent the presence of EVs and their initial SOC, the MC
approach is employed to model the aforementioned
uncertainties.

Both the presence of EVs and their initial SOC are as-
sumed to follow a normal PDF with three states. Te dis-
tribution curves for EVs and their initial SOC are depicted in
Figure 4. Te level of SOC and its changes are calculated
according to the distance travelled (Di) as follows:

SOCi
int � 1 −

Di

DTotal
􏼠 􏼡 × 100%,∀i ∈ NEVs,

SOCi
t � X1 SOCi

t−1 + Δt. chrate( 􏼁􏼐 􏼑 × 100%,∀i ∈ NEVs,∀t ∈ Τ,

SOCi
t � X2 SOCi

t−1 − Δt. dischrate( 􏼁􏼐 􏼑 × 100%,∀i ∈ NEVs,

(1)

where SOCi
int presents the SOC value in arrival time of EV

and charge/discharge rate of EV batteries in the time step of
Δt is specifed with chrate/dischrate. Also, the simultaneous
charging/discharging of the EVs is avoided by using binary
variables X1 and X2.

As per the above e equations, the charging/discharging
time of EVs and the total injected or stored energy in CS
could be calculated as follows:

Drive
Work
Park

ChargeWaitDrive Drive

Drive

Park

Work

Wait
Work

Park

Figure 2: Various behaviours of EV owners.
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tcharge(i) �
SOCmax − SOCi

t􏼐 􏼑 ×ESi

Pv

,

tdischarge(i) �
SOCi

t − SOCmin􏼐 􏼑 ×ESi

Pv

,

E
discharge
EVCS � 􏽘

NEVs

i

Pre.T(i) × Ci × SOCi
int − SOCmin􏼐 􏼑∀Δtdischarge,

E
charge
EVCS � 􏽘

NEvs

i

Pre.T(i) × Ci × SOCmax − SOCi
int􏼐 􏼑∀Δtcharge,

(2)

where Pre.T(i) is the presence time of each EV at the CS and
C is the battery capacity of EV number i.

In the feld of modeling probabilistic parameters of EV/
CS, in addition to the above equations, there are other
stochastic variables, such as time of arrival/departure of EV,
duration time of the EV’s trip, and presence time of EVs
inside the CS, that have been avoided to rewrite here due to
the fact that they exist in the references like [13, 20].
However, the utilization of sequential MC simulation for the
calculation of the fnal model of such parameters is required.
Hence, after formulating the probabilistic model, MC
simulation with repeated replications is utilized to obtain

mean values during the simulation period. To this end, the
stopping criterion is satisfaction of the coefcient of vari-
ation (CV) which is assumed to be less than 4%.

2.2. Load and Energy Price. As per the probabilistic be-
haviour of the demand, daily demand variation in each year
of the planning period can be obtained by multiplying the
base load (Pi,base and Qi,base) and demand level factor (DLF)
[34]. In addition, by considering the rate of yearly load
growth, the amount of active and reactive power is modelled
as follows:
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Figure 3: Hourly arrival of EVs at the CSs [20].
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Figure 4: PDF for the arrival of EVs and their SOC.
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P
e
i,t,h � Pi,base ×DLFe

i,t,h × (1 + α)
t
,

Q
e
i,t,h � Qi,base ×DLFe

i,t,h × (1 + α)
t
,

S
D
i,h � P

D
i,h,s + jQ

D
i,h,

(3)

where DLF is obtained by the probability density function
(PDF) as follows:

DLFe
i,t,h � μD

i,t,h + λD,e
i,t,h × σD

i,t,h, (4)

where λ is a random variable and is obtained by normal PDF
with an average value of zero and a standard deviation of one
for each demand level. μD

i,t,h is the predicted value for the load
demand level with a standard deviation of σD

i,t,h, and α and t

are the load growth rate and number of years, respectively.
Te power price is cleared depending on the wholesale

market price, and the demand level is obtained as follows
[35, 36]:

ρh � ρbase ×PLFh, (5)

where ρbase is the basic electricity price and PLFh stands for
price level factor at time hth.

Due to the importance of grid resilience, the actual price
should be obtained according to energy purchasing cost and
probable penalty costs could be caused by line failure, due to
extreme weather conditions. In this paper, the actual price,
which will be used as a signal price for DSO, is derived as
follows:

ρh �
ρbasePLFh + ρENSENSh

PLFh

. (6)

In this equation, the ENS cost is calculated as follows:

ENSCost � 􏽘

NL

i�1
λLineLLineρENS 􏽘

Nbus

i�1
PresμLine⎛⎝ ⎞⎠ + Crepair,

(7)

where, ρENS presents ENS cost and NL stands for the number
of lines with a length of LLine. λLine and μLine are the failure
and repair rate of the line. Pres states restored power once the
line is repaired.

2.3. DRP Modelling. DRP is generally shifts load from peak
hours to of-peak in order to reduce total operational costs
and power loss [37]. In this study, it is assumed that ±15% of
the load value can be shifted to other time intervals. Below is
the relevant model for the applied DRP:

S
DR
i,h � S

D
i,h + ΔSDRP,

ΔSDRP � ΚDRP × S
D
i,h,

􏽘

24

h�1
ΔSDRP � 0,

Κmin
DRP <KDRP <K

max
DRP,

(8)

where SDRi,h is the apparent value of power after imple-
mentation of DRP, ΔSDRP is the values of apparent power
transferred by DRP, and ΚDRP presents the participation
level of DRP.

2.4. Model of Wind Turbine (WT) Output. Te output of
a WT is not controllable, and it mainly depends on various
parameters such as wind speed which is not generally
specifc and should be considered randomly. In this paper,
the Rayleigh probability function is applied for modelling
random behaviour of wind speed and WT output.

fwg(v) �
2v

c
2􏼠 􏼡 exp −

v

c
􏼒 􏼒 􏼓

2
􏼡, (9)

where v and c parameters present the average speed of wind
speed and scale index in equation (9), respectively. With
knowing the average of wind velocity, the scale index is
calculated as follows:

vm � 􏽚

∞

0

vfwg(v)dv � 􏽚

∞

0

2v
2

c
2􏼠 􏼡 exp −

v

c
􏼒 􏼓

2
􏼢 􏼣dv �

��
π

√

2
c,

c � 1.128vm.

(10)

Based on the above equations and considered PDF, the
power output of WT is obtained as follows:

P
WT
i,t,h �

0, if v
cut
in or v≥ v

cut
out,

P
WT
i,r

v − v
cut
in

vrated − v
cut
in

, if v
cut
in ≤ v≤ vrated

P
WT
i,r , else,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (11)

where PWT
i,r is the permitted capacity for power generation.

vcutin , vcutout, and vrated are cut-in, cut-out, and rated speed in
WT, respectively. As per the above equations, wind speed
changes the performance of WT, particularly, in extreme
weather conditions where theWTmay stop working. On the
other hand, high-speed winds (storms) increase the prob-
ability of fault inception in lines and decrease the resiliency
level and economic proft for the grid.

2.5. Resilience-Oriented Operation of the Network. It is
proved that extreme weather conditions (storms) are the
most common reason (about 65%) for the inception of
various failures [23]. In such cases, line outage may occur,
and therefore, network resiliency with increasing ENS is
greatly reduced. As a side note, the main diferences between
reliability and resiliency depend upon the types of events, its
impact timing, and the method of assessment. Te main
diference between reliability and resiliency usually is
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focusing on probabilities of impact of events. In this paper,
probabilistic events could be caused by weather condition
(storm) is studied [22, 29]. Furthermore, reliability studies
are commonly conducted by considering all possible events
and providing a better solution in larger time intervals with
uniform failure rates.

In this respect, side efects of weather conditions
(storms) on increment of failure rates are considered in this
paper. In paper [26], the correlation between the number of
events (Nwind and Nlightning) and wind speed (W)/numbers
of thunder (L) is formulated for short-time intervals.

Nwind � 0.0012Wspeed
2

− 0.0131Wspeed,

Nlightning � 0.0001L + 0.7014.
(12)

It is obvious that storms could be forecasted with ac-
ceptable accuracy in wind speed prediction. In this regard,
the changes in failure rates could be updated and the new
status of the outages rate will be used in grid management
during extreme weather conditions.

In this respect, the resiliency index is calculated; how-
ever, for evaluation of the efectiveness of the proposed
strategy on resiliency, the evaluation metrics should be also
introduced. In this paper, ΦΛΕΠ metrics proposed in the
paper [27] are used, based on which a multiphase resilience
trapezoid associated with the extreme weather is considered.
Tree phases can be clearly seen in the resilience trapezoid of
Figure 5 as disturbance progress (Φ and Λ-metrics), post-
disturbance degraded (E-metric), and restorative state
(Π-metric). ΦΛΕΠ metrics would be defned to the oper-
ational and infrastructure resilience. Mathematical expres-
sion and measuring units for ΦΛΕΠ metrics are shown in
Table 2.

2.6. Proposed Methodology for Resilience-Oriented Operation
of Grid. During natural disasters, resiliency improvements
of the network, i.e., its ability to predict, self-healing, and fast
restoration, are vital actions. As explained earlier, one of the
infuencing approaches for resiliency improvement is the
management of various groups of EVs (with diferent be-
haviours and management levels) by considering forecasted
conditions, energy resource rescheduling, and DRP imple-
mentation. On the other hand, based on the uncertainty of
weather conditions and in sequence updating the probability

of failure ratios, EVs movement pattern, and uncertainty of
SOC level for EVs, energy resources, demand response
program, and reconfguration will be rescheduled by con-
sidering high-risk time intervals condition. As a result, the
application of these solutions, given their impact on the
operation of the CS, must also be economically justifed for
the CS owner. In other words, an optimal trade-of between
economic benefts and resilient operation should be made.

As a side note, the adopted schedule for EVs is generally
based on tarif ofered by the grid operator, so that the EV is
charged during time intervals with lower energy prices. On
the contrary, the discharging of excess energy in EV batteries
is done during peak intervals when the energy price is
higher. Accordingly, it can be concluded that if the DSO
locally increases the reference for signal price in some in-
tervals in order to improve the resilience, the CS owner will
be encouraged to change the charging/discharging schedule
and gain more profts. Based on this fact, in the proposed
strategy of the paper, the actual operation cost is calculated
by uncertainties.

In this regard, this paper proposes a novel resilience-
oriented strategy, which with optimal interaction between
rescheduling of DERs energy and EV’s charging/discharging
management, increases resiliency, and reduces total ENS
during normal operation and extreme weather conditions.
Also, profts of DSO and EV owners are calculated in de-
tailed objective functions in order to maximize. To do so, the
failure rate of branches, power generation of WT, EVs
movement pattern, arrival/departure times, and SOC levels
depend on weather conditions. In the following, a proposed
formulation related to both DSO and CS owners is
presented.

2.6.1. DSO Beneft Formulation. DSO, in supplying the
network demand, must pay some costs, like the cost of
purchasing energy from the upstream or utility (SUtility

h ) or
the cost of purchasing energy from the wind turbine and CS
in the discharging intervals. It also earns revenue from the
sale of energy to the customers or to the CS in the charging
intervals. As a result, the DSO benefts, which should be
maximized during the next 24 hours in the proposed al-
gorithm, are obtained by subtracting cost (CDSO) and rev-
enue (RDSO).

RDSO � 􏽘

Nload

i�1
ρP
sell . P

e
i,t,h +

1
T(i)

􏽘

Nk

i�1
ρP
sell . E

charge
EVCS , (13)

CDSO � λh . S
Utility
h +ENSCosth + ρWT

sell . P
WT
i,t,h +

1
T(i)

􏽘

Nk

i�1
ρP

. E
discharge
EVCS , (14)

OFDSO � RDSO − CDSO. (15)
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In the above equations, ρP
sell, λh, and ρWT

sell are the sold
energy cost for users, purchasing energy cost from utility
energy purchasing fee from WT. It should be noted that the
amount of purchased power from the utility or CS depends
on the market electricity price.Te purchased active/reactive
power can be easily obtained from S

Utility
h .

Note that DSO is allowed to sell power to the market
when S

Utility
h become negative. In equation (14), the ENS cost

due to line outage is also modelled. In addition, the power
exchanged with the CS depends on the charge/discharge
schedule, which is presented in the next section as a method
for its optimal programming.

2.6.2. CS Beneft Formulation. Usually, the EV owner’s
beneft is in increasing the presence of EVs and purchasing
energy from the DSO at the lowest price. In other words, for
the CS, the DSO proft (due to load characteristic correction
and resilience improvement) is not important, unless it
receives a proft from participating in these programs.
Furthermore, charge/discharge rates (chrate/dischrate) and
charging/discharging time are efective in modifying the
load characteristic. Terefore, the following objective is
suggested to optimize charging/discharging values and
timing. In fact, in this paper, frst, the EV’s charging/dis-
charging planning is optimally calculated. In this way, the
optimal charging and discharging times, in which attractive
price signals are given, are calculated.

OF1 � a × 􏽘
T

t�1

PL−Peak

P
Corrected
L−peak

− 1⎛⎝ ⎞⎠Δtdischarge + b × 􏽘
T

t�1

P
Corrected
L−Min
PL−Min

− 1􏼠 􏼡Δtcharge +(c ×MSE),

MSE � 􏽘
24

t�1
P
Load

(t) − 􏽘

NEVs

i�1
P
EVCS

(i) − Pref
⎛⎝ ⎞⎠.

(16)

A weighted summodel is used for the objective function.
In this function, a, b, and c are applied for normalizing
diferent terms of the OF and converting them to [0-1]
range. Forecasted demand profle and modifed demand

profle are calculated by mean square error (MSE). In other
words, the charge/discharge schedule is achieved in such
a way that efective peak shaving and load profle fattering
are achieved by tracking Pref minimizing MSE. Δtcharge and
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Figure 5: Resilience indicator and the multiphase resilience trapezoid [23].

Table 2: Te mathematical relations and explains for ΦΛΕΠ metrics.

Metric
Mathematical expression Measuring unit

Operational Infrastructure Operational Infrastructure
Φ (Rpdo − R0o)/(tee − toe) (Rpdi − R0i)/(tee − toe) MW (hour) Number of lines tripped (hours)
Λ R0o − Rpdo R0i − Rpdi MW Number of lines tripped
E tor − tee tir − tee Hours Hours
Π (R0o − Rpdo)/(Tor − tor) (R0i − Rpdi)/(Tir − tir) MW (hour) Number of lines restored (hours)
Φ (Rpdo − R0o)/(tee − toe) (Rpdi − R0i)/(tee − toe) MW (hour) Number of lines tripped (hours)
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Δtdischarge are the total time when the battery of vehicles is
charged or discharged, respectively.

Although the implementation of the above optimal
schedule will make both DSO and the CS owner proftable,
as mentioned, if network resilience in bad weather condi-
tions is considered, the charging/discharging program will

change. In other words, the CS owner’s proft function needs
to be formulated again. In this respect, the cost and revenue
function of the CS have been modelled as follows. Moreover,
the CS beneft, which should be maximized during the next
24 hours in the proposed algorithm, is obtained by sub-
tracting cost and revenue.

REVCS � ρWT
sell . P

WT
i,t,h +

1
T(i)

􏽘

Nk

i�1
ρP

. E
discharge
EVCS ,

CEVCS �
1

T(i)
􏽘

Nk

i�1
λh . E

charge
EVCS + C

deg
k 􏽘

Nk

k�1

E
discharge
EV

ηdischargek

+ ηchargek . E
charge
EV

⎛⎝ ⎞⎠,

OFEVCS � REVCS − CEVCS.

(17)

Te CS’s revenue includes the sale of wind energy and
the energy of EV batteries during the discharge period, while
charging EVs are costly for the owner. In this regard, C

deg
k

and ηchargek /ηdischargek are depreciation coefcient and ef-
ciency of charging/discharging pattern of EV’s battery,
respectively.

2.7. Related Constraints. In the proposed formulation,
constraints should also be considered, the most important of
which is the power balance in the network. Tis issue, as per
the implementation of DRP and also the charging/dis-
charging schedule, can be formulated as follows. In addition,
the bus voltage must be kept within its permissible ranges.

P
Utility
h − 1 − ΚDRP( 􏼁 × P

D
i,h +ΔPDRP􏼐 􏼑 +

1
T(i)

􏽘

Nk

k�1
E
discharge
EVCS − E

charge
EVCS􏼐 􏼑 � Vi,h 􏽘

j

Vj,h Gij cos δi,h + Bij sin δj,h􏼐 􏼑,

Q
Utility
h − 1 − ΚDRP( 􏼁 × Q

D
i,h +ΔQDRP􏼐 􏼑 � Vi,h 􏽘

j

Vj,h Gij cos δi,h − Bij sin δj,h􏼐 􏼑,

ΔSDRP � ΔPDRP + jΔQDRP,

V
min
i ≤Vi,h,s ≤V

max
i ,

0≤ Sij,h,s ≤ S
max
ij .

(18)

2.8. Approach Overview. Management and control of
charging/discharging of EVs with the aim of proftability for
the distribution system operator (DSO) and the private
sector are some of the challenges of operating CS.Tis paper
proposes a novel methodology for optimal planning of
charging/discharging of the hybrid wind-CS which, on the
one hand, leads to correction of the load curve and, on the
other hand, improves the grid resilience in extreme weather
conditions.

In this paper, frst, the probabilistic model of infuencing
components, including EVs (all groups), CS, load, energy
price, DRP, and WT generation, is formulated, and then,
fnal models using MC simulation are extracted. Further-
more, to have a proper analysis to evaluate the resiliency of
the test case, failure rates, and ENS values are updated based
on predicted weather conditions. In the next step,

a methodology for the resilience-oriented operation of the
grid is presented, in which the beneft formulation of both
DSO and CS owner is calculated. In this respect, the beneft
formulation of the CS is associated with the optimal
scheduling of the EVs. Finally, the presented multiobjective
optimization algorithm of the paper is solved using MGO,
and the optimal solution is found.

3. Simulation and Numerical Results

In order to evaluate the efects of the resiliency-oriented
operation of EVs and rescheduling of resources, simulations
are implemented on an IEEE 33 bus test system with fve
switches [33] as shown in Figure 6. As a side note, the
proposed methodology is devised in such a way that it can be
implemented on any grid; however, its efciency could be
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diferent for each network.Te data and information used in
simulations are reported in Table 3.

To assess the efciency, validation of optimality, and
limitations of the method, a similar approach from reference
[38] is utilized. By comparing the results of the proposed
method with existing EV management methods, using
similar test systems, distributed energy resources (DERs),
and control strategies, we introduce certain adjustments to
evaluate the unique benefts of the proposed method.

First, modelling of the demand is done based on the load
pattern (daily, weekly, and annual) given in the standard
reliability test system [25]. However, it should be noted in
this study that the load of a working day is considered to
reduce the required time for the execution of MC. Ten, the
energy price model is also done accordingmentioned before.

As explained, the placement of the CS is not the concern
of this study, but due to the fact that their allocation afects
the implementation of the proposed methodology, two CSs
(normal CS for type 3 EVs and fast charge CS for type 2 EVs)
with the capacity of 250 EVs are optimally allocated, based
on the presented method of reference [34], in buses 11 and
28. Here, it is assumed that all EV drivers have almost the
same pattern in driving, so that they park EV in a parking lot
and come back to the initial point after work and park. As
a side note, the proposed methodology is devised in such
a way that it can be implemented on any grid; however, its
efciency could be diferent for each network. As explained,
demand and price are considered as 24-hour patterns. A DG
andWT, both with 1000 kW capacity, are located in 8 and 29
buses. A schematic of diferent EV types is shown in Fig-
ure 7.Tese two CSs are called administrative CS (fast charge
and normal) and residential CS, respectively. Moreover, the

capacity of the EV’s battery is assumed to be 15 kWh, and the
rated power of the batteries assumed is equal to 5 kW. Also,
the depreciation rate is calculated based on approximately
10 years of lifetime for batteries. On the other hand, the
behaviour of EVs (in fact EV driver) is probabilistic and
uncertain.Terefore, by using the sequential MCmethod for
each group, which is on the basis of repeated replications of
the study, the fnal model of the stochastic parameter is
calculated based on the mean value during the simulation
period. Te movement of EVs in the grid is also modelled as
foating demand between some buses. Detailed patterns of
movements are available in [36].

In the present study, a storm happens for a 4-hour
interval. Also, it is assumed that failure numbers and
repair time are similar for diferent simulation cases. In
this respect, the MC simulation approach is rerun to study
the probability of line failure which is subject to the ex-
treme weather conditions. By obtaining the stochastic
models, the proposed multistep optimization strategy, for
jointly optimization of EVs schedule and DSO/CS profts,
is solved. Since the studied problem is complex and vast,
the particles may trap in the local optimum as they move
towards a false Pareto front. To deal with this issue, an
MGO algorithm is used here to fnd the Pareto solution of
the problem. In the MGO algorithm, the exploration and
exploitation of the algorithm and its convergence capa-
bility have been improved. In the utilized MGO of this
paper, the pertinent parameters are set based on values
obtained in [39].

In order to demonstrate the impact of the proposed
methodology on the optimal schedule of the CS, two sce-
narios are defned as follows:
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Figure 6: Test system of the paper.
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Scenario 1: Optimal schedule without considering grid
resilience

Scenario 2: Resiliency-oriented operation

Te optimal results for the above-mentioned scenarios
are reported in Table 4. Note that in both scenarios, the DR
program is applied. However, for type 2 EVs (using fast
charging CS or residential charger), the charge/discharge
levels are diferent in scenarios as mentioned. It is obvious
that the charged energy value is more than the discharged
energy value due to EV movement. In fact, the program has
been designed so that the discharge of EV batteries does not
interfere with the daily travel of EVs.

It is noticeable that the energy consumption of EVs and
the V2G values are higher in the normal CS than in others.
Te reason is that when parked EVs in a normal CS, charge
the EV storage at high rates before/after high risk time
interval and discharge amount is higher during storm. In
addition, when the EVs are in the CSs, the load characteristic
sometimes encounters peak demand, so the high discharge
rate and low charge are more attractive to the aggregator.
However, maximum charge levels of EVs are limited during
extreme weather conditions due to resiliency improvement.

On the other hand, in the second scenario where
resilience improvement is considered, the discharge rate is
reduced. Moreover, the peak-time hours are changed. In
fact, in times of extreme weather conditions, the normal CS
in the discharge cycle helps to supply network power and
reduces ENS accordingly. On the other side, fast charger CS
and residential chargers reduce the power charge rate to EVs

during extreme weather conditions. In this study, the ENS is
calculated as a resiliency index.

Te changes in demands in both scenarios are shown in
Figure 8. As seen in this fgure, controllable load con-
sumption changed by considering high-risk intervals (ex-
pensive energy prices obtained by equation (6)).

Te obtained results for both scenarios are presented in
Table 4. It is noticeable that DRP are considered in the
results. As shown in Table 4, without beneft sharing (β � 0),
there is no any interest for private sector to cooperate with
DSO. In this scenario, the best Pareto solution for DSO is
equal to 3.81. In scenario number 2, for (β � 0.2), the best
Pareto solution is obtained and best solutions for DSO and
CS are equal to 3.94 and 0.52, respectively.

So, it is clear that benefts sharing not only gives interest
to the private sector but also increases benefts for DSO. It is
essential to mention that the best solutions depend on
forecasted weather conditions and other uncertain param-
eters. In this paper, the min-max method using the fuzzy
decision-making method is used. In this way, per-unit values
that normalized benefts for functions are calculated. Ten,
the maximum value of minimum values for objective
functions among the Pareto set is selected as the best possible
solution.

In Table 5, obtained results for EVs management and
changes in power exchange are presented. Te total power
consumption of EVs in fast-charging CS and ENS value are
reduced due to limitation in maximum SOC level. Te
charge/discharge level of EVs in the home is not changed.
However, the charging time is changed by using DRP. It is

Table 3: Data and information table.

Value Units Comment
0.02 × μD

i,t,h Standard deviation used for load
0.1 × μρt,h Standard deviation used for price
0.9/1.1 Pu Min/max magnitude of voltage
0.046 f/km Fault rate
10 kW Charging/discharging power rate
0.90 Efciency of V2G equipment

Market price
85 $/MWh Retail selling base price
75 $/MWh Wholesale purchasing base price
70 $/MWh Purchasing price from EVs
Other costs
0.001 $/kWh Degradation cost
210 $/MWh Base price of energy not supplied
0/0075, 45, 25 — Cost coefcients of DG

DSO

Figure 7: Schematic of EV drivers’ behaviour type.
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obvious that the charged energy value for EVs parked in CS
is more than discharged energy due to EV movement supply
needs. In fact, the program has been designed so that the
discharge of EV batteries does not interfere with the daily
travel of EVs. It is noticeable that the energy consumption of
EVs and the V2G values is higher in the normal CS than
others. Te reason is that when parked EVs in a normal CS
charge the EV storage at high rates before/after high-risk
time intervals, the discharge amount is higher during
storms. In addition, when the EVs are in the CSs, the load
characteristic sometimes encounters peak demand, so the
high discharge rate and low charge are more attractive to the
aggregator. However, maximum charge levels of EVs are
limited during extreme weather conditions due to resiliency
improvement. Also, the charging/discharging pattern is
changed. During extreme weather conditions, EVs in CS
helped DSO to reduce ENS by discharging and providing
extra energy inside the grid. In a similar way, EVS in fast
charger CS and homes reduced power consumption during
high-risk situations. So, by the reduction in demand during

high-risk period, the amount of ENS reduced and, in se-
quence, resiliency and related benefts increased.

As mentioned before, controllable energy resources
output increased by considering high-risk intervals (higher
energy prices obtained by equation (6)). Te modifed en-
ergy price proposed by DSO is always higher than the
primary energy price due to the positive value of ENS. So,
DER could help power need from the upstream grid during
high-risk time intervals.

Table 6 reports details of proft values for both DSO and
CS in the best Pareto solution. In this table, the total benefts
for DSO and CS in scenario number two are more than
scenario number 1 and proposed method in [38]. It is
noticeable that in order to evaluate the uncertainty of EV
penetration and behaviour patterns, the sensitivity of the
proposed method to variations in EV penetration is ana-
lysed. It is necessary to mention that the proposed method is
sensitive to high-risk time intervals and the location/capacity
of CSs, so results could depend on forecasted weather
conditions. As can be seen, resilient-oriented operation

Table 4: Objective functions for Pareto solutions.

Solution number Best for CS Optimal Best for DSO

Scenario 1 OFDSO 3.031 — 3.813
OFEVCS 0 — 0

Scenario 2 OFDSO 0.212 3. 42 4.310
OFEVCS 0.794 0.521 2.234

Tese numbers are the optimal values among many solutions could be considered. Also, there are not any optimal solution in other scenario. Tey shows the
output for best solution.
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Figure 8: Power exchange in scenario 1 and scenario 2.

Table 5: Results for diferent EV group management.

Scenarios
Fast charge CS
(administrative)

Normal CS
(administrative) CS (residential)

chrate disrate chrate disrate chrate disrate
Scenario 1 14.22 0 16.73 8.32 10.91 0
Scenario 2 13.73 0 17.52 9.11 10.91 0
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improved profts of resiliency enhancement; however, due to
changes in demand level, peak shaving is less than normal
economic operation. So, profts of peak load reduction and
power loss reduction are reduced. On the other side, less
power sold in fast-charging CS reduced total profts of
providing demand. It means that operational logic estimates
that ENS penalty cost risk is greater than the benefts that
could be obtained by power sold to consumers during ex-
treme weather conditions.

Upon comparing the results obtained from the proposed
method and the method described in [38], it is evident that
the proposed approach ofers greater gains for both parties.
Tis can be attributed to its improved enhancements in
resiliency and equitable proft distribution. Furthermore, the
management of fast CS and residential chargers exhibits
similar characteristics in this scenario. Results show that the
proposed method increased the benefts of DSO and CS and
resiliency improvement by 5.6%, 6.2%, and 16.4%, re-
spectively, during a certain operational planning period.
Also, in case that EVs penetration is increased up to 200%
(for normal CS), profts of DSO, CS, and resiliency index are
enhanced 6.4%, 27.6%, and 44.0%, respectively. Te results
indicate that the proposed method has signifcantly in-
creased the benefts for the DSO and CS, while also achieving
a substantial improvement in resiliency during a specifc
operational planning period. Additionally, the fndings
demonstrate that a higher adoption rate of controllable EVs
(group 3) enhances management capabilities. When com-
paring the outcomes of the suggested approach in scenarios
where the penetration of controllable EVs (group 3) is
doubled, it is evident that the economic benefts derived
from improvements in resiliency increase by 38.4% and
67.1%.

In order to quantify the resilience enhancement, ΦΛΕΠ
metrics are calculated for both scenarios. Four values of key
metrics present efects of proposed resilient operation in
resilience trapezoid are calculated. Also, improvements in
mentioned indicates are per-unit based on existing condi-
tion in scenario number 1. Obtained results show that

resilient operationΦ (howmuch side efect) andΛ (how low
resiliency drops) in phase I (preparedness before event)
improved 28% and 34%, respectively. E andΠ are similar for
both scenarios due to their similar potential in fault isolation
and repair time in phase II (postdisturbance degraded state)
and phase III (restorative state). In diferent circumstances,
the efectiveness of the proposed methodology in grid
resilience improvement is also evaluated through ΦΛΕΠ
metrics and the pertinent results are calculated. In other
words, to quantify the resilience improvement of applying
the proposed strategy, ΦΛΕΠ metrics for both operational
and infrastructure are calculated and tabulated in Table 7.

Te output of Table 7, which corresponds to Figure 5 and
Table 4, presents the value of the key metrics for the
characterization of the resilience trapezoid to evaluate how
fast (Φ) and how low (Λ) resilience drops in phase I, how
extensive (E) is the postevent degraded state (phase II), and
how promptly (Π) the network recovers to its preevent
resilient state (phase III), considering both operational and
infrastructure resilience in each phase.

As per the obtained results, the slope of the resilience
degradation during the extreme weather is −1 for the frst
case, while, in the second scenario, the corrective actions are
taken, the slope is decreased to −0.72. It should be noted that
the grid reconfguration through isolating the switch
changes the topology of the network. Also, in the second
scenario, the value of Λ is obtained equal to 1.34, which
proves that the resilience value in this scenario has dropped
less compared to the frst scenario. In accordance with Λ
merit, the duration of the postdisturbance is also degraded.

4. Conclusions

EVs are fexible demands with potential of vehicle to grid
power injection. So, it is possible to improve grid resilience
by rescheduling of EVs during extreme weather condition.
In this paper, a novel two-stage stochastic optimization
method for the optimal charging/discharging schedule of the
CS is proposed. Te obtained results indicate that the

Table 6: Te results of objective functions for scenario 1 and scenario 2, ref. [38], and double penetration.

Scenario 1 2 Ref. [38] Double penetration
Profts of peak load reduction ($) 2.78× 106 2.11× 106 2.42× 106 2.35× 106
Profts of resiliency enhancement ($) 4.45× 106 6.18× 106 5.31× 106 6.41× 106
Profts of providing demand ($) 3.94× 107 4.01× 107 3.98× 107 4.02× 107
Profts of power loss reduction ($) 5.53× 105 4.06× 105 4.83× 105 4.16× 105
Total proft of DSO ($) 4.72× 107 4.88× 107 4.62× 107 5.01× 107
Proft of CS service ($) 0.58× 106 0.69× 106 0.65× 106 0.74× 106

Table 7: Te ΦΛΕΠ metrics for diferent scenarios.

Metrics
Scenario 1 Scenario 2

Operational Infrastructure Operational Infrastructure
Φ −1 −1 −0.72 −0.78
Λ 1 1 1.34 1.25
E 1 1 0.39 0.39
Π 1.23 1 3.42 3.20
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suggested approach brings about a 5% and 24.1% im-
provement in benefts for DSO and CS owners, respectively.
Moreover, the implementation of this strategy leads to
a signifcant reduction of 37.4% in ENS penalty costs. To
elaborate further, the initial cluster of EV owners (specif-
cally those with residential chargers) adjusted their elec-
tricity consumption based on signals provided by the DSO.
As for the second group of EV owners (using fast charging
stations), they decreased their charging activities during
high-risk periods by approximately 3.9%. Te fnal category
of EVs (utilizing regular charging stations) adjusted their
charging schedule by shifting their demand to periods with
lower risk prices. Additionally, they increased the amount of
energy charged by 5.2% (attributable to heightened interest)
to be discharged during high-risk price intervals. Conse-
quently, the discharged energy from this group saw a 9.5%
increase. Interestingly, regardless of the proposed method,
there was no change in the disparity between the amount of
energy charged and the amount of energy injected. Te
outcomes have demonstrated that the suggested approach
enhances the collaboration between the private sector and
EVs with the DSO, driven by economic incentives. Addi-
tionally, the rescheduling of resources and efective man-
agement of EVs have contributed to an increase in resiliency.
Tis highlights the positive impact of the proposed method,
both in terms of fostering cooperation and improving overall
system robustness. Finally, the proposed methodology is
evaluated using ΦΛΕΠ metrics. Te obtained results dem-
onstrate that the utilization of the proposed reconfguration
method led to notable improvements in various metrics,
specifcally by 28%, 34%, 61%, and 25%. Looking ahead,
future research could explore the potential of hub energy
systems as test systems to further enhance cooperation
between diverse energy resources. Tis avenue holds
promising opportunities for advancing the integration and
optimization of diferent energy sources. In future works,
more detailed models for the behaviour of EVs using pattern
recognition and considering related uncertainties will be
studied.
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