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Te ultrashort-termwind power prediction (USTWPP) technology assists the grid to arrange spare capacity, which is important to
optimize power investment reasonably. To improve the accuracy of USTWPP and optimize power investment requirements,
a USTWPP method with dynamic switching of multiple models is proposed. For high wind speed fuctuation samples, the wind
speed-power curve (WSPC) is ftted in a large sample of historical data, and the corrected wind speed is the input of WSPC. Te
spatiotemporal attentive network model (STAN) is built for the prediction of low wind speed fuctuation samples. According to
the real-time fuctuation characteristics of the correction wind speed, a switching mechanism between multiple models is
established to reconstruct the prediction results along the time axis direction, and the predicted power is set to zero for the samples
whose correction wind speed is lower than the cut-in wind speed. We conducted simulation experiments with data provided by
a wind farm with an installed capacity of 130.5MW in China. Te normalized root mean square error (NRMSE) for the 4 h ahead
predicted power reaches 0.0907, which verifed the validity and applicability of the proposed model.

1. Introduction

Wind energy is an important clean energy source, and
according to the International Energy Agency [1], the total
installed renewable energy capacity worldwide is expected to
grow by 1200GW between 2019 and 2024, with onshore
wind accounting for a quarter of the growth [2, 3]. Afected
by the randomness, volatility, and intermittency of wind
power, wind power presents a high degree of uncertainty
[4–6]. Large-scale wind power grid connection brings se-
rious challenges to power system security. At this stage,
accurate power forecasting is one of the key technologies to
ensure the stable operation of power systems. According to
the prediction time scale, wind power prediction (WPP) is

divided into long-term prediction, medium-term prediction,
short-term prediction, and ultrashort-term prediction [7–9].

Te USTWPP outputs the power series in the next 4 h at
the forecast moment with a resolution of 15min, which
provides technical support for scheduling departments to
arrange spare capacity and unit control strategies [10].
According to the prediction strategy, it is divided into
statistical learningmethods and physical predictionmethods
[11, 12].

Te physical prediction method needs to obtain the
initial values and boundary conditions of the atmospheric
operation and then solve the set of dynamical equations of
the meteorological system to predict future meteorological
data [13]. Ten, the wind speed (WS) and wind direction
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(WD) at the hub height are calculated according to the
topography and geomorphology of the wind farm (WF), and
the WSPC is further ftted to obtain the WPP model. Te
physical prediction method does not require a large amount
of historical data accumulation but requires high compu-
tational resources and relies excessively on numerical
weather prediction (NWP), which does not apply to the
USTWPP business that requires high-frequency
refreshing [14].

Te statistical methods are the process of statistical in-
ference of the external variation patterns of wind resources
or wind power, where the external variation patterns (sta-
tistical properties) of wind power are analyzed and estimated
from the samples of wind power data and inferred from its
future development [14]. Te statistical models apply the
algorithms such as time series prediction [15], Kalman fl-
tering [16], and support vector machine (SVM) [17],
Khorramdel. With the rapid development of the application
of deep learning techniques in power systems, recurrent
neural networks and their variants, represented by long and
short-term memory networks (LSTM), are widely used in
the feld of WPP.

In the current research on USTWPP, the hybrid model
has higher prediction accuracy because of its adaptability to
more specifc scenarios. Shahid et al [18] proposed a pre-
diction model of power sequence decomposition, in-
dependent modeling, swarm intelligent optimization
parameters, and reconstruction of prediction results, which
improved prediction accuracy by reducing efciency. Wang
et al [19] put forward the combined prediction model of
error quadratic prediction and error correction, which can
reduce the prediction error to a certain extent. In addition,
there is a combinatorial prediction model with weighted
combinations of multiple predictors such as the equal weight
method [20], entropy method [21], and Bayesian method
[22]. Tis kind of method has a high degree of refnement,
but the weight setting is difcult to reach the optimal state,
especially the time-varying weight is difcult to self-adapt.
Te current hybrid prediction models have achieved certain
accuracy improvements and have been applied in certain
engineering demonstrations. However, the current hybrid
prediction models mostly adopt the mode of static combi-
nation, and there is less research on the combination mode
of automatic coordination of diferent subprediction
models.

To address the abovementioned problems, a USTWPP
method based on a dynamic switching output mechanism is
proposed, and the main contributions are as follows:

(i) A spatiotemporal attention neural network is de-
veloped in the course of training, and attention
mechanisms are incorporated from both spatial and
temporal channels, which improves the model’s
focus on key features.Te proposedmodel is used to
predict low WS fuctuation samples.

(ii) Te LSTM model was used to correct the forecast
WS, and the WS fuctuations in the forecast period
were judged by the corrected WS. Te samples with
high fuctuations were predicted by ftting the

WSPC. For samples where the corrected WS is
lower than the cut-in WS of the wind turbine, the
predicted power is set to 0.

(iii) A dynamic switching mechanism between the deep
learning model and WSPC was established to im-
prove the automation level of the WPP model. Te
validity of the proposed model is proved by the
experimental analysis of the data provided by a wind
farm with an installed capacity of 130.5MW in
China.

Te rest of the paper is organized as follows: the second
part is the theoretical modeling of the proposed method, the
third part is the experimental analysis, and the fourth part is
the conclusion of this paper.

2. The Ultrashort-Term Wind Power
Prediction Methods

2.1. Modeling of WPP Based on Spatiotemporal Attention
Neural Network. In the training process of LSTM in this
paper, the attention mechanism is introduced in both
temporal and spatio channels to enhance the attention to
important features, so as to improve the modeling accuracy.
Meanwhile, the introduction of the attention mechanism
can improve the spatiotemporal interpretability of the model
[23, 24].

Let the input data contain m spatial features, and for the
input time step t, the attention weight vector of its spatial
features is calculated as the following equation:

et � σ Wext + be( 􏼁, (1)
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Te weighted feature vector j is obtained by super-
imposing the attention weight vector and the input feature
vector j.

Let the input time-step be j and its temporal attention
weight vector be calculated as shown in the following
equation.

βt � ReLU Wdht + bd( 􏼁, (3)

where βt � [βt
1, β

t
2, . . . , βt

j], and Wd is the neural network
weight matrix, bd is the bias vector of temporal attention
weights, and ReLU(•) denotes the activation function.

Te softmax function is used to normalize βt, and the
normalized attention weight εt � [εt

1, εt
2, . . . , εt

j] is obtained.
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Te attention weight of eachmoment and the state of hidden
layer neurons were weighted to obtain the state of time
sequence information ht

′, as shown in the following
equations.

εt
τ �

exp βt
τ􏼐 􏼑

􏽐
j

l�1β
t
l

, (4)

ht
′ � εt ⊗ ht � 􏽘

j

τ�1
εt
τh

t
τ , (5)

where y � β0 + β1x1 + β2x2 + β3x3 + ε represents the matrix
product, and ht represents the hidden layer state matrix
of LSTM.

Within the prediction scale of 4 h, correctedWS in NWP
was used to judge the fuctuation. If the fuctuation is lower
than the set threshold at some point, the STANmodel is used
for WPP.

2.2. Modeling ofWPP Based onWSPC. Te WSPC is a static
curve refecting wind power characteristics obtained by
ftting a large number of historical WS and power data and
does not refect the time continuity of wind power [25, 26].
Compared with the modeling method based on artifcial
intelligence, it is not afected by the predictability of time
series at the time points of high WS fuctuation and is
suitable for wind power prediction at the time points of high
WS fuctuation. Te actual wind speed and power data are
used for modeling, and the modifed WS is used as input to
obtain the predicted power. Te ftting result of univariate
linear regression is a straight line, which cannot refect the
actual output characteristics of the wind farm.Terefore, the
polynomial regression algorithm is frst used to raise the
wind speed to three dimensions, and then theWSPC is ftted
based on the multiple linear regression algorithm, which is
used as the prediction model of high fuctuation time points.
Te principle of the multiple linear regression algorithm is
shown in the following equation.

y � β0 + β1x1 + β2x2 + β3x3 + ε, (6)

where β0 is a constant term, β0 ∼ β3 represents the partial
regression coefcient, which represents the average change
in y when xi(i � 1, 2, 3) increasing or decreasing by one unit
with the other independent variables held constant, and ε is
the random error.

2.3. Te Dynamic Switching Mechanism of Multiple WPP
Models. In this paper, wind speed fuctuation is described by
the change rate of wind speed, and the threshold of wind
speed fuctuation is set. Since the chaos degree of time series
with severe fuctuations will increase, the predictability of
the neural network model will decrease [27]. Te schematic
diagram of the switching mechanism is shown in Figure 1.
Te USTWPP model provides the prediction power se-
quence for the next 4 h, and the length is 16. Te STAN
model is used for prediction when the wind speed fuctu-
ation is lower than the threshold, the WSPC model is used

for prediction when the WS fuctuation is higher than the
threshold, and then the prediction sequence is reconstructed
in time order.

When the WSPC is used to predict at a certain point, the
measured WS cannot be obtained, so it is necessary to
correct the WS of NWP to improve the prediction accuracy.
In this paper, the WS correction model proposed in the
literature [28] is adopted, and the LSTM is used for mod-
eling. Te WS correction strategy is shown in Figure 2.

Te WS correction is performed in a multitask learning
manner, i.e., the corrected WS for the next 4 h is output
directly at a prediction time. Te input of the model is the
Historical WS (His WS) and the forecast WS 4 h before the
start time, including 30m WS, 100m WS, and their average
WS (AVE WS).

For the time point of high fuctuation of wind speed, the
prediction model was switched to the WSPC model to
complete the prediction model switching.

2.4.TeModel Evaluation Index ofWPP. In this paper, three
metrics, normalized root mean square error (NRMSE),
normalized mean absolute error (NMAE), and correlation
coefcient (I) are used to evaluate the performance of the
proposed ultrashort-termwind power predictionmodel.Te
NRMSE is calculated as shown in the following equation.

NRMSE �

������������

􏽐
n
i�1 yi − 􏽢yi( 􏼁

2

nCap
2

􏽶
􏽴

, (7)

where yi represents the actual power at the moment i, 􏽢yi

represents the predicted power at the moment i, n represents
the length of the test set, and Cap represents the installed
capacity of the WF.

Te NMAE is calculated as shown in the following
equation.

NMAE �
1
n
􏽘

n

i�1

yi − 􏽢yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 × 100%

Cap
. (8)

Te correlation coefcient is calculated as shown in the
following equation.

I �
cov(y, 􏽢y)

�����������
D(y) × D(􏽢y)

􏽰 , (9)

where cov(·) represents the covariance and D(·) represents
the variance.

3. The Technology Route of WPP

Te technical route of the WPP model is shown in Figure 3
and consists of the following steps:

(1) Divide the data into training sets and test sets, and ft
the WSPC on the training set according to
equation (6)

(2) Construct the spatiotemporal attention neural net-
work (STAN), train the STAN model training set,
and obtain the USTWPP model

(3) In the prediction stage, the LSTM model is used as
a modifer. Te forecasting wind speed in NWP for
the next 4 hours is revised
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(4) Te WS fuctuation in the next 4 hours is judged on
the modifed WS sequence. If the WS fuctuation
exceeds the threshold at a certain time, the WSPC
model is used to predict the moment. If the WS
fuctuation at a certain time is lower than the
threshold, the STAN model is used to predict

(5) If the modifedWS at a certain time is lower than the
cut-inWS of the wind turbine, the predicted result at
that time is set to 0. Reconstruct the prediction re-
sults in chronological order.

4. Example Analysis

Te data provided by a WF with an installed capacity of
130.5MW is used for experimental validation, and the cut-in
WS of the turbine is 3.5m/s. Te data span from March 1,
2020, 0 : 00, to September 7, 2020, 23 : 30, includes actual
wind speed data, actual power data, and NWP, and the data
resolution is 15min.Te samples of the last 30 days are taken
as the test set, and the remaining samples are the training set.
Te input features include WS, WD, temperature (T), hu-
midity (Hum), and air pressure (AP), where the WD is sine
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and cosine processed as statistical features. Te modeling
input step is 16 and the output step is also 16, i.e., 16 steps of
ultrashort-term multistep prediction are performed. Te
model adopts a multitask learning mode, i.e., the predicted
power of 16 points is output at one time instead of rolling
iterative prediction, which can avoid the impact of error
accumulation to a certain extent.

Te LSTM layer of the network structure contains 16
neurons, the depth of the network is 3, the computer CPU
parameters are Intel (R) Core (TM) i5-7300HQ CPU @
2.50GHz, the memory is 16GB, and the training parameters
are as follows: where a total of 100 epochs are trained,
bach_size is set to 128, to mitigate overftting, drop_out is set
to 0.2, and the learning_rate is set to 0.1. To reduce the
complexity of the model, an early stopping strategy is used,
and the model stops training when the actual iteration
reaches the 11th epoch. Te model is trained for a total of
128m, and the prediction time for each sample is 0.02ms,
which meets the business requirement of USTWPP.

Te WSPC is shown in Figure 4, and the ftted curve is
distributed in the middle of the scatter, which can efectively
represent the wind power output characteristics, and the
model is used for the prediction of high wind speed fuc-
tuation samples.

Te attention distribution of the spatiotemporal atten-
tion neural network is shown in Figure 5. As shown in
Figure 5(a), the highest spatial feature contribution is the
historical power, followed by the wind speed. Because it is
the wind speed attribute in NWP, it is not clearly refected
with the wind power, so the feature contribution is lower
than the historical power. Te attention weight of the other
features is lower, and the direct correlation with wind power
is weak. Combined with Figure 5(b), we can discover that the
temporal attention weight shows a monotonically increasing
trend in steps 3–16. It is because the time series does not
change dramatically over the 1–4 hour prediction scale, the
autocorrelation of time series plays an important role in
ensuring the prediction accuracy. Terefore, the closer the
input step length prediction domain is, the greater the time
sequence feature contribution is. Because 1-2 steps are far
away from the prediction domain, and its contribution to
modeling evaluation is unstable, so there is an element of
falsely high attention weight.

Te model proposed in this paper is a kind of hybrid
model (HM); it is named HM in the experimental part. Te
prediction curve of HM is shown in Figure 6. Te prediction
curve can track the actual power trajectory well, and the
trend of rise and fall can be accurately captured. Te crest
can be accurately tracked and the low power period can be
well-ftted. It indicates that HM is suitable for the USTWPP
business of this wind farm.

Te performance of the HM is shown in Table 1. Te
NRMSE of its single-step prediction is 0.054, which corre-
sponds to an accuracy rate of 94.46%, and the prediction
curve and the actual curve are strongly correlated. Te
prediction error gradually increases with the increase of the
prediction step. For the future 16th step, the NRMSE is
0.0907, which corresponds to an accuracy of 90.93%, i.e., the

average error is less than 10% of the installed capacity, thus
proving the applicability of the HM.

Te prediction curves of the 2412th sample in the test set
are shown in Figure 7(a), and the correspondingWS curve is
shown in Figure 7(b). Based on the prediction results of the
STAN model, the corrected wind speeds of the 1st–5th
prediction time points are all lower than 3.5m/s, so their
prediction results are replaced by 0. Te error of the cor-
rected power values is lower, and HM can efectively correct
the power prediction errors in extremely low output cases.

Te prediction curve of the 313th sample of the test set is
shown in Figure 8(a), and the corresponding WS curve is
shown in Figure 8(b). Te switching of the prediction result
in the 3rd step of the STAN model is caused by the large
fuctuation value of the WS correction result in the 3rd step,
and the prediction result after the switching is closer to the
actual power, so this switching is efective.

For sample 2819, the switching mechanism works in-
versely and its prediction curve is shown in Figure 9(a), and
the correspondingWS curve is shown in Figure 9(b). TeWS
fuctuations at steps 11 and 14 lead to a switch in the pre-
diction model at the corresponding time point of the STAN
model. However, the prediction curve after the switch de-
viates from the actual power curve to a greater extent, and this
type of switch is called a harmful switch. In the test set of 2880
samples, 435 times of switching occurred, among which
38 times of unfavorable switching accounted for 8.74%.
Harmful switching is mainly caused by incorrect wind speed
correction, and abnormal data caused by wind power re-
strictions in wind farms will also cause harmful switching.

Te performance of the HM model was compared with
the LSTMmodel, bidirectional long and short-termmemory
neural network (BiLSTM) model, extreme learning machine
(ELM)model, and Random Forest (RF) model.TeNRMSE,
NMAE, and I are used to evaluate the performance of the
16th step prediction, the comparison results are shown in
Table 2, and HM and RFmodel obtain the lowest and highest
NRMSE, respectively. Overall, the recurrent neural network
has a stronger performance for USTWPP, and the machine
learning model has a slightly worse performance. BiLSTM is
a combination of forward LSTM and backward LSTM,
which can extract time sequence information in both
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Figure 4: Wind speed-power curve.
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Table 1: Predicted performance of HM.

Predicted_step NRMSE NMAE I
1 0.0540 0.0510 0.9354
4 0.0636 0.0515 0.8514
8 0.0740 0.0634 0.7591
12 0.0824 0.0696 0.6898
16 0.0907 0.0756 0.6025

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Po
w

er
 (M

W
)

HM
Real value
STAN

2 3 4 5 6 7 8 9 10 11 12 13 14 15 161
Predicted step

(a)

Real value
Predicted value

2 3 4 5 6 7 8 9 10 11 12 13 14 15 161
Predicted value

1.5

2.0

2.5

3.0

3.5

W
in

d 
sp

ee
d 

(m
/s

)

(b)

Figure 7: Applicability analysis of HM model for extremely low output scenarios: (a) power prediction curve and (b) wind speed
correction curve.
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forward and backward directions. Tere is no consensus on
which model is more suitable for USTWPP. In this paper,
the NRMSE of the BiLSTM model is lower than the LSTM
model, while the NMAE is lower than the LSTMmodel, and
the correlation coefcient is higher than that of the LSTM
model. On the whole, the performance of the BiLSTMmodel
is better.

5. Conclusion

A multimodel dynamic switching output mechanism for an
ultrashort-term WPP model is proposed, and simulation
experiments are conducted on data provided by a WF with
an installed capacity of 130.5MW in China. Te following
conclusions are obtained:
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correction curve.
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Figure 9: Limitation analysis of the HMmodel when the accuracy of WS correction is insufcient: (a) power prediction curve and (b) wind
speed correction curve.

Table 2: Te 16th step NRMSE comparison of HM and other models.

Index LSTM BiLSTM ELM RF HM
NRMSE 0.1031 0.1012 0.1047 0.1123 0.0907
NMAE 0.0903 0.0912 0.0943 0.0878 0.0756
I 0.5548 0.5673 0.5598 0.5423 0.6025
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