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In cellular wireless communication systems, channel estimation (CE) plays a pivotal role as a crucial technique applied in orthogonal
frequency division multiplexing (OFDM) modulation. CE utilizes a variety of methods, including decision-directed channel estimation,
pilot-assisted channel estimation (PACE), and blind channel estimation. Among these options, PACE is widely favored for its remarkable
stability and consistent superior performance. Te idea of massive multiple-input multiple-output (MIMO) shows tremendous potential
for the future of wireless communications. However, existing massive MIMO systems face challenges with their high computational
complexity and intricate spatial structures, preventing efcient utilization of channel and sparsity features in these multiantenna systems.
In communication channels, the signal received is often infuenced by the characteristics of the channel and noise present at the receiver.
To address this issue, an efcient dataset is utilized, employing the least square (LS) algorithm for minimization. OFDM is a commonly
and widely used modulation method in communication systems utilized to specifcally combat resonance fading in wireless channels. In
wireless communication systems employing OFDM-MIMO, frequency selectivity and time-varying attributes due to multipath channels
cause Intercarrier Interference (ICI) among symbols. Channel estimation is a vital aspect formitigating the efects of fading channels.Tis
investigation focuses on the application of a method examined in the study, which involves a block-type pilot symbol-assisted estimation
technique for Rayleigh and Rician fading channel models. Te research assesses the performance of the least square (LS) channel
estimators in fast-fading channelmodels while employing various symbolmapping techniques focusing on bit error rate, throughput, and
mean square error. Te results indicate that the LS estimator exhibits excellent performance in Rayleigh and AWGN channels within the
pedestrian A (PedA) model for both uplink and downlink scenarios. It outperforms the PedA model without channel estimation.

1. Introduction

MIMO-OFDM technology is a signifcant advancement that
optimizes time, frequency, and spatial dimensions, resulting
in substantial improvements in spectral efciency, power

efciency, and transmission rate in communication systems.
Tis technology plays a crucial role in wireless broadband
communication systems. To fully harness the potential of
MIMO-OFDM, precise channel state information (CSI) is
vital and can be achieved through channel estimation.
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Channel estimation serves as the foundation for various
functionalities, including precoding, signal detection, re-
source allocation, indoor positioning, and physical layer
security. Channel estimation can be categorized into two
methods: blind channel estimation and pilot-based channel
estimation. Te choice between these methods determines
the approach used. In blind channel estimation, summary
statistics, such as second-order or high-order statistics, from
the received signal are utilized to estimate the channel
without requiring dedicated pilot signals. On the other hand,
pilot-based channel estimation relies on dedicated pilot
signals to perform the estimation [1]. In [2], the authors
introduce a blind channel estimation method that utilizes
statistical information related to the received signal’s average
power. Tis approach converts the average estimation into
a quadratic equation that incorporates the channel gain,
providing a way for user terminals to estimate the downlink
channel gain in MIMO systems without requiring dedicated
downlink pilot resources. Nevertheless, it should be em-
phasized that this method is tailored for time division duplex
(TDD) systems and does not take advantage of sparse
channel characteristics, potentially leading to suboptimal
estimation accuracy.

In [3], researchers present an alternative blind channel
estimation technique tailored for massive MIMO systems,
leveraging the expectation proft-maximizing (EM) algo-
rithm. Utilizing the sparseness of the channel in the angular
domain, this method improves channel estimation pre-
cision. Although the EM-based approach ofers improved
accuracy, it comes with the drawback of being computa-
tionally intensive, potentially posing challenges in real-world
implementations. Te benefts of blind channel estimation
include low dependence on known parameters and excellent
spectral efciency. It is more complex and has reduced real-
time performance, among other drawbacks, including less
accurate channel estimates. However, in pilot-based channel
estimation, pilot symbols are included in transmissions so
that the receiver can make channel estimates based on the
pilot signals it receives. In [4], in comparison to blind
channel estimation, this method does reduce spectral ef-
ciency, but it is often preferred due to its ease of use. LS as
well as MMSE methods are common methods of pilot-based
techniques. Despite using a relatively straightforward
method of interpolation, the LS algorithm’s performance is
hindered by poor attention to noise.

MMSE algorithm provides enhanced estimation accu-
racy when compared to LS methods. Te MMSE algorithm
provides better estimation accuracy because it takes into
account the full channel statistical data and noise variance.
In spite of this, it emphasizes inverting the channel corre-
lationmatrix, which adds a signifcant amount of complexity
to the computation and necessarily requires having prior
channel statistics. To address this issue, the authors in [5–7]
propose ALMMSE, a linearized version of MMSE that is
optimized for fast-fading channels. Te ALMMSE technique
reduces complexity by fltering and minimizing correlation
matrices. Many channel parameters must be estimated in
MIMO-OFDM systems because of the extremely high
density of transceiver antenna pairs and the large number of

subcarrier channels involved. Traditional pilot-based
channel estimation methods, on the other hand, reduce
spectral efciency and increase system complexity, making
them impractical for use in massive MIMO systems. To
address this challenge, researchers have put forth time-
domain sparse channel estimation algorithms, particularly
compressed sensing (CS) algorithms. CS ofers the advan-
tage of concurrently estimating relevant tap positions and
their corresponding channel coefcients, making it a pre-
ferred choice as it requires fewer pilots while achieving
superior estimation performance. Te success of the CS-
based reconstruction algorithm for MIMO-OFDM channel
estimation depends on the pilot positions, which in turn
afect the recovery matrix. Traditional algorithms struggle to
fully exploit the block-sparse essence of the channel to
jointly maximize pilot locations and symbols for precise
reconstruction, despite progress in the study of massive
MIMO-OFDM channels. Existing optimization methods,
which heavily rely on ideal assumptions and model ap-
proximations, may encounter limitations in handling more
complex scenarios. To overcome this challenge, a promising
and efcient approach involves using deep learning-based
channel estimation. Deep learning leverages ofine big data
training and online real-time data updating, enabling more
robust and adaptive channel estimation in dynamic and
evolving wireless environments [8].

Deep learning demonstrates remarkable capabilities
in extracting features and performing nonlinear mapping,
thereby ofering substantial enhancements to channel
estimation performance in difcult scenarios. Te goal is
to strike a balance between the high complexity of online
testing and the complexity of ofine training, leading to
enhanced operational efciency. In tackling Intercarrier
Interference (ICI) mitigation, the authors in [9] introduce
a distinctive pilot pattern and channel estimation ap-
proach. Tis design combines comb-type and clustered
patterns, efectively mitigating ICI while minimizing the
pilot density. However, this method involves FFT oper-
ations and an iterative procedure for data extraction, as
well as identifying the most important routes of the
channel impulse response (CIR), making it mathemati-
cally complex. Another approach, iterative interference
cancellation [10–15], has been extensively studied to
exploit enhancing performance by considering the tem-
poral variation of the time-varying channel. Te disad-
vantage of this approach is its increased computational
complexity when compared to linear equalizers like
MMSE and LS.

In conclusion, the self-mitigation of Intercarrier In-
terference (ICI) has become a highly promising strategy,
attracting considerable research attention in recent times.
Certain studies [16–18] have explored applying a time-do-
main window to the received OFDM signals, leading to the
concentration of ICI power on the principal diagonal of the
coupling matrix. In addition, a recent innovative approach
introduced in [19, 20] involves adaptive windowing,
achieving its goals with linear complexity. Tis technique
directly monitors an ideal receiver window to optimize the
average SNR.
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Te key fndings and contribution of this research can be
outlined as follows:

(1) A MIMO-OFDM system has been devised, tailored
for 5G and future communication systems, utilizing
the pedestrian A channel profle model to account
for mobility and frequency selective fading efects.
Te design assumes that the receiver lacks knowledge
of instantaneous channels, necessitating the in-
clusion of pilot signals in the transmitted data
symbols for channel estimation.

(2) Modeling the channel time-frequency response by
generating a new dataset with 5G specifcations as
a 2D image using the PedA model using the
MATLAB simulator [21]. Tis research article pro-
poses a new scenario with 5G specifcations to
generate 40000 frames. Each frame consisted of four
2D images formed as time-frequency responses with
diferent models for channels experiencing rapid
changes in signal strength or fading. In MIM-
O-OFDM such as AWGN, Rayleigh, and Rician
channels with 64-QAM modulation techniques us-
ing the PedA model. Tis is for the objective to
generate noisy channels by the least square channel
estimation method with a diamond pilot pattern
design for the uplink and downlink.

(3) Studying the performance of OFDM-MIMO uplink/
downlink systems without channel estimation to
explore various fast-fading channel models, in-
cluding Additive white Gaussian noise, Rician
channel, and Rayleigh channel while implementing
64-QAM modulation techniques.

(4) Te performance of the LS channel estimation
method has been assessed by comparing the bit error
rate (BER) and mean square error (MSE) for dif-
ferent modulation schemes, including 64-QAM,
256-QAM, and 1024-QAM, in AWGN, Rayleigh,
and Rician channels.

Te structure of this paper is as follows: In Section 2,
a comprehensive review of the relevant literature is pro-
vided. Section 3 explains the OFDM system, while Section 4
explores multipath fading channels. State-of-the-art channel
estimators, including LS for fast fading, are discussed in
Section 5. Section 6 presents the proposed system model for
the fast-fading channel estimator. Te channel model is
described in Section 7, and in Section 8, the performance of
the channel estimators is evaluated in terms of physical layer
data throughput and mean square error (MSE). Finally, the
paper is concluded in Section 9.

2. Related Works

Several methods have been developed to estimate the
channel variance in OFDM systems, either across multiple
OFDM symbols or within a single OFDM signal. Most of
these approaches are based on pilot symbols [22–24]. In
situations where channels experience rapid changes, a sig-
nifcant number of unknown channel coefcients need

estimation due to the high-order variations observed within
a single OFDM symbol cycle [25, 26]. Several approaches
have been put forward to address this, such as the base
development model (BDM) [27, 28], block-sparse Bayesian
learning (BSBL) [29, 30], and the piecewise linear model
(PLM) [31, 32], aimed at reducing the number of coefcients
that require estimation, which approximate the channel
variation.

Tis study proposes the use of the least square (LS)
technique for channel variance estimation in multipath
fading channel OFDM-MIMO systems. Te method in-
cludes zero-padding an OFDM symbol with a cyclic prefx
and inserting an impulse signal among these zeros. Te
obtained impulse signal is used by the LS estimation method
in the receiver to create a channel estimate at the OFDM
symbol’s pilot sample. After that, we use a linear model to
predict the channel shifts over the course of an OFDM
symbol.

3. OFDM System

Within an OFDM system, multiple-input bits are ag-
gregated and combined to create a single data symbol.
Tese data symbols, denoted as X(0) to X(N − 1), undergo
modulation using a digital modulation technique. Sub-
sequently, in the process of inverse fast Fourier transform
(IFFT), the serial data symbols are converted into their
parallel counterparts [33]. Te IFFT process ensures the
orthogonality of each subcarrier and maps the N data
symbols onto N subcarriers. Data symbols handled by
IFFT are represented by x(0), x(1), . . ... . .. x(N − 1) and
mathematically expressed as [34]

x(n) �
1
��
N

√ 

N− 1

k�0
X(k) e

j2πkn/N
. (1)

Te OFDM system uses N-point IFFT samples as it is in
Figure 1. For each OFDM symbol, “n” is varying between
zero (0) and (N − 1) and x(n) represents the nth sample. Each
OFDM symbol is comprised of N IFFT samples. However,
when these symbols meet the multipath channel, they are
overcomplicated with channel taps, resulting in the presence
of OFDM symbol samples from the preceding symbol. Tis
occurrence results in Interblock Interference (IBI). In order
to counter IBI, a longer cyclic prefx than the number of
channel taps (L) is added to the commencement of each
OFDM signal. Te length of the cyclic prefx (G) needs to be
greater than L (i.e., G> L). Once the cyclic prefx is added,
a serial stream is generated from the parallel samples. Tese
transmitted samples, which are received as x(n –G+ 1). . .

x(N − 1), are subject to AWGN. Te samples received are
depicted as follows [34]:

y(n) � x(n)⊛ h(l) + v(n). (2)

In the context of the received signal, y(n) represents the
nth received sample, ℎ(l) denotes the lth channel tap, and
AWGN samples are denoted by v(n), where n is a natural
number. Te equation gives the receiver’s expression for the
FFT of the incoming signal (3):
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Y(k) � X(k)H(k) + V(k), (3)

where Y(k),H(k), X(k), and V(k) areN-point FFTof samples
of y(n), ℎ(n), x(n), and v(n), respectively, and which can be
represented as follows:

Y(k) �
1
��
N

√ 

N− 1

n�0
y(n)e

− j2πkn/N
,

H(k) �
1
��
N

√ 

N− 1

l�0
h(l)e

− j2πkn/N
.

(4)

In this case, H(k) represents the fast Fourier transform
(FFT) of ℎ(l), which is achieved through zero padding of ℎ(l).

X(k) �
1
��
N

√ 

N− 1

n�0
x(n)e

− j2πkn/N
,

V(k) �
1
��
N

√ 

N− 1

n�0
v(n)e

− j2πkn/N
.

(5)

4. Channels with Multipath Fading

In mobile radio channels, there are two distinct types of
fading: large and small. Because the structure of the re-
ceived signal follows a Rayleigh or Rician probability
distribution in situations with a large number of refective
paths, small-scale fading is also known by these names (R-
PDF).

Rayleigh fading occurs in situations with numerous
diverse refective paths and the absence of a strong line-of-
sight (LOS) propagation path. On the other hand, Rician
fading occurs when a dominant LOS path exists alongside
multipath components. Te multipath channel can be ac-
curately represented using equation (6) [34].

h � 
L− 1

l�0
al e

− j2πFcτl . (6)

In this context, aS represents the lth attenuation factor, vS

denotes the lth delay factor, and Fc stands for the carrier
frequency.

h � 
L− 1

l�0
al cos j2πFcτl( 

√√√√√√√√√√√√√√√√
p

− j 
L− 1

l�0
al sin j2πFcτl( ⎛⎝ ⎞⎠

√√√√√√√√√√√√√√√√√√√√
− q

.

(7)

Real and imaginary Gaussian random variables (p and q)
can be represented by the following formula:

p � 
L− 1

l�0
al cos j2πFcτl( ,

q � − 
L− 1

l�0
al sin j2πFcτl( .

(8)

If L⟶∞, subsequently, the central limit theorem is
introduced in equation (8).

lim
L⟶∞

h � lim
L⟶∞



L− 1

l�0
al e

− j2πFcτl . (9)

As a result, the CDF can be expressed in the following
manner:

FR(r) � B 1
�����
2πσh

2
 e

− p2+q2( )/(2σh)2dP dQ. (10)

Te importance of the variance of channel coefcients,
denoted as (σh)2, lies in its signifcant infuence on the
probability density function, which can be mathematically
represented by equation (11).

fR(r) �
r

(σ h)
2 e

− p2+q2( )/(2σh)2
�

r

(σ h)
2e

− r2( )/(2σh)2
. (11)

Afterward, the Rician probability density function,
which accounts for the existence of a LOS path, is precisely
defned by equation (12).
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Figure 1: Illustration of the OFDM transmitter and receiver.
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fR(r) �
r

(σ h)
2 e

− p2+q2( )/(2σh)2
I0

rA

(σ h)
2 . (12)

Here, the Bessel function is denoted by I0, where A is the
LOS path amplitude.

In order to model the impacts of electromagnetic data
transmission, fading channel models are prevalent in cellular
networks and broadcast communication, as well as being
employed in underwater acoustic communications to mimic
the efects of water distortion. Figure 2 shows the basic block
diagram of the proposed multipath fading channel model.
Te input signal undergoes two separate amplifcation
stages: one with a constant gain and the other with a variable
gain. Te amplitude of a signal transmitted through
a communication channel is assumed to undergo random
variations or fading, following a Rayleigh distribution [35].

y(t) � g1. s(t) + 0.5 (τ.g2.s(t)) + 0.25 (τ.g2.s(t)) + n(t).

(13)

In the given context, (it) denotes the output signal, (it)
represents the input signal, τ refers to the delay or phase
shift, g1 stands for the constant gain, g2 represents the
variable gain, and n(t) represents the impact of noise;
a statistical model is employed to simulate the infuence of
a radio signal’s propagation environment on wireless de-
vices. To generate noise, the following equation code was
used, as indicated in equation (14) [35].

y � AWGN (x, SNR, ‘measured’). (14)

Te x-vector signal is corrupted with white Gaussian
noise, congratulations to this function. Te SNR (signal-to-
noise ratio) is a scalar value in decibels that represents this
signal-to-noise ratio. Complex noise is introduced by the
AWGN when x is a complex signal. In this syntax, the
function measures the power of x before adding noise, as-
suming that x’s power is 0. Te level of noise in a channel is
typically measured using a number of diferent metrics.

(1) Signal-to-noise ratio per sample
(2) Te ratio of bit energy to the noise power spectral

density, denoted as Eb/N0
(3) Te ratio of symbol energy to the noise power per

unit bandwidth, denoted as Es/N0

Te BER represents the proportion of incorrectly re-
ceived bits to the total number of transmitted bits within
a defned duration. SNR or S/N represents the signal’s power
in relation to the noise afecting it. In simpler terms, it
quantifes the strength of the desired signal (e.g., music)
relative to the background noise level. A higher SNR implies
that the background noise is less perceptible. Tis mathe-
matical relationship is expressed in equation (15) [35].

SNR �
Psignal

Pnoise
  �

Asignal

Anoise
 

2

. (15)

After analyzing the infuence of the bit error rate (BER) on
signal-to-noise ratio (SNR), the outcomes demonstrate

a signifcant enhancement in BER performance at low SNR
levels, whereas no signifcant improvement is observed at high
SNR levels. At low SNR, the dominant factor afecting the
BER is white Gaussian noise, which can be reduced by in-
creasing SNR. However, at high SNR, the primary contributor
to the BER is phase estimation error, and simply raising SNR
does not lead to improvement. Consequently, fat fading
channels exhibit poorer BER performance compared to fre-
quency selective fading channels, while AWGN channels
show the highest BER performance. To simulate the channel’s
physical processes impacting the transmitted signal, it is
possible to create a physically realistic channel model. For
instance, in wireless communications, channel simulation
involves calculating the refections from objects present in the
environment. Te “scatterplot (x)” function generates
a scatter plot for the signal x. If x is a complex vector, the real
and imaginary components will be displayed as phase and
quadrature, respectively, in the scatter plot. However, if x is
a real vector, the scatter plot displays it as such, without trying
to fgure out what its phase and quadrature components are.

5. Channel Estimation

Communication systems frequently are using OFDM to
mitigate frequency-selective fading in wireless channels. Te
received signal in such channels is afected by the channel
itself. To efectively retrieve the transmitted symbols, it
becomes crucial to estimate and compensate for the channel
efects at the receiver. Tis is typically achieved by utilizing
specifc symbols known as pilots; for accurate channel es-
timation, the transmitter and the receiver use the time-
frequency coordinates and values already in their possession.
Tree diferent structures of pilot symbol arrangements are
taken into consideration, which include block-type, comb-
type, and lattice-type, as described in [36]. In the block-type
arrangement, in the beginning, the symbols of the pilot are
transmitted to an OFDM block across all subcarriers. In
contrast, the comb-type arrangement entails the inclusion of
pilots in specifc subcarriers of a few OFDM symbols. Te
lattice-type arrangement involves the insertion of pilots
along both time and frequency axes, forming a diamond-
shaped constellation with predefned periods [37].

To infer the unknown channel response values, tradi-
tional pilot-based techniques like LS and MMSE rely on the
pilot values situated within time-frequency grids. Tese
methods have been fne-tuned and optimized for diverse
scenarios [38]. Unlike LS estimation, which operates without
any prior knowledge of the channel’s statistics, MMSE es-
timation achieves superior performance by taking advantage

Signal Input
s (t)

Fixed Gain

Variable gain 
or

attenuation

+ Signal output
y (t)

Figure 2: Structure of a channel afected by multipath fading.
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of the channel’s statistics and noise variance. In practical
scenarios, several techniques have been suggested to im-
plement MMSE while reducing the complexity of the
scheme.Tese techniques involve using estimates of channel
statistics instead of precise data. Figure 3 illustrates a com-
mon block-type pilot layout, where multiple pilot symbols
are sent over multiple rt OFDM symbols simultaneously.
Both LS and MMSE methods can be used to estimate the
block-type pilot confguration [39].

Least square (LS) estimation is a typical technique for
pilot-based channel estimation since it delivers acceptable
performance with moderate complexity. Minimizing the
squared diference between the transmitted and received
signals is the goal of the channel least square estimator.
Equation (2) demonstrates that the provided equation (6)
can be utilized to compute the LS of the channel at the pilot
subcarriers:

h
LS
P � argmin yP − XP

hp

�����

�����
2

2
� X

− 1
P yP. (16)

For positions without pilot symbols, the channel co-
efcients are determined through two-dimensional in-
terpolations. In this study, linear interpolation is employed.
Te LS channel estimator ofers the advantage of low
complexity and does not necessitate knowledge of the
channel and noise statistics. Taking into account, block
fading assumptions make the LS channel estimator even
simpler. At frst, pilot symbol time-frequency grid positions
are used to estimate channels with equation (3). Te channel
estimating for pilot positions at diferent time instances are
averaged, assuming the channel remains unchanged during
the transmission of a single subframe. Afterward, one-di-
mensional interpolation (specifcally, linear interpolation in
this case) is utilized to fnd the missing channel coefcients
in the frequency domain [40–42].

6. System Model

Tis section describes a MIMO-OFDM system where signals
are transmitted from a transmitter to a receiver. Te MIMO
channel model for the 5G communication system is con-
structed with NT transmitter antennas and NR receiver
antennas, forming an NT ×NR antenna array confguration.

6.1. Transmitter. Te transmitter processes the binary data
through the modulation block, where it encodes and maps it
using quadrature amplitude modulation (QAM). Assuming
the system transmits information in T time slots, the QAM
symbols for each time slot (t� 1, . . ., T) are combined to
form a data vector, denoted as x(t′) ∈CN, following the
description in [43].

x(t) � x1(t), x2(t), . . . , xN(t) , (17)

where N denotes the total number of modulation symbols.
After encoding, the data are divided into NT vectors, cor-
responding to the NT [43] transmit antennas:

xi(t) � xi(t), xi+NT(t), xi+2NT(t), . . . ,

i � 1 . . . , 2, . . . , NT.
(18)

For each antenna, the information is converted from
serial to parallel formats. Pilot signals, known to both the
transmitter and the receiver, are then added to the data for
each layer to facilitate channel estimation. Te IFFT block is
then applied to xa(t) with a� 1, NT. Te signal vector with
a pilot inserted into the corresponding data xi(t) is used to
transfer the signals from the frequency domain to the time
domain. Tis transformation is represented by the notation
xa (t), s observed in [43].

xa(t) � IFFT xa(t) . (19)

TeCP insertion block inserts a CP of a guard interval of
length N.G which is introduced to reduce intersymbol in-
terference (ISI) after the IFFT transformation. Including the
cyclic prefx enables the transmission of the signal, denoted
as xga [43, 43], to be formulated in the time domain as
follows:

xga(t) 
n

�
xa(t) n+NFFT

, n � − NG, − NG + 1, . . . , − 1,

xa(t) n, n � 0, 1, . . . , NFFT − 1,
 (20)

where the signal xa (t) with a length of NFFT + NG is formed
by using the last NG samples of xa (t). Te last N.G samples
of xa (t) are utilized as a cyclic prefx and placed at the
beginning of this symbol. Te arrangement, which leads to
the fnal signal format, is determined by the FFT size, NFFT.

6.2. Receiver. Using the cyclic prefx removal module, the
prefx of the cyclic could be removed from each antenna that
received the signal at the receiver, providing the vector, yb(t)

of length NFFT. According to [43], afterward, the signal is
transformed into a parallel format and subjected to pro-
cessing in the frequency domain using the FFT block. Tis
process leads to the creation of a frequency-domain signal
denoted as y.b(t).

yb(t) � FFT yb(t) . (21)

Te pilot signal is extracted from the frequency-domain
signal to estimate the channel. After obtaining the channel
estimate, the received signal yb(t) is equalized and combined
into a serial sequence using the layer demapping module.
Te signal is then demodulated based on the transmitter’s
scheme. Te output of the MIMO-OFDM system model
comprises the fnal sequence of gathered binary data.

7. Massive MIMO Systems for
5G Communications

7.1. Performance and Spectral Efciency of 5G Systems.
Massive MIMO is a key technology in 5G systems that en-
hances performance and spectral efciency in several ways [44]:
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(1) Increased spatial multiplexing: Tis enables simul-
taneous communication with multiple user devices
in the same time-frequency resource, known as
spatial multiplexing. By exploiting the spatial di-
mension, massive MIMO signifcantly increases the
capacity of the wireless system, allowing more users
to be served simultaneously.

(2) Beamforming and spatial processing: Te large
number of antennas in massive MIMO enables
beamforming techniques, where the transmitted
signals can be focused towards specifc users. By
steering the beams towards the intended users and
nulling interference towards other directions, the
signal quality at the user devices is improved.
Beamforming increases the received signal strength
and reduces interference, resulting in better cover-
age, higher data rates, and improved overall system
performance.

(3) Interference suppression: Massive MIMO systems
can efectively suppress interference by utilizing
spatial processing techniques. Since the base station
has multiple antennas, it can distinguish between
signals coming from diferent directions. By applying
advanced interference suppression algorithms,
massive MIMO can mitigate interference caused by
other users or neighboring cells, leading to improved
spectral efciency and reduced signal degradation.

(4) Diversity and resilience: Massive MIMO exploits the
spatial diversity provided by a large number of an-
tennas. Tis diversity improves the system’s resil-
ience to fading and interference, enhancing the
overall reliability and quality of service. Even in
challenging environments, where certain paths may
experience deep fading, the presence of multiple
antennas helps maintain reliable communication by
utilizing the available strong paths.

(5) Energy efciency: Massive MIMO can also con-
tribute to energy efciency in 5G systems. By fo-
cusing the transmitted energy towards the intended
users through beamforming, the system can reduce
the overall power consumption. In addition, the
ability to serve multiple users simultaneously in
a single time-frequency resource improves spectral
efciency, enabling more data to be transmitted per
unit of energy.

(6) Overall, massive MIMO enhances the performance
and spectral efciency of 5G systems by increasing
capacity, improving coverage, reducing interference,
providing spatial diversity, and enabling energy-ef-
fcient operations. Tese benefts make it a funda-
mental technology for achieving the ambitious goals
of 5G networks, such as supporting massive con-
nectivity, high data rates, low latency, and diverse
application requirements.
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Figure 3: Tree types of pilot pattern: (a) block, (b) comb, and (c) lattice.
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7.2. Improving Coverage and Efciency in 5G Spectrum.
Massive MIMO utilizes beamforming techniques in order to
improve the efciency and the coverage in the 5G spectrum
in the following ways [44]:

(1) Beam steering: Massive MIMO systems utilize
a signifcant number of antennas at the base station.
By manipulating the phase and amplitude of signals
transmitted from each antenna element, beam-
forming can direct the beams towards specifc user
devices. Tis allows the base station to focus its
energy towards the intended users, improving cov-
erage and signal quality in their direction.

(2) Spatial multiplexing: In addition to beam steering,
massive MIMO enables spatial multiplexing. It can
create multiple spatially separated beams to serve
multiple user devices simultaneously. Tis is
achieved by forming diferent beams with diferent
spatial characteristics, targeting diferent users or
groups of users. Spatial multiplexing increases the
capacity of the system and improves spectral ef-
ciency, as more data can be transmitted in the same
time-frequency resource.

(3) Interference nulling: Massive MIMO beamforming
can also mitigate interference. By using multiple
antennas, the base station can diferentiate between
desired signals and interference coming from other
directions. It applies adaptive beamforming tech-
niques to suppress interference, such as nulling or
canceling unwanted signals, thereby reducing in-
terference levels and improving the signal quality at
the intended receivers.

(4) Hybrid beamforming: In practical deployments of
massive MIMO, hybrid beamforming techniques are
often used to strike a balance between performance
and complexity. Hybrid beamforming combines
digital beamforming, performed in the baseband
domain, with analog beamforming, performed in the
radio frequency (RF) domain. Digital beamforming
is used for fne-grained beamforming adjustments
and interference suppression, while analog beam-
forming is responsible for coarse-grained beam
steering. Tis approach reduces the number of re-
quired RF chains, making it more practical for
implementation.

(5) Adaptive beamforming: Massive MIMO systems
continuously adapt their beamforming strategies
based on channel conditions, user locations, and
system requirements. Trough adaptive beam-
forming, the system optimizes the beamforming
weights and beam directions to maximize the re-
ceived signal quality, improve coverage, and mini-
mize interference. Adaptive beamforming
algorithms utilize channel state information (CSI)
feedback from the user devices to adjust the
beamforming parameters dynamically.

(6) By utilizing beamforming techniques, massive
MIMO improves coverage and efciency in the 5G

spectrum by focusing energy towards intended users,
serving multiple users simultaneously, mitigating
interference, and adapting to change channel con-
ditions. Tese capabilities enhance the system’s ca-
pacity, data rates, and spectral efciency, enabling
better performance and user experiences in 5G
networks.

8. Channel Model

In order to determine the channel, the signal of that pilot is
separated from the signal in the frequency domain. Once the
channel estimate has been obtained, the received signal y.b(t)
is equalized and merged using the layer demapping module,
which includes all receiving antennas. Te signal is then
demodulated using the same method as the transmitter. Te
output of the MIMO-OFDM system model is the fnal se-
quence of binary data [45–47].

Tere are two main types of channels based on the
mobility between the transmitter and the receiver: time-
invariant channels and time-varying channels. A channel is
considered time-invariant when both the transmitter and
the receiver remain stationary in one location. Tere are two
primary kinds of channels: time-invariant and time-varying
channels, depending on the mobility between the trans-
mitter and receiver. A channel is regarded to be time-in-
variant when both the transmitter and the receiver stay fxed
at a single place. For example, a simple cable connection
between a transmitter and a receiver or a fxed WiMAX
system in which the base station and subscriber’s premises
equipment are immovable and are examples of time-in-
variant channels [48].

Communication design engineers use the basic to val-
idate the development of transmitters and receivers; channel
models like AWGN, Rayleigh, and Rician are employed. For
complex communication systems, the establishment of
channel models is crucial to verify the performance of the
transmitter and the receiver. When building channel
models, a variety of elements, various factors, such as the
number of pathways, delays at each path, terrain type,
Doppler frequency, and speed, are taken into consideration
[49, 50].

(1) AWGN: Additive white Gaussian noise, commonly
observed in semifex or coaxial cables connecting
transmit and receive paths, as well as in space
communication, is primarily associated with thermal
noise in the channel. Tis noise may arise from
electrical equipment at both the transmitter and the
receiver ends [35].

R � awgn(T, SNR, ‘measured’). (22)

In this context, T denotes the transmitted vector,
while R represents the received vector, including
noise, based on the signal-to-noise ratio (SNR)
measured in decibels (dB).

(2) Rayleigh: Tis channel type is designated for chan-
nels that lack line-of-sight (LOS) paths and do not

8 International Transactions on Electrical Energy Systems



exhibit any dominant or LOS paths between the
transmitter and the receiver.

(3) Rician: Tis channel type is used for channels with
both line-of-sight (LOS) and non-line of sight (non-
LOS) transmission routes between the transmitter
and the receiver.

Table 1 shows a comparison of three fast-fading channel
models with other reference works. It is crucial to recognize
that there is no universal channel model that is ideal for
every scenario. Te best model to use will depend on the
fading environments and noise channel; the communication
channel can be categorized into three types such as additive
white Gaussian noise (AWGN), Rayleigh fading, and Rician
fading channels. In this paper, the performance of MIM-
O-OFDMhas been analyzed with respect to these three types
of channels.

8.1. AWGN Channel. Te AWGN channel is commonly
employed in communication systems because of its non-
fading nature and straightforward implementation. When
signals traverse the AWGN channel, it adds white Gaussian
noise to the signal [9–11].Te probability density function of
the noise always follows a Gaussian distribution, which is
mathematically expressed as [58]

fg(x) �
1

σ
���
2π

√ e
− (x− µ)2/2σ2

. (23)

Te received signal in the AWGN channel is represented
as follows, with x being a random variable, µ denoting the
mean value, and σ representing the standard deviation [58]:

r(t) � x(t) + n(t), (24)

where x(t)� transmitted signal and n(t)� additive white
Gaussian noise.

8.2. Rayleigh Fading Channel. In a Rayleigh fading channel,
the signal passing through the channel undergoes distortion
caused by the Rayleigh distribution. Multipath reception is
the root cause of Rayleigh fading. Te antennas receive
a large number of refected and scattered waves. Te an-
tennas receive numerous refected and scattered waves,
leading to constructive and destructive interference due to
the efects of multipath. Rayleigh fading is more suitable in
scenarios where there is no direct line-of-sight communi-
cation between the transmitter and the receiver [59]; the
probability density function (pdf) of the Rayleigh random
variable is provided by [58]:

p(z) �
z

σ2
e

− z2/2σ2( ), for z> 0, (25)

where σ is the received signal’s time-average power.

8.3. Rician Fading Channel. In a Rician fading channel, the
amplitude gain follows the Rician distribution. In this type of
channel, there is a line-of-sight signal path between the
transmitter and the receiver. Te Rician fading occurs when

one of the received signals is stronger (typically line of sight
component is stronger than the other) [60, 61]. Te Rician
distribution is represented by the following equation [58]:

p(r) �
r

σ2
e

− r2− A2( )/ 2σ2|( )I0
Ar

σ2
  for (A≥ 0, r≥ 0), (26)

where A represents the peak amplitude of the dominant
signal. l0[.] is the modifed Bessel function.

Here are some additional information about the diferent
fast-fading channel models:

(1) Rayleigh fading:Tis is themost common fast-fading
channel model. It is a good model for channels that
are subject to a large number of uncorrelated multi-
path refections.

(2) Rician fading: Tis model is a more accurate model
than Rayleigh fading for channels that have a strong
direct signal component.

(3) AWGN: Tis is a model for channels that are not
subject to multi-path fading. It is a good model for
channels that are in a laboratory setting or in a very
controlled environment.

Te choice of channel model will afect the design of the
MIMO-OFDM system. For example, a system that uses
a Rayleigh fadingmodel will need to be more robust to signal
loss than a system that uses a Rician fading model. Similarly,
a system that uses an AWGN model will not need to be as
robust to signal loss as a system that uses a Rayleigh fading
model [22].

9. Simulation Results and Analysis

Tis study conducts a link-level simulation to analyze the
BER for various channel models in the MIMO-OFDM
system, both with and without channel estimation using LS
estimators, and applying various modulation methods.
Based on the 5G system’s air interface standard, the sim-
ulated environment uses time-frequency resource slots with
a total of 72 subcarriers (6 resource blocks (RBs) of 12
subcarriers each) and 14 OFDM symbols. Te 2.1GHz
frequency, 1.6MHz bandwidth, 1730 ns delay spread, and
50 km/h UE speed used in the experiment are all specifcs of
the PedA channel model under investigation. Te experi-
mental channel environment is built using the channel
simulator produced at the University of Vienna [21]. Te
PedA channel model is subjected to noise levels ranging
from 0 to 35 dB to make sure that the performance of the
proposed scenario is evaluated in diferent signal-to-noise
ratio circumstances.

Figures 4 and 5 compare the bit error rate (BER) and
throughput for three distinct channel models Rician fading,
Rayleigh fading, and AWGN, utilizing 64-QAMmodulation
and no channel estimation. Table 2 includes specifc BER and
the throughput for diferent values of SNR ranging from 0 to
35 dB. Te fndings reveal that the channel with no fading
(AWGN) has the greatest bit error rate, while the uplink
Rayleigh channel model has a lower BER and higher
throughput than the Rician channel model.Tis is attributed
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to the Rayleigh channel’s presence of multiple non-line-of-
sight paths, whereas the Rician channel model includes both
a direct line-of-sight (LOS) signal and multiple paths. In
contrast, for the nonfading downlink AWGN channels, the
bit error rate is the lowest, resulting in the highest
throughput. Te Rayleigh channel model still exhibits
a higher BER than the Rician channel model, which dem-
onstrates a relatively lower BER.

Table 3 shows the bit error rate and throughput for LS
estimator values for various SNR values in 64-QAM. Te
BER for 64-QAM in Table 3 shows that the AWGN-LS

channel gives lower BER, lowerMSE, and higher throughput
for uplink than Rayleigh and Rician fading channels. For the
downlink, Rayleigh gives the best performance in terms of
BER, MSE, and throughput as compared with AWGN and
Rician. If we look at each value of SNR, we can notice that the
bit error rate is decreased since the value of SNR increases
especially when that value reaches its maximum, and of
course that will be afected by the throughput value for both
uplink and downlink, then that will be diferent when we
compare those values with Table 4, where the channel is 256-
QAM and we can notice that the value of SNR reaches its

Table 1: Comparison of the three fast-fading channel models with other recently referenced works.

Channel model Reference Description

Rayleigh fading [51]
An investigation into the performance of MIMO-OFDM systems in Rayleigh fading
channels, considering varying numbers of transmit and receive antennas, as well as

diferent modulation schemes

Rician fading [52]
An examination of the performance of MIMO-OFDM systems in Rician fading

channels, involving various Rician factor values and diferent antenna
confgurations

AWGN fading [53]

An investigation into the performance of MIMO-OFDM systems in AWGN
channels, considering diferent noise power levels. Te fndings indicate that as the
noise power decreases, the performance of MIMO-OFDM systems in AWGN

channels improves

Block fading [54]
An examination of the performance of MIMO-OFDM systems in block fading
channels, exploring various block lengths and employing diferent channel

estimation techniques

Nakagami fading [55]
An investigation into the performance of MIMO-OFDM systems in Nakagami
fading channels, considering varying Nakagami parameter values and utilizing

diferent precoding techniques

Log-normal fading [56]
An examination of the performance ofMIMO-OFDM systems in log-normal fading

channels, with varying log-normal shadowing factor values, and employing
diferent power allocation schemes

Weibull fading [57]
A study of performance of MIMO-OFDM systems in Weibull fading channels,
considering diverse Weibull shape parameter values and utilizing diferent diversity

techniques

AWGN 64-UPlink
Rayleigh 64-UPlink
Rician 64-UPlink

AWGN 64-Downlink
Rayleigh 64-Downlink
Rician 64-Downlink

BER/uplink for M=64-QAM BER/Downlink for M=64-QAM
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Figure 4: Te performance of the bit error rate in AWGN, Rayleigh, and Rician channels without channel estimation for M� 64-QAM.
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AWGN 64-Uplink
Rayleigh 64-Uplink
Rician 64-Uplink

AWGN 64-Downlink
Rayleigh 64-Downlink
Rician 64-Downlink
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Figure 5: In the absence of channel estimation, the throughput performance in AWGN, Rayleigh, and Rician channels for M� 64-QAM.

Table 2: Te confguration of parameters for the examined MIMO-OFDM system.

Parameter Value
MIMO 2× 2
No of BS, UE 2 and 2
Simulation Uplink/downlink
FFT size 256
Subcarrier spacing 15 kHz
Cyclic prefx 24
Type of modulation OFDM 64, 256, and 1024-QAM
Maximum Doppler frequency 36Hz and 200Hz
Noise model Gaussian noise
Sample frequency 3.84MHz
No. of subcarriers 72
Time slot 14
Fading AWGN, Rayleigh, and Rician
Frame structure FDD
Channel power delay profle Pedestrian A
Channel estimation method Approximate-perfect and pilot-aided LS
Pilot pattern uplink/downlink Diamond
Receiver-type MIMO MMSE
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maximum value which is 27 and the lowest value of BER
0.0003 for uplink and around 0.0119 for downlink and the
throughput reach its maximum value in this case and the
same happen for Rayleigh-LS as well as for Rician-LS. Ten,
the performance of the scenario will be diferent for those
channels.

Figure 6 shows a comparison for BER estimator per-
formance for uplink and downlink where M� 64-QAM
across AWGN, Rayleigh, and Rician channels. In contrast,
Figure 7 shows the comparison of the LS estimator according
to throughput in 64-QAM, Rayleigh, and Rician channels for
both uplink and downlink.

In Figure 8, the performance of the estimator comes with
a comparison for all of the AWGN, Rayleigh, and Rician
channels. According to mean squared error (MSE) for
M� 64-QAM, we can notice that the value Rayleigh channel
is the best performance compared to the other channels
(AWGN and Rician).

Te bit error rate against SNR with the value of M� 256
for both uplink and downlink, Figure 9 shows a comparison
for performance in diferent channel types AWGN, Ray-
leigh, and Rician. Te result shows that the Rayleigh channel
is better for downlink scenario due to the lower BER, while
the AWGN channel is best for uplink scenario.

In Figure 10, the comparison comes for throughput
against SNR (dB) in both uplink and downlink where
M � 256 QAM for AWGN, Rayleigh, and Rician channels.

We can notice from the curve that the value of
throughput in downlink is the best for the Rayleigh
channel and that is diferent for uplink where the AWGN
channel overtakes the other channels. In Figure 11, the
comparison come for MSE against SNR and it shows the
performance for LS estimator in AWGN, Rayleigh, and
Rician channels.

If we look forward at Figures 12–14, we can notice that
the Rayleigh channel can give a worse performance in terms
of BER, MSE, and throughput for all cases for M� 1024-
QAM, and we compare this value with the same parameters
according to AWGN and Rician in 1024-QAM for uplink.
For downlink with M� 1024-QAM, as we can see, the
Rayleigh show lower BER and MSE, and higher throughput
than the AWG and Rician; as a result of all of these, Table 5
can show all the diferences according to each value of BER
and MSE which has been mentioned in all fgures below and
that will come out with diferent performances for LS
estimators.

Table 6 shows a comparison between diferent values
of SNR based on the channels’ type: AWGN, Rayleigh, and
Rician; we notice that the values of BER varied from
0.3392 to 0.0001 for uplink of AWGN and from 0 to
4098000 as a throughput; the comparison is diferent from
one channel to others. Based on the simulation result, the
best throughput we obtain is from the Rayleigh-LS
channel.
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Figure 15 shows that the BER performance before the
channel was estimated and shows the performance foe LS
estimator in AWGN, Rayleigh, and Rician channels, where
M� 64QAM and the proposed AWGN is the best perfor-
mance for both (a) BER/perfect and (b) BER/LS.

10. Conclusions

Tis study thoroughly investigates multipath AWGN,
Rayleigh, and Rician channel models. Utilizing 64-QAM
modulation, the research evaluates the performance of an
OFDM-MIMO system without channel estimation under
these three channel conditions. In the uplink, simulation
results reveal that the nonfading AWGN channel performs
better than the Rayleigh and Rician fading channels,
exhibiting a lower bit error rate. However, in the case of the
Rician fading channel, the presence of a strong signal re-
ceived through a direct line of sight enables it to achieve
a better BER performance than the Rayleigh channel. We
analyze how the LS estimator performs in Rayleigh, Rician,
and AWGN nonfading channels with diferent modulation
schemes, including 64-QAM, 256-QAM, and 1024-QAM.
Te investigation focuses on evaluating the bit error rate
(BER), mean squared error (MSE), and throughput. As the
signal-to-noise ratio increases, both the BER and MSE of the
LS estimator decrease for both uplink and downlink sce-
narios across all modulation schemes. In future research, we
plan to explore the capabilities of deep learning techniques,
such as the super-resolution conventional neural network
(SRCNN) and the denoising algorithm (DnCNN), in mas-
sive MIMO systems with RIS. Te objective is to address

channel estimation challenges in cascaded channels and
enhance BER and MSE performance.
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