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Changes are emerging that will signifcantly alter structure and operation of this century’s distribution networks, and photovoltaic
(PV) systems will play greater role in energy sector, with implications for power system reliability. Considering uncertainties in
solar irradiance and electrical loads and incorporating them into the optimization problem within an appropriate methodology is
becoming increasingly important in reshaping distribution networks. In this paper, uncertainty scenarios are handled with Monte
Carlo Simulation (MCS) under genetic algorithm (GA) and diferential evolution- (DE-) based optimization, and probability
distribution functions (pdf) of bus voltages and line current are obtained to be used in chance-constrained stochastic pro-
gramming. Tis present study focuses on investigating impact of uncertainties in PV system operating under diferent irradiance
scenarios on power loss with probabilistic constraints in distribution networks instead of precise deterministic limits to contribute
more efcient and reliable use of energy. By combining meta-heuristic optimization and MCS technique under one framework,
this paper contributes to knowledge base of how to allocate PV plants within distribution networks under chance-constrained
strategy. In order to show the efectiveness of the proposed methodology, obtained optimization results are tested using MCS
under set of uncertainty conditions and network constraints are evaluated for limit violation probabilities.Te efectiveness of this
method is investigated based on comparative results of two diferent optimization methods through probabilistic analysis and
simulation.

1. Introduction

Nowadays, all countries in the world are making great eforts
to cope with global warming along with the need for energy
[1]. As a result of the high demand for electricity, there is
a demand for renewable energy generation and planning
studies that take into account the probabilistic issues that
come with it. Conventional centralized generation units can
aid to some extent in transmitting electricity over large areas
due to environmental and cost concerns.Within the scope of
these challenges, reducing power losses and keeping bus
voltages and line currents within the required limits are
becoming crucial issues due to technical and economic
reasons [2]. In the event that the load voltages and line
current fows violate their related bounds, the electricity

demand cannot be efciently supplied.Te increase in power
losses caused by voltage drops causes voltages to violate their
corresponding bounds while transferring energy to meet
demand in the electricity distribution network [3]. On the
other hand, with the widespread penetration of photovoltaic
systems, managing the associated uncertainties that pose
signifcant risks to system reliability is a major challenge.
Tese issues have a negative impact on system security and
reliability [4]. Besides the production of high-efciency
generation technologies, such as high-efciency solar cells
for more utilization of solar energy, the need to optimize the
reduction of power losses in active distribution networks has
led researchers to investigate the optimal arrangement of
distributed generation (DG) systems [5–12]. In the context
of photovoltaic plants integrated distribution systems, it is
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important to assess the power loss, bus voltage limits, and
line current carrying capacities. Tis evaluation becomes
more complex due to uncertainties in the solar irradiance
and load demand. To address this challenge, electricity grid
plans can be developed using a stochastic framework. Tese
plans aim to ensure that the necessary energy is supplied to
electrical loads. In that manner, planning photovoltaic
systems with probabilistic constraints in active distribution
networks instead of precise deterministic limits can con-
tribute to more efcient and reliable use of energy.

A number of diferent strategies have been researched
and put into practice in an efort to tackle the issue of loss
reduction [13–15]. Te loss reduction software package
selection, the issue description, the utilized procedure, and
the reached outcome are important criteria for those
strategies that vary from one another. Te optimal capacity
and allocation of DG units have been handled by taking into
account the approach for alleviating distribution power
losses and boosting voltage profle in [16]. Te decrement in
line current fows and the usage of present distribution
feeders in case of any loading situations can be observed as
the advantages by the optimal distribution power loss
minimization. In that manner, the methodologies based on
optimal DG placement and size for minimizing losses have
been presented in [17, 18]. On the other hand, the load
variation is another crucial issue for planning of the dis-
tribution network. As a result of these variations, the op-
erating characteristics of the distribution network fuctuate.
Alleviation of power loss and improvement of voltage profle
have been taken into account by optimal coordination of DG
and voltage regulation devices considering variation of
demand in [19]. In [20], energy loss minimization has been
considered together with the reconfguration of distribution
grid under various electricity consumption levels to perform
the DG planning. Optimal planning has been carried out for
mitigating power losses and managing voltages with the
consideration of low, medium, and high loading conditions
in the presence of DG allocation in [21]. Te power losses
have been optimized by taking into account both the DG
allocation and capacity in the distribution grids with varying
electrical consumption in [22]. Te aforementioned ap-
proaches disregard the temporal fuctuations of renewable
energy and include only single demand or load variation
conditions.

Te optimization procedure of loss minimization
without considering renewable energy systems might not
depict the desired outcomes due to the uncertainties of
demand and generation [23, 24]. In [25], it is shown that the
variation of DG penetration level has a signifcant efect on
the power loss and voltage profle and it is stated that the
penetration is not a static metric. In [26], the optimal re-
newable unit placements and capacities for alleviating en-
ergy losses have been determined using analytical
methodology by considering the variations in load and
renewable power output under diferent scenarios. In this
regard, the minimization of energy loss has been considered
with the optimal renewable sites in [27]. In [28], a meta-
heuristic optimization algorithm is applied to reduce energy
losses in sizing PV and energy storage system considering

uncertainties of demand and generation. Te loss minimi-
zation in the planning framework has been dealt with the
optimal PV system and voltage regulation device co-
ordination in [29]. Te inclusion of optimally located re-
newable energy sources can be used as an advantage both in
terms of reducing power losses and improving voltages
[30–33].When the variability of demand is superimposed on
the variability of output power intermittent renewable
generation, the optimal placement of these units in the
distribution system becomes a challenge optimization
problem [34–37]. In [34], it is stated that the scenario-based
stochastic optimization method with the inclusion of power
loss can lead to higher benefts from renewable-based DG
and reduced green gas emission. In [35, 36], this problem is
optimally considered in the DG-incorporated distribution
grids by taking into account the combination of heuristic
and stochastic methodologies. However, the chance-con-
strained approach has not been handled in these studies. In
[37], an iterative-based probabilistic approach is presented
to minimize average loss with and without consideration of
background harmonics. It is clear that power loss mini-
mization plays an extremely signifcant role in the provision
of consistent and steady power backup to the customers as
a result of the assessment up to this point. However, there is
a gap in published research on loss minimization under the
framework of stochastic optimization with chance con-
straints under diferent uncertainty conditions. In light of
this, this present study focuses on investigating the impact of
uncertainties in PV output power operation under diferent
irradiance scenarios on power loss minimization with
a chance-constrained probabilistic optimization environ-
ment. Te proposed approach has been compared with the
existing research in the literature by considering the subjects
taken into account in this study in Table 1. As presented in
Table 1, the important gaps have been observed in the
previous literature based on various criteria. Tese criteria
can be classifed by considering the inclusion of meta-
heuristic optimization methods, load uncertainty, renew-
able uncertainty, chance-constrained objective function,
Monte Carlo Simulation, and diferent solar irradiance
scenarios (low, medium, and high irradiances) in the
methodologies. Te novelty of this present study is to
consider all these criteria in the proposed approach by flling
the literature gaps.

In this paper, the uncertainty scenarios are handled with
MCS under the GA-based optimization, and the pdf of bus
voltages and line current are obtained to be used in chance-
constrained stochastic programming. Te uncertainties of
the loads and diferent solar irradiance scenarios are in-
troduced into the GA optimization within an integer pro-
gramming problem for the optimal allocation of PV plants in
the distribution system. In addition, the same methodology
is adapted to the DE optimization technique to compare the
optimization results. In order to demonstrate efectiveness of
the proposed methodology, the obtained optimization re-
sults are tested under the set of uncertainty conditions. By
combining meta-heuristic optimization and MCS technique
under one framework, this paper contributes to the
knowledge base of how to allocate PV plants within
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distribution networks under chance-constrained strategy.
Te efectiveness of proposed stochastic optimization
method has been presented by the simulation results by
considering chance-constrained programming in IEEE 33
bus and IEEE 69 bus distribution networks under diferent
solar irradiance scenarios.

Te remaining parts of this paper are organized as
follows. Section 2 illustrates the load fow analysis meth-
odology contemplated in this study. Section 3 demonstrates
the uncertainty modelling taken into account in the present
paper. Section 4 gives the heuristic and stochastic featured
optimization planning framework proposed in this paper.
Section 5 presents the case studies considered in the current
study. Section 6 illustrates the results and discussion drawn
from the proposed approach. Finally, Section 7 provides the
general conclusions determined in this paper.

2. Load Flow Analysis

Te incorporation of renewable PV systems in distribution
grids remains prominent as a result of rising electrical loads.
In that manner, the bus voltages, line current fows, and
losses can be considered while making use of the PVs in
these grids. At the same time, the variability of electrical
demands and solar radiation-dependent PV power outputs
can have an impact on the technical parameters of the
distribution network. Te analysis of load fow is in-
dispensable for examining these parameters in the grid. In
the present article, the load fow analysis, which is based on
backward and forward sweep [38], has been considered to
examine the parameters of the grid. Tis approach has been
demonstrated as follows:

DViter+1
B � (BCBV)(BIBC)I

iter
B,inj,

V
iter+1
B � V

init
B − DViter+1

B ,
(1)

where DViter+1
B is the vector demonstrating the iteratively

changes of bus voltages, IiterB,inj is the vector illustrating the
injection currents associated with PVs and electrical loads at
the present iteration, Vinit

B is the vector illustrating the initial
bus voltages, Viter+1

B is the vector depicting the bus voltages at
another iteration, BIBC is the matrix illustrating the re-
lations between bus and line currents, and BCBV is the
matrix demonstrating the relations between line currents
and bus voltages, respectively.

3. Uncertainty Modelling

In this article, the beta distribution with a stochastic
structure has been used to generate solar radiation condi-
tions [39]. Te expression of this distribution is demon-
strated as follows:

f Sradcrb( 􏼁 �
R Sradcrb , α, β( 􏼁,

0≤ Sradcrb ≤ 1,

α≥ 0, β≥ 0,

0, else,

⎧⎪⎪⎨

⎪⎪⎩
(2)

where

R Sradcrb , α, β( 􏼁 �
Γ(α + β)

Γ(α)Γ(β)
Sradcrb( 􏼁

α− 1 1 − Sradcrb( 􏼁
α− 1

,

(3)

where Sradcrb is the radiation considered for the PV system at
bus b of distribution system for the crth state.Te variables of
beta expression, which are α and β, can be obtained in terms
of deviation (σ) and mean (μ) as follows:

β � (1 − μ)
μ − μ2 − σ2

σ2
􏼠 􏼡,

α �
μβ

1 − μ
.

(4)

Table 1: Comparison of the proposed approach with the existing research in the literature.

References Meta-heuristic optimization
methods Load uncertainty Renewable

uncertainty

Chance-
constrained

objective function

Monte Carlo
Simulation

Diferent solar
irradiance scenarios

[18] ✓
[19] ✓ ✓
[20] ✓ ✓
[21] ✓
[22] ✓ ✓
[23] ✓ ✓ ✓
[24] ✓ ✓ ✓
[26] ✓ ✓
[27] ✓ ✓ ✓
[28] ✓ ✓ ✓
[29] ✓ ✓ ✓
[30] ✓ ✓ ✓
[33] ✓ ✓ ✓
[36] ✓ ✓ ✓
[37] ✓ ✓ ✓ ✓
In this study ✓ ✓ ✓ ✓ ✓ ✓
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Te injected PV output powers can be determined with
respect to the radiation as follows:

P
PV,cr
b,inj � P

PV
b Sradcrb , (5)

where PPV
b is the installed power of renewable PV system.

Tis power will be optimally integrated at bus b of distri-
bution system in the planning.

In the present research, the states of electrical demand
have been produced by considering the expression of normal
distribution [39] as illustrated in the following:

f P
cr
Dem,b􏼐 􏼑 �

1
σDem,b

���
2π

√􏼠 􏼡 exp −
P
cr
Dem,b − PDem,b,avrg

2 σDem,b􏼐 􏼑
2

⎛⎜⎝ ⎞⎟⎠,

(6)

where σDem,b illustrates electrical load standard deviation,
PDem,b,avrg demonstrates the mean of load consumption, and
Pcr
Dem,b depicts the load power at bus b of the distribution

network for the crth state.

4. Planning Framework

Te chance constraints have been considered while opti-
mally minimizing the expected power losses. GA [40]
methodology has been carried out with the integer frame-
work in the distribution network. Te optimization problem
has been dealt with probabilistic structure considering
variabilities of electrical load and PV output powers.Te bus
voltages and line currents have been regarded as the chance
constraints. Te GA methodology jointly with MCS ap-
proach has been implemented for optimal execution of
power loss minimization.

Te objective function has been demonstrated as follows:

E PLoss( 􏼁 �
1
Tcr

􏽘

Tcr

cr�1
􏽘

TNB

b�1
􏽘

TNB

e�1
e>b

V
cr
b

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 V

cr
e

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 Ybe
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 cos θcrb − θcre − δbe( 􏼁,

(7)

where Tcr is the total amount of states for uncertainty in the
planning phase, TNB is the total bus number in the dis-
tribution energy grid, |Vcr

b | and θcrb are the voltage absolute
and angle values of bus b in the crth state of planning, |Ybe|

and δbe are the admittance absolute and angle values in the
bth row and eth column of the related matrix, and E(PLoss) is
the expected value of power losses. Te objective function
has been subjected to the chance constraints as follows:

Pr V
min
b ≤V

cr
b ≤V

max
b􏽮 􏽯≥ λVcr � 1, · · ·Tcr,

b � 1, · · ·TNB,

Pr I
cr
nl ≤ I

max
nl􏼈 􏼉≥ λI cr � 1, · · ·Tcr,

nl � 1, · · ·TNL,

(8)

where Vmin
b and Vmax

b are the minimum and maximum
bounds of voltage at bus b, Icrnl is the line fow current value
for the line between buses b and e at the crth state, Imax

nl is the
maximum bound of line fow current, λV and λI are levels of
confdence corresponding to the bus voltages and line fow
currents, and TNL depicts the total line numbers in the
distribution network.

By considering the limit violation of constraints, the
objective function has been converted to the augmented
structure by handling the method of the penalty function.

f
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(9)

where

ψb
V � 1 − Pr V

min
b ≤V

cr
b ≤V

max
b􏽮 􏽯,

cr � 1, · · ·Tcr,

b � 1, · · ·TNB,

ψnl
I � 1 − Pr I

cr
nl ≤ I
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nl􏼈 􏼉,

cr � 1, · · ·Tcr,

nl � 1, · · ·TNL,

(10)

where ψb
V and ψnl

I illustrate the limit violation probabilities for
bus voltages and line currents and ckV and ckI demonstrate the
factors for penalizing the constraints in case of violation in this
study.Te limits of constraints are sustained while considering
the minimization of total distribution grid power losses from

the viewpoint of (9). Te factors for penalizing the constraints
are performed in case the limit violation is observed [41]. Te
more proper outcome is optimally investigated by GA when
the violation of constraints gives rise to the bigger values in
augmented structure.

Tis study implements the chance-constrained optimi-
zation to determine optimal allocation of PV systems in
distribution network considering power loss, voltage level,
and line current under stochastic programming framework.
In this study, the decision variables are the optimal bus
allocations for the predefned PV system output powers. Te
optimal PV placement buses in distribution energy grid are
depicted as follows:
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X � x
PV
1 , · · · , x

PV
b , · · · , x

PV
TPV􏼐 􏼑, (11)

where

x
PV,min ≤ x

PV
b ≤ x

PV,max
, b � 1, · · · ,TPV, (12)

where xPV
b is the bus number for the optimally allocated PV

system, xPV,min and xPV,max are the minimum and maximum
values for the buses, at which PVs are optimally allocated,
and TPV represents the total PV system allocation buses.
Te block diagram of the proposed methodology is dem-
onstrated in Figure 1.

Te framework of the stochastic optimization process is
depicted in Figure 2.

Te prominent phases of the planning methodology for
optimally allocating the PVs are demonstrated as follows:

(1) Enter the distribution network parameters.
(2) Enter the installed PV power outputs that will be

allocated.
(3) Enter the states of solar irradiance and electrical

demands produced from the probabilistic distri-
bution functions.

(4) Enter the beginning population that demonstrates
the PV allocation buses in a random manner.

(5) Initiate MCS approach considering the crth state
(cr � 1, ...,Tcr). Carry out phase 8, in case cr is
bigger than Tcr.

(6) Extract the electricity demand and calculate the
solar irradiance-dependent PV output powers for
the crth state.

(7) Calculate the bus voltages and line currents on the
distribution network by carrying out load fow
approach considering the crth state.

(8) Plot the functions of stochastic distributions for bus
voltages and line currents on the distribution network.

(9) In this phase, the functions of stochastic distributions
for the voltages and line currents are considered in
terms of limit violation. Te integrals of functions of
stochastic distributions are evaluated on the ranges,
where the bounds are surpassed [42]. An illustrative
example of a probability distribution function for the
quantifcation of chance constraints in the distribu-
tion network is shown in Figure 3. As shown in
Figure 3(a), B is the shaded pdf region where the
confdence level of bus voltage is maintained. How-
ever A and C are pdf regions where the bus voltage
limits of the distribution network parameters are
exceeded. While the shaded region D in Figure 3(b)
can be the pdf region where the confdence level of
line current is maintained, E is the pdf region in which
the line current constraint is violated.

(10) At this stage, the constraints on the fulflment of the
technical limitations are checked from a probabi-
listic point of view according to the confdence level
specifed. If the pdf integrals, where the bounds of

bus voltages and line currents are violated, are not
greater than 1 − λV and 1 − λI, these stochastic
constraints are maintained.

(11) Handle the chance constraints associated with bus
voltages and line currents. Tis step is performed
while determining the objective function by con-
sidering every chromosome.

(12) In case the constraints are not maintained, utilize
the factor for penalizing the constraints in obtaining
the value of objective function.

(13) In case the criteria of optimally planning process are
maintained, the optimal PV allocations are printed
out. If they are not maintained, return to phase 4.

(14) In terms of examining the constraints for limit vio-
lation, implement the testing of optimal PV allocation.

In the optimization process, the PV installed capacity to
be placed in the distribution network is entered.Te states of
solar irradiance and electrical power demands are generated
from probability distribution functions. Ten, the initial
population of PV bus allocation is randomly initialized by
the GA framework at the upper level of the problem. At the
lower level of the problem, probability distribution functions
for voltages and line currents in the distribution network are
determined with the help of load fow under MCS, and then
probabilities of constraint violations are obtained. During
the GA process, PV bus allocations are iteratively generated
according to the objective function in which the violation
cases are included.

In order to demonstrate efectiveness of the proposed
methodology, the obtained optimization results are tested
under the set of uncertainty conditions. Te implementation
of testing of optimal PV allocation outcomes is demon-
strated in Figure 4.

Performing GA jointly with 
MCS for optimal power loss 

minimization and PV 
allocation in distribution grid

Optimal Values

P1
PV Pb

PV PPV
TPV

Srad1
cr Sradb

cr Sradcr
TPV

x1
PV xb

PV
TPVxPV E (PLoss)

Pcr
Dem,1

Pcr
Dem,b

Pcr
Dem,TNB

Figure 1: Te block diagram of the proposed methodology in
this study.
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Stop

Start

Enter the network parameters of power 
distribution grid

Counter = 0

Counter = Counter +1

Counter > Tcr

Extract the demand and calculate
the PV output powers based on

solar radiation for the state

Result optimal PV system allocation

The criteria of planning
process are met?No

Yes

Reproduction

Enter the PV system power outputs that 
will be allocated

Produce the states of solar radiation and 
electrical power demand

Produce the beginning population 
demonstrating PV system allocation buses

Calculate bus voltage and line
current by carrying out load flow

approach for the state

Plot the functions of stochastic
distributions for bus voltages and

line currents for all states

Obtain the value of objective
function in terms of sustaining the

constraints

No

Yes

Crossover

Mutation

Produce new 
population

Figure 2: Te framework of stochastic optimization in this study.
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Bus Voltage

Lower Limit Upper Limit

pd
f

A

B

C

(a)

Line Current

Upper Limit

pd
f

D

E

(b)

Figure 3: Te pdf for (a) bus voltage and (b) line current on the distribution network.

Enter the network parameters of power 
distribution grid

Counter = 0

Counter = Counter + 1

Counter > Tcr

Extract the demand and calculate
the PV output powers based on

solar radiation for the state

Enter the PV system power outputs that 
will be allocated

Enter the states of solar radiation and 
electrical power demand

Calculate bus voltage and line
current by carrying out load flow

approach for the state

Plot the functions of stochastic
distributions for bus voltages and

line currents for all states

Evaluate the chance constraints in
terms of limit violation

probabilities

No

Yes

Enter optimal PV system allocation

Figure 4: Te implementation of testing the optimization outcomes.
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In the verifcation phase of the obtained optimization
results, the optimal PV system allocations and distribution
network parameters are frst input to the test algorithm.
Ten, MCS is applied using the uncertainty sets generated
for electricity consumption and solar irradiance and the
network constraints are evaluated in terms of limit violation
probabilities.

5. Case Studies

In the proposed stochastic programming, the optimization
results are compared for possible long-term solar irradiance
conditions under three diferent profles as low, medium,
and high.Te frequency distributions of solar irradiances for
these scenarios are shown in Figure 5.

6. Results and Discussion

In the optimization process, the size of population, maxi-
mum iteration, rate of crossover, and objective function
tolerance have been considered as 30, 200, 0.8, and 10−6 for
GA. Te stochastic optimization has been implemented on
the PC possessing the CPU of 2.80GHz.

6.1. IEEE 33 Bus Distribution Network. Te planning sim-
ulations have been carried out on the 33 bus distribution
network [43], which is demonstrated in Figure 6.

Te electricity demand states of distribution network are
illustrated in Figure 7. Te standard deviation of electricity
demands is 10% in terms of the mean of these demands.

Te MCS stage of the optimization procedure has been
carried out with 1000 scenarios according to the probability
distributions of solar irradiance and electrical load. Te total
number of PV systems has been considered to be 12 in the
test network.Te installed power of each PV system has been
regarded as 400 kW.Teminimum andmaximum values for
the buses, at which PVs will be optimally allocated, are 2 and
33, respectively. Te level of confdence for the bus voltages
and line fow currents is taken as 0.8 in the chance-con-
strained programming.

6.1.1. Results of GA for Single Run of Stochastic Optimization
Framework. Te GA methodology jointly with MCS ap-
proach has been performed for scenarios 1–3. Te optimal
PV allocations are demonstrated in Table 2.

As seen in Table 2, the optimal PV system allocations
demonstrate variability among the scenarios. It is worthy to
note that these optimal PV allocations are the decision
variables that have been determined by minimizing the
power losses and meeting the chance constraints in all
scenarios. Tese PV placements among the scenarios have
been obtained by taking into account diferent limitation
impacts of chance constraints on the objective function
values. Terefore, the chance constraints and various solar
radiation profles in the scenarios have important role in the
optimal PV allocations and power losses. Te optimally
evaluated distribution grid power losses are shown in Fig-
ure 8 in an iterative manner.

In the base case, PV systems are not allocated and only
variations in electricity demands are considered and the total
power loss in the grid is 211.31 kW. By using stochastic
planning, the power losses have been cut down to 80.69 kW
in scenario 1, 70.38 kW in scenario 2, and 66.65 kW in
scenario 3. Te percentages of decrements in these losses
have been achieved at 61.81%, 66.69%, and 68.46% for
scenarios 1–3 when compared with the base case. Te total
power loss in scenario 1 is greater than that in the other
scenarios due to the limitations imposed by the chance
constraints associated with the bus voltages. In scenario 1,
the optimal PV allocation has led to higher power loss when
compared to the other scenarios since the voltage profle is
less due to the lower solar radiation conditions in this
scenario.Te comparatively less voltage profle has given rise
to the limitation impact by the chance constraints. As the
solar radiation levels get higher in other scenarios, the
voltage profle also has the improvement in the distribution
system. Tis improvement provides the reduction in power
losses and chance constraint limitations. In scenarios 2 and 3,
the total grid losses are alleviated more than those in scenario
1 as the levels of solar irradiance rise and the impact of chance
constraints reduces in these scenarios.

6.1.2. Comparison between GA and DE for Single Run of
Stochastic Optimization Framework. Te proposed opti-
mization issue in all scenarios has also been handled by the
DE methodology for comparing the optimization results
obtained in the GA. In this paper, DE methodology has been
modifed to handle the integer variables since the proposed
problem has discrete framework. Tis modifcation has been
achieved by implementing the approach presented in [44].
Te optimal PV system placements, corresponding power
losses, convergence iterations, and simulation times are
presented in Table 3. Te optimally obtained power losses
are iteratively demonstrated in Figure 9.

As illustrated in Table 3 and Figure 9, the advantages of
GA-based algorithm when compared to DE have been seen.
Te optimal power losses have been obtained as 81.8917 kW,
70.994 kW, and 67.0895 kW in the corresponding scenarios
by using DE algorithm. Te number of iterations for the
convergence is 102, 132, and 147 by the GA algorithm,
whereas that is 200 with the DE approach in scenarios 1, 2,
and 3, respectively. Moreover, the simulation times are
935.36, 1246.11, and 1363.53 seconds for the GA, while those
are 4424.73, 4366.11, and 4470.92 seconds by the DE algo-
rithm. Terefore, the stochastic power loss minimization by
optimal PV allocation can be remarkably dealt with by the
GA-based algorithm thanks to the aforementioned advan-
tages. In addition, the optimal power losses obtained by the
corresponding PV placements have been alleviated by the
infuences of solar radiation levels and chance constraint
limitations in scenarios 1 through 3 for both algorithms.

6.1.3. Comparison between GA and DE for 10 Runs of Sto-
chastic Optimization Framework. Te 10 independent runs
of both GA and DE optimization algorithms have been
considered to compare the algorithm performances. Tese
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independent runs have been performed for all scenarios.
Table 4 illustrates the optimal power loss, PV allocation
buses, iterations, and simulation times for the corresponding
10 runs in all scenarios.

As seen in Table 4, the proposed GA methodology has
the advantages in comparison with DE. Te improvements
have been generally observed by the aid of GA approach in
terms of the power losses, corresponding PV allocation
buses, iterations, and elapsed times. Te GA and DE runs, at
which the best optimization results have been obtained, are
shown with the bold values in Table 4. Te best GA outcome
has been seen at 8th run of GA in scenario 1, and the best

results have been observed at 3rd runs of GA in scenarios 2
and 3. Te best DE optimization results have been de-
termined at 2nd, 10th, and 3rd runs of DE in scenarios 1, 2,
and 3, respectively. Te optimal power losses and PV al-
locations have been determined by both GA and DE in all
scenarios. Te power losses have been reduced by the rising
solar radiation in scenarios 1 through 3.

Te determined best optimal power losses among 10 runs
are presented in Figure 10 in an iterativemanner. As shown in
Figure 10, the proposed GA approach’s superiority has been
observed in comparison with DE.With the GA algorithm, the
power losses have been determined as 80.6008 kW,
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Figure 5: Te frequency distributions of solar irradiances in (a) scenario 1 (low), (b) scenario 2 (medium), and (c) scenario 3 (high).
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Figure 6: Te 33 bus distribution network [43].
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Table 2: Te optimal PV system allocations.

Scenarios PV allocation buses

Scenario 1 6 7 9 12 14 18
24 25 28 30 31 32

Scenario 2 7 8 13 17 21 23
24 25 26 29 30 32

Scenario 3 5 8 12 16 19 21
23 24 25 28 30 33
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Figure 8: Te optimally evaluated distribution network power losses.

Table 3: Results of algorithms for single run of stochastic optimization framework in the 33 bus distribution system.

Scenarios Algorithms Power losses
(kW)

PV allocation
buses Iterations Time (seconds)

Scenario 1 GA 80.69 6, 7, 9, 12, 14, 18, 24, 25, 28, 30, 31, 32 102 935.36
DE 81.8917 15, 32, 12, 24, 33, 25, 10, 29, 8, 17, 28, 27 200 4424.73

Scenario 2 GA 70.38 7, 8, 13, 17, 21, 23, 24, 25, 26, 29, 30, 32 132 1246.11
DE 70.994 25, 12, 32, 21, 10, 23, 26, 18, 24, 29, 7, 31 200 4366.11

Scenario 3 GA 66.65 5, 8, 12, 16, 19, 21, 23, 24, 25, 28, 30, 33 147 1363.53
DE 67.0895 23, 4, 24, 11, 21, 33, 31, 25, 2, 28, 17, 8 200 4470.92
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Figure 9: Iterations of algorithms in case of a single run in the 33 bus distribution system.

Table 4: Results of algorithms for 10 runs of stochastic optimization framework in the 33 bus distribution system.

Scenarios Runs Algorithms Power losses
(kW)

PV allocation
buses Iterations Time (seconds)

Scenario 1

1 GA 81.18845 17, 8, 23, 25, 32, 24, 13, 30, 7, 28, 33, 16 172 1529.044
DE 81.89172 15, 32, 12, 24, 33, 25, 10, 29, 8, 17, 28, 27 200 4455.618

2 GA 80.68997 30, 31, 18, 25, 6, 28, 24, 7, 9, 32, 12, 14 102 925.0102
DE 80.79174 25, 24, 12, 17, 7, 29, 8, 2 , 30, 1 , 32, 31 200 4303.45 

3 GA 80.76082 11, 24, 14, 33, 9, 7, 32, 28, 30, 6, 25, 18 135 1170.512
DE 80.94892 15, 18, 32, 9, 25, 24, 11, 6, 33, 26, 29, 30 200 4353.887

4 GA 80.6172 18, 28, 24, 8, 26, 7, 31, 12, 33, 30, 25, 15 151 1307.531
DE 81.58163 13, 31, 15, 24, 16, 6, 9, 26, 7, 25, 30, 33 200 4358.224

5 GA 80.88062 6, 18, 27, 11, 24, 33, 14, 31, 25, 30, 9, 7 112 979.7276
DE 81.26418 24, 14, 30, 33, 17, 11, 28, 25, 7, 32, 12, 6 200 4375.681

6 GA 80.76594 28, 24, 9, 7, 32, 30, 31, 25, 11, 26, 15, 18 139 1208.576
DE 81.13645 17, 32, 30, 14, 7, 13, 24, 26, 25, 28, 9, 33 200 4349.562

7 GA 81.18845 17, 8, 23, 25, 32, 24, 13, 30, 7, 28, 33, 16 172 1446.726
DE 81.35108 12, 8, 18, 9, 14, 33, 32, 25, 29, 27, 24, 30 200 4364.901

8 GA 80. 0079 33, 15, 8, 30, 31, 28, 7, 24,  , 18, 25, 12 105 914.902
DE 81.22338 33, 30, 32, 9, 10, 29, 26, 17, 14, 25, 8, 24 200 4390.024

9 GA 80.68997 30, 31, 18, 25, 6, 28, 24, 7, 9, 32, 12, 14 102 980.4589
DE 81.15259 30, 25, 32, 17, 29, 7, 6, 24, 14, 11, 10, 33 200 4418.767

10 GA 81.25007 17, 7, 24, 30, 11, 12, 31, 23, 25, 29, 32, 15 127 1107.407
DE 81.37312 18, 29, 5, 10, 26, 32, 24, 30, 12, 14, 33, 25 200 4432.145
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70.3473 kW, and 66.4032 kW for scenarios 1, 2, and 3, re-
spectively. On the other hand, those have been obtained as
80.7917 kW, 70.6479 kW, and 66.5594 kW in all scenarios
with DE approach. Te proposed algorithm converges to the
optimal solutions at 105, 156, and 144 iterations, while the DE
algorithm converges to the optimal results at 200 iterations in
scenarios 1, 2, and 3, respectively. In addition, the GAmethod
gives the optimal outcomes at 914.90, 1350.51, and
1237.92 seconds, whereas the DE algorithm shows these re-
sults at 4303.45, 4412.59, and 4416.60 seconds. As a result, the
GA-based methodology has also advantages in the best op-
timal results when compared to DE.

Te evaluated best PV system allocations among 10 runs
of both GA and DE algorithms are iteratively shown in
Figure 11 for all scenarios. Te PV placements have con-
verged to their corresponding optimal buses as seen in

Figure 11. It is clearly shown in Figure 11 that the best
optimal PV placements have been achieved at the diferent
sites by applying GA and DE with stochastic optimization
framework on the distribution system. For both method-
ologies, these best PV allocations have been obtained so that
the power losses have been minimized and the chance
constraints have been satisfed. Tese best placements have
been infuenced by the chance constraint and solar radiation
levels in the scenarios. Tis in turn has also resulted in the
changes of power losses among the scenarios.

Te statistical analysis of algorithms’ performance has
been conducted for observing the executions of GA and DE
methodologies. Te corresponding analysis is presented in
Table 5. As seen in Table 5, the outcomes have been given
based on 10 independent runs of optimization algorithms.
Te improvements have been determined in best, average,

Table 4: Continued.

Scenarios Runs Algorithms Power losses
(kW)

PV allocation
buses Iterations Time (seconds)

Scenario 2

1 GA 70.38690 30, 25, 29, 23, 26, 7, 21, 24, 8, 32, 13, 17 132 1085.535
DE 70.99402 25, 12, 32, 21, 10, 23, 26, 18, 24, 29, 7, 31 200 4210.81

2 GA 70.37624 6, 13, 21, 25, 17, 30, 29, 8, 23, 7, 32, 24 128 1112.944
DE 70.9224 23, 28, 25, 20, 24, 30, 33, 9, 26, 6, 13, 16 200 4197.457

3 GA 70.34734 24, 7, 25, 17, 21, 31, 8, 13, 32, 29,  , 23 15 1350.513
DE 70.69013 13, 24, 26, 20, 33, 7, 8, 32, 23, 17, 29, 25 200 4228.313

4 GA 70.39349 23, 32, 21, 25, 9, 29, 26, 17, 24, 13, 7, 31 106 918.533
DE 70.80245 32, 17, 25, 29, 9, 24, 27, 13, 7, 33, 23, 20 200 4238.582

5 GA 70.45252 24, 23, 6, 7, 31, 21, 25, 33, 13, 8, 29, 17 131 1135.114
DE 71.05788 23, 32, 16, 27, 25, 9, 24, 6, 29, 14, 33, 22 200 4197.864

6 GA 70.60315 22, 7, 33, 17, 9, 13, 23, 24, 31, 29, 25, 6 141 1224.547
DE 70.68907 13, 29, 8, 30, 25, 31, 21, 24, 7, 23, 16, 27 200 4345.649

7 GA 70.72217 17, 13, 21, 3, 32, 29, 25, 26, 7, 8, 24, 31 125 1078.431
DE 70.90593 15, 23, 6, 21, 8, 7, 28, 24, 33, 25, 13, 31 200 4201.741

8 GA 70.47606 23, 25, 7, 30, 26, 21, 32, 8, 17, 13, 31, 24 91 799.0024
DE 71.25464 29, 18, 24, 20, 33, 13, 7, 8, 28, 25, 23, 26 200 4333.079

9 GA 70.35796 21, 23, 31, 17, 26, 7, 32, 25, 24, 29, 13, 8 132 1086.863
DE 70.90343 29, 22, 23, 5, 25, 26, 31, 8, 14, 17, 24, 30 200 4399.946

10 GA 70.44946 31, 20, 29, 24, 25, 17, 7, 14, 23, 6, 32, 8 137 1194.988
DE 70. 478 29, 31, 7, 20, 8, 13, 33, 18, 23, 24, 25, 2 200 4412.595

Scenario 3

1 GA 66.81752 25, 24, 2, 23, 33, 16, 30, 12, 8, 21, 5, 6 167 1435.939
DE 67.0895 23, 4, 24, 11, 21, 33, 31, 25, 2, 28, 17, 8 200 4315.394

2 GA 66.40316 28, 5, 8, 12, 23, 21, 25, 32, 2, 24, 16, 30 145 1259.962
DE 67.15949 23, 10, 24, 25, 8, 19, 18, 6, 29, 32, 30, 20 200 4314.125

3 GA   .4031 25, 28, 30, 21, 2, 1 , 32, 5, 23, 8, 24, 12 144 1237.924
DE   .55941 2, 5, 24, 30, 12, 31, 8, 25, 1 , 21, 23, 28 200 441 . 0 

4 GA 66.40316 21, 32, 28, 23, 30, 12, 25, 8, 5, 24, 16, 2 166 1440.995
DE 66.85096 27, 17, 24, 3, 23, 8, 31, 21, 7, 12, 25, 30 200 4293.368

5 GA 66.8767 16, 8, 28, 26, 23, 25, 30, 24, 22, 32, 12, 19 108 941.324
DE 67.19499 21, 11, 3, 2, 18, 24, 25, 7, 8, 33, 28, 30 200 4301.227

6 GA 66.61077 11, 25, 8, 24, 28, 16, 2, 21, 5, 33, 23, 30 81 707.1047
DE 66.90454 23, 33, 8, 25, 16, 31, 24, 5, 2, 28, 21, 11 200 4428.746

7 GA 66.70066 16, 30, 28, 21, 32, 19, 24, 3, 5, 12, 8, 25 140 1205.368
DE 66.81706 19, 8, 5, 30, 25, 24, 21, 23, 28, 15, 33, 12 200 4324.598

8 GA 66.78352 16, 33, 21, 3, 12, 28, 25, 2, 5, 30, 24, 8 125 1080.636
DE 67.0154 6, 10, 2, 25, 21, 23, 31, 32, 17, 8, 24, 26 200 4330.636

9 GA 66.65544 8, 30, 28, 21, 19, 33, 24, 12, 25, 23, 16, 5 81 711.0599
DE 66.81642 28, 24, 6, 10, 31, 23, 2, 32, 8, 16, 25, 21 200 4294.741

10 GA 66.65544 33, 25, 23, 12, 5, 30, 19, 16, 8, 24, 28, 21 142 1269.396
DE 67.16666 24, 33, 8, 28, 23, 5, 13, 22, 15, 25, 30, 2 200 4309.311

Te bold values represent the best optimization results of GA and DE.
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Figure 10: Best power losses in algorithms for 10 runs of stochastic optimization framework in the 33 bus distribution system.
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Figure 11: Continued.
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and worst values of objective function by implementing the
GA method in all scenarios. Tese fndings illustrate that
the proposed GA approach has presented more improved
behavior in comparison with DE. Moreover, the GA
methodology has given smaller standard deviation values
than DE in all scenarios. Te near-optimal outcome rep-
resents the one with the lower standard deviation [45, 46].
In that manner, the GA-based optimization is more suc-
cessful than DE since it has the smaller standard deviation.

6.1.4. Validation of Optimization Results. In this study, the
robustness of the best results obtained from the optimization
results using GA and DE with 1000 samples in each of three

diferent scenarios is tested under the uncertainty sets con-
sidering low, medium, and high irradiance cases. In the test
results obtained using the load fow under MCS, it is observed
whether the bus voltages and line currents will violate the
chance constraints. Table 6 shows the violation probabilities of
bus voltages in all scenarios for both GA and DE.

As can be seen in Table 6, the boundary violation in the
chance constraints of bus voltages is observed in the base
case. In all scenarios, including the base case, no violations of
the chance constraints of line currents were observed. In
scenarios 1–3, the best optimal PV placements for both
algorithms were able to signifcantly reduce the violations.
Te violation of the chance constraints for bus voltages was
achieved at the desired confdence level with the optimal PV
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Figure 11: PV allocation convergence curves for; (a) scenario 1 in GA, (b) scenario 1 in DE, (c) scenario 2 in GA, (d) scenario 2 in DE, (e)
scenario 3 in GA, (f ) scenario 3 in DE for the 33 bus distribution system.
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allocations for each bus of the distribution network. Te
confdence level of 0.8 in scenario 1 is almost maintained.
Moreover, in scenarios 2 and 3, confdence levels of 0.9 and
0.95 were achieved, respectively.

In Figure 12, the voltage at bus 33 and the line current
between buses 1 and 2 are presented as an example of the
cumulative distribution functions for the base case and
scenarios 1 to 3. Bus 33 is prominent in terms of being the far
end bus in the distribution grid. Te line between buses 1
and 2 is also important with regard to feeding this grid. By
the best optimal PV allocation, the improvements in

technical parameters have been observed compared to the
base case as seen in Figure 12. Te increase in solar irra-
diance gives rise to the enhancements in cumulative dis-
tribution functions. It is clear from Figure 12 that the
cumulative distributions for bus voltages have a shift to the
right hand side, whereas those for line currents possess the
shift to the left hand side in scenarios 1 through 3 when
compared with the base case. Tese shifts demonstrate the
improvements in bus voltages and line currents.

Variations in electrical demand and PV systems have
a signifcant impact on the constraints of power network.

Table 5: Statistical analysis for GA and DE algorithms in the 33 bus distribution system.

Scenarios Algorithms Best power
losses (kW)

Average power
losses (kW)

Worst power
losses (kW) Standard deviation

Scenario 1 GA 80.6008 80.8632 81.2501 0.2518
DE 80.7917 81.2715 81.8917 0.3103

Scenario 2 GA 70.3473 70.4565 70.7222 0.1199
DE 70.6479 70.8868 71.2546 0.1885

Scenario 3 GA 66.4032 66.6310 66.8767 0.1766
DE 66.5594 66.9575 67.1950 0.2039

Table 6: Te probabilities of limit violations for GA and DE in the 33 bus distribution system.

Buses
Te probabilities of limit violations

Base case
GA DE

Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3
1 — — — — — — —
2 — — — — — — —
3 — — — — — — —
4 — — — — — — —
5 — — — — — — —
6 0.7151 — — — — —
7 0.9999 0.0011 — — 0.0011 — —
8 0.9999 0.0352 0.0042 — 0.0351 0.0042 —
9 0.9999 0.0713 0.0128 0.0010 0.0710 0.0128 0.0010
10 0.9999 0.1025 0.0305 0.0049 0.1022 0.0305 0.0049
11 0.9999 0.1149 0.0306 0.0049 0.1145 0.0305 0.0049
12 0.9999 0.1148 0.0359 0.0058 0.1144 0.0358 0.0058
13 0.9999 0.1579 0.0559 0.0145 0.1574 0.0558 0.0145
14 0.9999 0.1741 0.0742 0.0182 0.1735 0.0741 0.0183
15 0.9999 0.1738 0.0845 0.0203 0.1732 0.0844 0.0203
16 0.9999 0.1909 0.0843 0.0203 0.1729 0.0842 0.0203
17 0.9999 0.1912 0.0948 0.0277 0.1906 0.0946 0.0277
18 0.9999 0.1913 0.0947 0.0308 0.1908 0.0943 0.0308
19 — — — — — — —
20 — — — — — — —
21 — — — — — — —
22 — — — — — — —
23 — — — — — — —
24 — — — — — — —
25 — — — — — — —
26 0.9958 0.0002 — — 0.0002 — —
27 0.9999 0.0016 — — 0.0016 — —
28 0.9999 0.0331 0.0039 — 0.0330 0.0039 —
29 0.9999 0.0987 0.0192 0.0027 0.0872 0.0191 0.0027
30 0.9999 0.1248 0.0316 0.0064 0.1111 0.0315 0.0064
31 0.9999 0.1704 0.0448 0.0139 0.1536 0.0447 0.0139
32 0.9999 0.1701 0.0526 0.0142 0.1534 0.0525 0.0162
33 0.9999 0.1702 0.0526 0.0161 0.1696 0.0523 0.0183
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When distribution networks with renewable energy sources
are planned to incorporate the efects of these probabilistic
behaviors, it may be possible to maximize the expected
benefts. Te chance constraint approach is an efective
method for incorporating this random behavior into the
optimization problem. As a result, the problem of mini-
mizing power losses in distribution networks by considering
the uncertainties arising from photovoltaic systems together
with the uncertainties of the load is of great importance in
terms of the most efcient use of available energy.

6.2. IEEE 69 Bus Distribution Network. Te planning sim-
ulations have been performed on the 69 bus distribution
network [43], which is demonstrated in Figure 13. Te
distribution system electricity demand states are presented
in Figure 14. For this distribution system, the standard

deviation of electricity demands is 10% in terms of mean of
these electricity demands.

Based on the probability distributions of solar irradiance
and electrical loads, the MCS stage of the optimization
methodology has been performed with 1000 states in all
scenarios. Te total number of PVs has been regarded as 12
in the distribution system. Te installed power of each PV
system has been considered as 400 kW. Te minimum and
maximum values for the buses, where PV systems will be
optimally placed, are 2 and 69, respectively. Te confdence
level for the bus voltages and line currents is considered as
0.8 in the chance-constrained programming.

6.2.1. Comparison between GA and DE for Single Run of
Stochastic Optimization Framework. For scenarios 1–3, the
GA optimization methodology together with MCS has been
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Figure 12: Te cumulative distribution functions of (a) bus voltage for GA, (b) line current for GA, (c) bus voltage for DE, (d) line current
for DE in the 33 bus distribution system.
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carried out. Te optimization problem has also been
implemented by the DE methodology for comparing the
results determined in the GA approach. Te optimal PV
system allocations, expected power losses, convergence it-
erations, and simulation times are presented in Table 7.

For both methodologies, the variabilities of optimal PV
system placements among the scenarios are illustrated as seen
in Table 7. It is worthwhile mentioning that these optimal PV
bus allocations have been obtained by minimizing the power
losses and meeting the chance constraints in all scenarios. Te
optimal PV placements and power losses can be afected by the
limitation impact of chance constraints based on diferent solar
irradiance scenarios. Te optimal distribution network power
losses are iteratively demonstrated in Figure 15.

For the base case, PV systems are not placed and only
variations in electricity loads are considered and the total power
loss in the distribution network is 191.7302 kW. By applying
the GA methodology, the power losses have been decreased to
79.8442 kW in scenario 1, 73.2466 kW in scenario 2, and
69.1757 kW in scenario 3, respectively.Tese power losses have
been decreased by 58.36%, 61.80%, and 63.92% for scenarios
1–3 in comparison with the base case. Due to the limitations
imposed by the chance constraints related with the bus

voltages, the total power loss in scenario 1 is greater than that in
the other scenarios. Since the voltage level is less due to the
lower solar irradiance conditions in scenario 1, higher power
loss has been obtained by the optimal PV placement in this
scenario when compared with the other scenarios. Te limi-
tation efect of chance constraints is increased by the com-
paratively less voltage level in scenario 1. Te distribution
system voltage profle is improved when the solar irradiance
levels increase in scenarios 2 and 3. Te power losses and
chance constraint limitations are minimized by this im-
provement. Since the solar irradiance levels increase and the
impact of chance constraints decreases in scenarios 2 and 3, the
total distribution network power losses are minimized in these
scenarios more than those in scenario 1.

Te advantages of GA optimization methodology have
been observed in comparison with DE as presented in Ta-
ble 7 and Figure 15. Te optimal power losses have been
determined as 80.1766 kW, 73.9686 kW, and 69.5418 kW in
scenarios 1–3 by using the DE approach. Te number of
iterations for the convergence is 110, 124, and 140 by GA
methodology, while that is 200 for DE in scenarios 1–3,
respectively. In addition, the simulation times are 2131.394,
2402.663, and 2712.684 seconds for GA, while these are

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
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Figure 13: Te 69 bus distribution network [43].
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9251.708, 9129.139, and 9348.287 seconds by the DE ap-
proach. As a result, GA-based methodology can handle the
stochastic power loss minimization in both less simulation
times and less number of iterations when compared with the
DE approach. In addition, the total power losses determined
by the GA approach have been improved more than those
obtained by DE. For both algorithms, the optimal power
losses have been minimized in scenarios 1 through 3.

6.2.2. Comparison between GA and DE for 10 Runs of Sto-
chastic Optimization Framework. Te 10 runs of both GA
and DE optimization methodologies have been taken into
account for comparing the algorithm performances. For all
scenarios, these 10 independent runs have been imple-
mented. Te expected optimal power losses, PV allocation
buses, iterations, and simulation times are presented in
Table 8 by considering the 10 runs in all scenarios.

Te proposed GA approach has the advantages when
compared to DE as shown in Table 8. With regard to the
power losses, PV allocation buses, iterations, and simulation
times, the improvements have been generally determined by
GA methodology. Te GA and DE runs, where the best
optimization outcomes have been observed, are shown with
the bold values in Table 8. Te best GA optimization results
have been obtained at 9th run of GA in scenario 1, 5th run of
GA in scenario 2, and 7th run of GA in scenario 3,

respectively. Te best DE optimization results have been
determined at 10th runs of DE in scenarios 1 and 2, and the
best result has been seen at 4th run of DE in scenario 3. In
scenarios 1 through 3, the power losses have been reduced by
the increasing solar irradiance for both algorithms.

Te obtained best expected optimal power losses among 10
runs are iteratively shown in Figure 16. Te proposed GA
methodology’s advantages have been determined when com-
pared to DE as presented in Figure 16. Te best optimal power
losses have been obtained as 79.8339kW, 72.2470 kW, and
68.8709 kW taking into account GA approach for scenarios 1,
2, and 3, respectively. However, the best optimal power losses
have been determined as 79.9527kW, 73.0363 kW, and
69.2797 kW for all scenarios using the DE methodology. Te
proposed GA methodology converges to the best optimal
results at 105, 126, and 120 iterations, whereas theDE approach
converges to the best optimal solutions at 200 iterations for
scenarios 1, 2, and 3, respectively. Moreover, the GA opti-
mization methodology presents the best optimal results at
2034.513, 2441.415, and 2325.157 seconds, while the DE ap-
proach gives the best optimal solutions at 9267.212, 9226.335,
and 8977.042 seconds. Terefore, the proposed GA optimi-
zation methodology has the superiority for the best optimal
solutions in comparison with DE.

Te best optimal PV system allocations for both GA and
DE methodologies are presented in Figure 17 for all scenarios
in an iterative manner. As seen in Figure 17, the best PV

Table 7: Results of algorithms for single run of stochastic optimization framework in the 69 bus distribution system.

Scenarios Algorithms Power losses
(kW)

PV allocation
buses Iterations Time (seconds)

Scenario 1 GA 79.8442 62, 61, 16, 65, 59, 60, 57, 23, 50, 64, 67, 63 110 2131.394
DE 80.1766 50, 64, 65, 61, 21, 68, 66, 8, 60, 59, 62, 63 200 9251.708

Scenario 2 GA 73.2466 64, 60, 19, 63, 58, 67, 2, 40, 61, 49, 69, 62 124 2402.663
DE 73.9686 61, 62, 64, 59, 7, 69, 46, 5, 22, 10, 63, 60 200 9129.139

Scenario 3 GA 69.1757 64, 38, 60, 61, 48, 62, 36, 63, 66, 22, 50, 8 140 2712.684
DE 69.5418 58, 50, 2, 8, 12, 64, 41, 23, 61, 48, 62, 63 200 9348.287
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Figure 15: Iterations of algorithms in case of a single run in the 69 bus distribution system.
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Table 8: Results of algorithms for 10 runs of stochastic optimization framework in the 69 bus distribution system.

Scenarios Runs Algorithms Power losses
(kW)

PV allocation
buses Iterations Time (seconds)

Scenario 1

1 GA 79.8442 62, 61, 16, 65, 59, 60, 57, 23, 50, 64, 67, 63 165 3197.092
DE 80.1766 50, 64, 65, 61, 21, 68, 66, 8, 60, 59, 62, 63 200 9316.292

2 GA 79.8442 62, 61, 16, 65, 59, 60, 57, 23, 50, 64, 67, 63 107 2073.265
DE 80.1766 50, 64, 65, 61, 21, 68, 66, 8, 60, 59, 62, 63 200 8998.135

3 GA 79.8442 62, 61, 16, 65, 59, 60, 57, 23, 50, 64, 67, 63 128 2480.168
DE 80.8550 69, 16, 60, 65, 62, 53, 37, 58, 63, 24, 64, 61 200 9103.581

4 GA 79.9431 69, 59, 58, 61, 63, 62, 65, 64, 50, 15, 24, 60 146 2828.942
DE 82.7304 62, 61, 16, 10, 12, 21, 64, 31, 65, 60, 63, 9 200 9112.650

5 GA 79.8442 62, 61, 16, 65, 59, 60, 57, 23, 50, 64, 67, 63 108 2092.642
DE 80.1766 50, 64, 65, 61, 21, 68, 66, 8, 60, 59, 62, 63 200 9149.151

6 GA 79.8442 62, 61, 16, 65, 59, 60, 57, 23, 50, 64, 67, 63 130 2518.920
DE 80.1766 50, 64, 65, 61, 21, 68, 66, 8, 60, 59, 62, 63 200 9094.538

7 GA 79.9431 69, 59, 58, 61, 63, 62, 65, 64, 50, 15, 24, 60 160 3100.210
DE 80.8550 69, 16, 60, 65, 62, 53, 37, 58, 63, 24, 64, 61 200 9126.611

8 GA 79.9008 58, 63, 62, 65, 50, 60, 10, 61, 14, 59, 22, 64 110 2131.394
DE 82.7304 62, 61, 16, 10, 12, 21, 64, 31, 65, 60, 63, 9 200 9179.141

9 GA 79.8339  5, 49, 11,  1,  2,  3,  4, 1 , 58, 59,  0, 21 105 2034.513
DE 80.1114 62, 63, 18, 58, 64, 65, 66, 60, 49, 56, 61, 23 200 9239.240

10 GA 79.9331 65, 60, 62, 64, 20, 59, 49, 61, 15, 63, 58, 67 132 2557.673
DE 79.9527  1, 50,  5,  2, 59,  4, 22,  3,  0, 1 , 9, 10 200 92 7.212

Scenario 2

1 GA 72.6806 59, 63, 61, 65, 48, 62, 50, 60, 21, 11, 69, 49 137 2654.555
DE 73.2466 64, 60, 19, 63, 58, 67, 2, 40, 61, 49, 69, 62 200 8804.420

2 GA 72.7266 50, 61, 66, 62, 51, 60, 59, 64, 12, 21, 3, 63 120 2325.157
DE 73.9686 61, 62, 64, 59, 7, 69, 46, 5, 22, 10, 63, 60 200 8776.501

3 GA 72.7216 60, 63, 59, 62, 9, 64, 67, 22, 40, 50, 61, 12 160 3100.210
DE 73.4311 60, 58, 61, 62, 10, 69, 29, 63, 65, 21, 49, 2 200 8841.018

4 GA 72.8757 69, 49, 62, 64, 52, 60, 50, 59, 22, 61, 37, 63 111 2150.770
DE 74.5439 2, 64, 50, 7, 12, 8, 62, 21, 55, 59, 63, 61 200 8862.489

5 GA 72.2470  0,  3, 49, 50,  4, 38,  1,  2, 11, 59, 12, 22 12 2441.415
DE 73.3776 21, 58, 38, 53, 65, 63, 11, 62, 60, 69, 61, 49 200 8777.352

6 GA 72.7272 69, 59, 65, 63, 62, 2, 60, 11, 49, 61, 50, 21 145 2809.565
DE 73.0575 62, 37, 61, 65, 60, 63, 11, 50, 64, 21, 12, 8 200 9086.357

7 GA 72.9295 59, 9, 67, 69, 2, 61, 62, 63, 64, 22, 50, 60 123 2383.286
DE 73.1616 22, 65, 62, 6, 51, 59, 61, 64, 69, 63, 50, 49 200 8785.458

8 GA 72.6692 9, 67, 61, 63, 12, 62, 49, 60, 58, 22, 50, 65 101 1957.007
DE 73.0523 62, 2, 49, 48, 66, 60, 58, 64, 61, 69, 21, 63 200 9060.074

9 GA 72.4649 59, 50, 19, 60, 10, 49, 63, 8, 68, 64, 61, 62 129 2499.544
DE 73.3422 4, 12, 49, 60, 63, 20, 64, 58, 48, 62, 61, 69 200 9199.887

10 GA 72.4932 37, 59, 64, 11, 49, 23, 62, 60, 61, 69, 63, 50 142 2751.436
DE 73.03 3 12, 23,  0, 49,  9, 59,  3,  2,  5,  1, 9, 50 200 922 .335

Scenario 3

1 GA 69.2663 24, 64, 62, 59, 10, 4, 50, 9, 49, 36, 63, 61 162 3138.963
DE 70.7217 61, 67, 59, 62, 38, 28, 53, 21, 64, 30, 2, 63 200 9023.096

2 GA 69.1757 64, 38, 60, 61, 48, 62, 36, 63, 66, 22, 50, 8 141 2732.060
DE 69.5418 58, 50, 2, 8, 12, 64, 41, 23, 61, 48, 62, 63 200 9020.443

3 GA 68.9266 49, 61, 53, 62, 64, 63, 69, 60, 37, 19, 3, 50 138 2673.931
DE 69.6623 69, 16, 60, 54, 63, 62, 61, 65, 40, 2, 49, 50 200 9234.721

4 GA 69.0231 53, 48, 66, 63, 50, 61, 64, 20, 62, 49, 59, 2 157 3042.081
DE  9.2797  0, 17,  9,  3,  4,  2, 28, 49, 9, 48, 2,  1 200 8977.042

5 GA 69.1701 50, 60, 64, 6, 49, 63, 62, 18, 61, 69, 2, 54 113 2189.523
DE 69.2804 56, 62, 61, 63, 60, 49, 47, 64, 50, 39, 20, 69 200 8993.474

6 GA 68.9123 64, 4, 49, 8, 63, 58, 61, 62, 22, 50, 2, 12 125 2422.039
DE 69.3502 60, 36, 50, 61, 62, 66, 2, 63, 64, 17, 8, 29 200 9260.105

7 GA  8.8709  1,  0,  3,  9,  2, 2,  4, 20, 49, 8, 50, 3 120 2325.157
DE 69.3191 28, 64, 21, 60, 8, 62, 69, 63, 50, 39, 61, 2 200 9042.341

8 GA 69.2231 28, 22, 67, 63, 62, 61, 49, 55, 64, 50, 59, 4 130 2518.920
DE 69.2890 49, 23, 62, 2, 69, 60, 50, 61, 64, 63, 7, 51 200 9054.966

9 GA 69.2469 69, 60, 9, 23, 50, 63, 48, 38, 64, 62, 61, 47 126 2441.415
DE 70.1427 4, 58, 37, 61, 69, 15, 60, 8, 49, 62, 50, 64 200 8979.913

10 GA 69.1306 36, 59, 54, 69, 62, 21, 61, 49, 39, 63, 64, 50 149 2887.070
DE 69.6305 21, 10, 61, 4, 62, 64, 49, 66, 63, 59, 47, 2 200 9010.377

Te bold values represent the best optimization results of GA and DE.
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Figure 16: Best power losses in algorithms for 10 runs of stochastic optimization framework in the 69 bus distribution system.
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allocations have converged to their corresponding buses. Te
best optimal PV system allocations have been determined at
various buses by implementing GA and DE with stochastic
optimization framework on the distribution network. Tese
optimal PV placements have been achieved so that the power
losses have been alleviated and the chance constraints have
been maintained.

In this paper, the simulation studies have been con-
ducted in the direction of stochastic optimization approach
for strengthening the distribution network with the exe-
cution of useful and optimal PV allocations. Tese alloca-
tions may be utilized for the appropriate supervision of
distribution grid. Te entire grid performance can be
upgraded with optimally placing the PV units by delivering
the demands with the help of lines.Te various uncertainties
of load consumption and PV output powers cause the
distribution system to have a complex nature. Hence, the
distribution grid parameters can have variabilities. In this
concept, the optimal PV system allocation provides the
power fow delivery to the demands through the lines. Te
power loss minimization of entire distribution network can
be achieved by this power delivery. With the aim of mini-
mizing the power losses, the optimal PV placements have
been properly managed for supplying the lines and de-
mands.Terefore, specifying the allocations of PV systems is
inevitable from the standpoint of distribution system loss.

Te statistical analysis of algorithms’ performance is given in
Table 9. Te results have been presented by considering 10
independent runs of GA and DE optimization algorithms as
shown inTable 9.Te improvements have been obtained in best,
average, and worst values of optimal power losses by applying
GAmethodology for all scenarios. In addition, the GA approach
has presented lower standard deviation values than DE for all
scenarios. It is clearly seen that the proposed GA method has
presented more successful results when compared to DE.

6.2.3. Validation of Optimization Results. Te validation of
best optimization results determined from GA and DE
optimization frameworks has been performed under the
uncertainty sets considering low, medium, and high irra-
diance scenarios for presenting the robustness of optimal
results. Te violations for the chance constraints have been
examined for the bus voltages and line currents by taking
into account the test results determined with the MCS-based
load fow. Te violation probabilities of bus voltages are
presented in Table 10 by considering all scenarios for both
GA and DE.

Te violations in chance constraints for bus voltages
have been observed in the base case as presented in Table 10.
Te chance constraint violations for the line currents have
not been observed for all scenarios. Te violations related
with bus voltages have been considerably minimized by the
optimal PV system allocations in scenarios 1–3. For both
algorithms, the chance constraint violations for bus voltages
have been determined at the desired confdence level by
considering the optimal PV system placements in the dis-
tribution system. For scenario 1, 0.85 confdence level has
beenmaintained. In addition, 0.95 and 0.99 confdence levels
have been achieved for scenarios 2 and 3, respectively.

Te cumulative distribution functions for the voltage at
bus 65 and the line current between buses 1 and 2 have been
illustrated as the example in Figure 18 for the base case and
scenarios 1 through 3. Bus 65 is important with regard to
being one of far end buses in the distribution system. Te
line connecting buses 1 and 2 is the feeder providing power
fow in the distribution network. As shown in Figure 18, the
improvements in bus voltages and line currents have been
observed when compared with the base case by taking into
account the optimal PV placements in scenarios 1 through 3.
Te cumulative distribution functions have been improved
by the rise in solar irradiance conditions. It is clearly seen in
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scenario 3 in GA, (f ) scenario 3 in DE for the 69 bus distribution system.
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Table 9: Statistical analysis for GA and DE algorithms in the 69 bus distribution system.

Scenarios Algorithms Best power
losses (kW)

Average power
losses (kW)

Worst power
losses (kW) Standard deviation

Scenario 1 GA 79.8339 79.8775 79.9431 0.0468
DE 79.9527 80.7941 82.7304 1.0649

Scenario 2 GA 72.2470 72.6536 72.9295 0.2023
DE 73.0363 73.4218 74.5439 0.4811

Scenario 3 GA 68.8709 69.0946 69.2663 0.1488
DE 69.2797 69.6217 70.7217 0.4713

Table 10: Te probabilities of limit violations for GA and DE in the 69 bus distribution system.

Buses
Te probabilities of limit violations

Base case
GA DE

Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3
57 0.9548 0.0022 — — 0.0034 — —
58 0.9999 0.0234 0.0036 — 0.0295 0.0028 —
59 0.9999 0.0334 0.0074 0.0004 0.0479 0.0059 0.0003
60 0.9999 0.0537 0.0156 0.0013 0.0732 0.0131 0.0013
61 0.9999 0.0948 0.0335 0.0057 0.1211 0.0288 0.0057
62 0.9999 0.0944 0.0335 0.0058 0.1211 0.0288 0.0059
63 0.9999 0.0941 0.0335 0.0059 0.1211 0.0288 0.0059
64 0.9999 0.1052 0.0391 0.0072 0.1207 0.0335 0.0072
65 0.9999 0.0920 0.0390 0.0071 0.1208 0.0332 0.0071
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Figure 18: Te cumulative distribution functions of (a) bus voltage for GA, (b) line current for GA, (c) bus voltage for DE, (d) line current
for DE in the 69 bus distribution system.

Table 11: IEEE 33 bus distribution network data [43].

From To PD (kW) QD (kVAR) R (ohms) X (ohms) Imax (A)
1 2 100 60 0.0922 0.0470 400
2 3 90 40 0.4930 0.2510 400
3 4 120 80 0.3661 0.1864 400
4 5 60 30 0.3811 0.1941 400
5 6 60 20 0.8190 0.7070 400
6 7 200 100 0.1872 0.6188 300
7 8 200 100 1.7117 1.2357 300
8 9 60 20 1.0299 0.7400 200
9 10 60 20 1.0440 0.7400 200
10 11 45 30 0.1967 0.0651 200
11 12 60 35 0.3744 0.1237 200
12 13 60 35 1.4680 1.1549 200
13 14 120 80 0.5416 0.7129 200
14 15 60 10 0.5909 0.5260 200
15 16 60 20 0.7462 0.5449 200
16 17 60 20 1.2889 1.7210 200
17 18 90 40 0.7320 0.5739 200
2 19 90 40 0.1640 0.1564 200
19 20 90 40 1.5042 1.3555 200
20 21 90 40 0.4095 0.4784 200
21 22 90 40 0.7089 0.9373 200
3 23 90 50 0.4512 0.3084 200
23 24 420 200 0.8980 0.7091 200
24 25 420 200 0.8959 0.7010 200
6 26 60 25 0.2031 0.1034 300
26 27 60 25 0.2842 0.1447 300
27 28 60 20 1.0589 0.9338 300
28 29 120 70 0.8043 0.7006 200
29 30 200 600 0.5074 0.2585 200
30 31 150 70 0.9745 0.9629 200
31 32 210 100 0.3105 0.3619 200
32 33 60 40 0.3411 0.5302 200
SB� 100 MVA; VB� 12.66 kV.
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Table 12: IEEE 69 bus distribution network data [43].

From To PD (kW) QD (kVAR) R (ohms) X (ohms) Imax (A)
1 2 0 0 0.0005 0.0012 400
2 3 0 0 0.0005 0.0012 400
3 4 0 0 0.0015 0.0036 400
4 5 0 0 0.0251 0.0294 400
5 6 2.6 2.2 0.366 0.1864 400
6 7 40.4 30 0.381 0.1941 400
7 8 75 54 0.0922 0.047 400
8 9 30 22 0.0493 0.0251 400
9 10 28 19 0.819 0.2707 400
10 11 145 104 0.1872 0.0619 200
11 12 145 104 0.7114 0.2351 200
12 13 8 5 1.03 0.34 200
13 14 8 5.5 1.044 0.345 200
14 15 0 0 1.058 0.3496 200
15 16 45.5 30 0.1966 0.065 200
16 17 60 35 0.3744 0.1238 200
17 18 60 35 0.0047 0.0016 200
18 19 0 0 0.3276 0.1083 200
19 20 1 0.6 0.2106 0.069 200
20 21 114 81 0.3416 0.1129 200
21 22 5 3.5 0.014 0.0046 200
22 23 0 0 0.1591 0.0526 200
23 24 28 20 0.3463 0.1145 200
24 25 0 0 0.7488 0.2475 200
25 26 14 10 0.3089 0.1021 200
26 27 14 10 0.1732 0.0572 200
3 28 26 18.6 0.0044 0.0108 200
28 29 26 18.6 0.064 0.1565 200
29 30 0 0 0.3978 0.1315 200
30 31 0 0 0.0702 0.0232 200
31 32 0 0 0.351 0.116 200
32 33 14 10 0.839 0.2816 200
33 34 19.5 14 1.708 0.5646 200
34 35 6 4 1.474 0.4873 200
3 36 26 18.55 0.0044 0.0108 200
36 37 26 18.55 0.064 0.1565 200
37 38 0 0 0.1053 0.123 200
38 39 24 17 0.0304 0.0355 200
39 40 24 17 0.0018 0.0021 200
40 41 1.2 1 0.7283 0.8509 200
41 42 0 0 0.31 0.3623 200
42 43 6 4.3 0.041 0.0478 200
43 44 0 0 0.0092 0.0116 200
44 45 39.22 26.3 0.1089 0.1373 200
45 46 39.22 26.3 0.0009 0.0012 200
4 47 0 0 0.0034 0.0084 300
47 48 79 56.4 0.0851 0.2083 300
48 49 384.7 274.5 0.2898 0.7091 300
49 50 384.7 274.5 0.0822 0.2011 300
8 51 40.5 28.3 0.0928 0.0473 200
51 52 3.6 2.7 0.331 0.1114 200
9 53 4.35 3.5 0.174 0.0886 300
53 54 26.4 19 0.203 0.1034 300
54 55 24 17.2 0.2842 0.1447 300
55 56 0 0 0.2813 0.1433 300
56 57 0 0 1.59 0.5337 300
57 58 0 0 0.7837 0.263 300
58 59 100 72 0.3042 0.1006 300
59 60 0 0 0.3861 0.1172 300
60 61 1244 888 0.5075 0.2585 300
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cumulative distribution functions that the right hand side
shifts have been obtained in bus voltages and the left hand
side shifts have been determined in line currents for sce-
narios 1 through 3 in comparison with the base case. It can
be inferred from these shifts that the bus voltages and line
currents have been improved.

Te difculty in planning studies in active distribution
networks arises from the intermittent characteristics of the
output power of photovoltaic systems with increasing
participation rates. A more reliable network can be achieved
by considering a large number of possible situations in
planning studies. A larger number of samples lead to in-
creased computational difculty and even to overly con-
servative decisions or unfeasibility. On the other hand,
planning based on worst-case scenarios with low probabi-
listic probability of realization results in oversized in-
vestments. In this manner, the stochastic planning has
important role in dealing with the wide range of samples by
taking into account the respective probabilities. In this
paper, the probabilistic optimization analysis of distribution
network has been provided by the uncertainties of solar
radiation levels and distribution system load consumption.
Hence, the distribution grid technical parameters can be
stochastically handled while determining the optimal con-
trol variables. In the current study, the optimal PV alloca-
tions have gained great importance in terms of considering
the probabilistic sample ranges of uncertainties, handling
the chance constraints of technical parameters with the
specifed confdence levels, and minimizing the power losses
of distribution system under diferent scenarios.

7. Conclusions

In this study, power losses, voltages, and line capacities are
taken by the chance constraint optimization method in the
planning of distribution networks under uncertainties of
load and solar irradiance, and the problem of optimal
placement of photovoltaic systems, whose penetration level
in the grid is increasing day by day, is solved by combining
meta-heuristic algorithms such as GA and DE and Monte
Carlo Simulation. In the proposed stochastic programming,
the optimization results are compared for possible long-term
solar irradiance conditions under three diferent profles as
low, medium, and high. According to the simulation results,
distribution grid power losses are optimally minimized in
these three scenarios, compared to the scenario with load

change but without PV connection. Te power loss in the
low irradiance scenario is higher than that in the other two
scenarios due to the limiting efect of chance constraints
related to bus voltages. In the medium and high irradiance
scenarios, it is observed that the power loss can be further
reduced as the solar irradiance levels are high and the efects
of chance constraints are reduced. Te fndings show that in
distribution networks where PV systems with diferent ir-
radiance uncertainty conditions are connected, violations of
the grid voltage are particularly important. At this point, the
optimization decisions obtained with the probabilistic grid
constraint approach were able to provide quantifable re-
sults. Furthermore, the comparison between MCS-
embedded GA and DE algorithms has been made for il-
lustrating the efectiveness of the proposed methodology.
Te simulation outcomes show that the proposed stochastic
GA approach has the superiority. Both GA and DE converge
to the optimal solutions. Nevertheless, GA performs in less
computational time and iteration in comparison with DE.

Appendix

A. Meaning and Symbols of Parameters

Te details of IEEE 33 bus and IEEE 69 bus distribution
systems are presented in Tables 11 and 12, respectively.
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