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Smart grids must detect cyber-attacks early to ensure their safety and reliability. Tere have been many outlier detection methods
presented in the studies, varying from those requiring instance-by-instance decisions t the online diagnosing methods that require
the use of accurate models of an attack. Tis study proposes a novel intelligent online anomaly or attack detection method based
on the partially observable Markov decision procedure (POMDP). Te proposed model may be categorized as a general detection
method according to the reinforcement learning (RL) architecture for POMDP which can help the learning process based on the
award concept. Te performance of the proposed model is verifed using the IEEE test system. Based on numerical results, the
suggested RL-based algorithm shows to be very efective in detecting cyber-attacks against the smart grid quickly and accurately.

1. Introduction

Te energy grids of the future, the so-called smart grid (SG),
rely on enhanced communication and control technology to
enhance the quality of the power generation and delivery to
the end users. In this way, SGs are vulnerable to cyber-at-
tacks because of these critical cyber infrastructures [1].
Attackers typically aim at damaging or misleading the SG’s
state estimation (SE) mechanism for generating large-scale
energy outages or for manipulating power costs [2]. Te
most commonly popular kinds of cyber-attacks are denial of
service (DoS), jamming, and false data injection (FDI) at-
tacks. In FDI attack (FDIA) meter measurements are
tampered with by adding malicious fake data [3, 4], in
jamming attacks meter measurements are corrupted by
adding additive noise [5], and DoS attacks prevent access of
the system to meter measurements [6].

SGs are complex networks and failures or anomalies
within them can result in severe damages to the entire

system. A quick and efcient response to cyber-attacks
depends on detecting them as soon as possible. As a result,
detecting a change as quickly as possible [7, 8] can be ex-
tremely benefcial. When quickest change detection is being
used, changes in the sensing environment happen at un-
expected times, and it aims at detecting the changes as
quickly as possible with a minimum of false alarms (FAs)
using measurements collected gradually over time. Once the
decision-makers have obtained measurements for a par-
ticular time interval, they either make a change or wait until
the next period to acquire additional measurements. Te
detection speed will decrease when the optimum detection
accuracy improves. Terefore, the stopping time, when a
change is declared, should be set such that the detection
speed and the accuracy are optimally balanced. As the pre-
change state and the post-change state are hidden due to the
uncertain change-point, a partially observable Markov de-
cision process (POMDP) problem can be used to model the
quickest change detection problem. In the case of online
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attacks and anomalies in the SGs, in the pre-change con-
dition, the system has been run within usual situations, and
the pre-change metering pdf is defned very precisely uti-
lizing the system model.

Te control of unknown environments is efectively
possible with reinforcement learning (RL) algorithms. In
this case, RL is used to efciently solve the POMDP problem.
One solution implies either learning the model underlying
POMDPs and then implementing the model-based RL
method for POMDPs [9] or applying a model-free RL (MF-
RL) algorithm [10–12] with no learning the model. Due to
the computational burden of the model-based method and
just an approximate model being able to be learned, using
the MF-RL method is preferred.

Outlier detection methods like the Euclidean detector
[13] or detector according to the cosine-similarity [14] were
general since they need no attacking pattern. Basically, they
are computing the dissimilation metric among genuine
expected and meter measurements by using the Kalman
flter (KF) and if the dissimilarity goes above a particular
level, an attack/anomaly is declared. Tis type of detector,
though, does not take into account the temporal relationship
among attacked or anomalous measurements and makes
decisions on a sample-by-sample basis. As a result, they
cannot diferentiate immediate great-stage random noise
from persistent anomalies, such as those resulting from
unfriendly interventions. Accordingly, robust universal at-
tack detection methods are more required than outlier
detection methods.

RL methods (single-agent RL) are used to develop a
useful detection method in the present study, which is based
on the perspective of the defender. It should be noted that
the problem could also be viewed from the attacker’s side, in
which case the goal would be to fnd the best attack strategy
to cause as much damage to the system as possible. An
analysis of this kind of problem can be extremely useful in
identifying the most severe damage an attacker could infict
on the system and then taking precautions accordingly.
Many investigations employ RL to analyze vulnerability,
such as for FDI attacks in ref [15] and for sequential topology
attacks in ref [16]. It should be noted that the problem could
be viewed simultaneously from the perspective of the de-
fender and the perspective of the attacker as well, which can
correspond to a game-theoretic setting.

It is the multifactorial RL architecture, which extends
standalone RL to multiplex-factors, which includes game
theory as agents’ optimal policies are driven by their en-
vironment as well as the policies of their peers. Te sto-
chastic game also extends theMarkov decision process to the
multiplex-factor status in which the game can be consecutive
and includes more than one state, and both the transition
from one state to the next as well as the payofs (reward/cost)
are determined by the common functions of whole factors.
Te solution methods based on RL for stochastic games are
studied in ref [17], ref [18]. Te partially observable sto-
chastic game is one in which the environment, the functions,
and Payments from other factors are observed partially,
making identifying solutions increasingly problematic
generally.

Te goal of this paper is to develop online cyber-attack
detection (CAD) method based on MF-RL for POMDP. As
the suggested algorithm does not rely on attack models, it
is universal and shows a general but robust performance.
Consequently, the suggested layout can be broadly used,
and it is proactive in that it can detect novel attack types.
By following an MF-RL method, the defenders learn by
trial-and-error how observations translate into actions
(stop or continue). Although the model can be used to
produce observation data under normal operating con-
ditions for the pre-change state, obtaining real attack data
can be usually challenging in the training phase. Due to
this, a robust detection strategy is adopted that trains the
defender with a low-magnitude attack corresponding to
the worst cases from the perspective of the defender as
detecting these types of attacks are challenging. Once
trained, the defenders can identify minor changes from
normal meter measurements.Te robust detection method
also considerably reduces the action space in which an
attacker can operate. In other words, in order to avoid
detection, attackers could just use small magnitudes of the
attack, which are not problematic because of the minimum
impact on the grid. To the best of the authors;’ knowledge,
this is the frst online CAD work in the SG that uses RL
methods.

Te model of the system and the SE method are de-
scribed in Part 2. Part 3 describes the problem formulation
and Part 4 proposes a solution. Part 5 demonstrates the
efectiveness of the suggested RL-based detection method
through a series of simulations. Part 6 concludes the study.

2. Model of the System and SE

2.1.Model of the System. If K meters exist in the system with
N + 1 buses, then there should be K>N in order to ensure
the required measurement redundancy versus noise [19].
Assume that one of the buses has been taken as the reference
bus, and xt � [x1,t, . . . , xN,t]

T shows the system state at time
t in which xn,t represents the phase angle at the time t at bus.
yk,t shows the measurement taken at time t at meter k and
yt � [y1,t, . . . , yK,t]

T represents the measurement vector.
Te below state-space equations are used for modeling the
SG according to the broadly applied linear DC model [19]:

xt � Axt + vt, (1)

yt � Hxt + wt, (2)

where the system (state transition) matrix is shown by
A ∈ RN×N, H ∈ RK×N represents the measurement matrix
defned according to the topology of the network, the
process noise vector is shown by vt � [v1,t, . . . , vN,t]

T, and
the measurement noise vector is represented by
wt � [w1,t, . . . , wK,t]

T . Considering vt and wt as indepen-
dent additive white Gaussian random processes in which
vt ∼ N(0, σ2vIN),wt ∼ N(0, σ2wIK),, and IK ∈ RK×K shows an
identity matrix. A further assumption is that the network is
observable, in other words, the observability matrix has rank
N.
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. (3)

Equations (1) and (2) give the system model of normal
operation. When a cyber-attack occurs, though, the mea-
surement model from equation (2) does not apply. As an
example, in the case of a(n):

(a) Te measurement model for an FDI attack launched
at time τ is:

yt � Hxt + wt + bt‖ t≥ τ{ }. (4)

Here, an indicator function is shown by ‖ and the
injected malicious data at time t≥ τ is represented by
bt ≜ [b1,t, . . . , bK,t]

T and the injected false data to the
kth meter at time t is shown by. bK,t,

(b) Te measurement model for a jamming attack with
additive noise is as follows:

yt � Hxt + wt + ut‖ t≥ τ{ }. (5)

Here, the random noise realization at time t≥ τ is
shown by ut ≜ [u1,t, . . . , uK,t]

T and the jamming
noise corrupting the kth meter at time t is repre-
sented by uK,t.

(c) Under an FDIA/jamming hybrid attack [5], the
meter measurement appear as follows:

yt � Hxt + wt + bt + ut( 􏼁‖ t≥ τ{ }. (6)

(d) When the system controller is under DOS attack,
meter measurements cannot partially be available.
Terefore, the measurement model is formulated
accordingly:

yt � Dt Hxt + wt( 􏼁. (7)

Here, a diagonal matrix including 0s and 1s is shown
by Dt � diag(d1,t, . . . , dK,t). In particular, when yk,t

exists, afterward, dK,t � 1, or else dK,t � 0. It should
be noted that Dt � It for t< τ,

(e) During a system attack, the matrix of measurement
alters. Ht represents the matrix of measurement
subjected to topology attacks at time t≥ τ,
therefore:

yt �
Hxt + wt, if t< τ,

Hxt + wt, if t≥ τ.
􏼨 (8)

(f ) In the case of a blended topology and FDIA/jam-
ming hybrid attack, the measurement layout is:

yt �
Hxt + wt, if t< τ,

Hxt + wt + bt + ut, if t≥ τ.
􏼨 (9)

2.2. SE. As SG regulation relies on the SE system, SE has
traditionally been done utilizing static least squares (LS) esti-
mators [3]. As a result of the time-varying load and energy
generation in SGs, they are actually very dynamic systems [20].
Additionally, adversaries can design and perform time-varying
cyber-attacks. Terefore, dynamic system modeling like in
equations (1) and (2) as well as the use of dynamic state es-
timators could be really benefcial in the development of real-
time SG operations and security [4, 5].when the noise terms are
Gaussian in a discrete-time linear dynamic system, the KF can
be the best linear forecaster tominimize the average squared SE
error [21]. x

∧
t|t′ represents the state estimates at time t in which

t′ � t − 1 is for the prediction step and t′ � t is for mea-
surement update stage, the KF equations at time t is:

Prediction:

x
∧

t|t−1 � Ax
∧

t−1|t−1,

Ft|t−1 � AFt−1|t−1A
T

+ σ2vIN.
(10)

Measurement update:

Gt � Ft|t−1H
T HFt|t− 1H

T
+ σ2wIK􏼐 􏼑

−1
,

x
∧

t|t � x
∧

t|t−1 + Gt yt − Hx
∧

t|t−1􏼒 􏼓,

Ft|t � Ft|t−1 − GtHFt|t−1.

(11)

Here, Ft|t−1 and Ft|t indicated the approximates of the
state covariancematrix according to themeasurements up to
t − 1 and t, respectively. In addition, the Kalman gain
matrix at time t is shown by Gt.

Afterward, an illustrative example is used to illustrate the
impact of cyber-attack on the SEmethod. In the IEEE-14 bus
power system with N � 13, K � 23, and system parameters
were selected as A � IN, σ2v � 10−4,andσ2w � 2 × 10−4 is
tested with FDI attacks of various magnitudes/intensities,
and the average squared SE error of the KF is analyzed. At
time τ � 100, attacks will be launched, whichmeans that the
system will be operated under normal conditions until time
100 and then under attack thereafter. Tere are three levels
of attack magnitude:

Level1:
bK,t ∼ u[−0.04, 0.04], ∀k ∈ 1, . . . , K{ }and∀t≥ τ.
Level2:
bK,t ∼ u[−0.07, 0.07], ∀k ∈ 1, . . . , K{ }and∀t≥ τ.
Level3: bK,t ∼ u[−0.1, 0.1], ∀k ∈ 1, . . . , K{ }and∀t≥ τ.

Here, a uniform random variable between [ζ1, ζ2] is
shown by U[ζ1, ζ2]. When cyberattacks occur, the state
estimates deviate from the real system states, and the de-
viation is enhanced by the attack magnitude.

3. Problem Formulation

Te following is a description of the POMDP setting prior to
introducing the problem formulation. When an agent and an
environment are present, the seven-tuple (S, A, T, R, O, G, c)
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is used to defne a discrete-time POMDP in which the group
of latent conditions of the environment is shown by S, the
group of agent’s function is represented by A, the group of
contingent transfer probabilities among the conditions is
shown by T, R: S × A⟶ R shows the reward function
mapping the condition-function pairs to rewards, the group
of agent’s observations is shown by O, the set of conditional
observation probabilities is indicated by G, and a discount
factor is shown by c ∈ [0, 1] indicating how many current
rewards have been preferred than subsequent rewards.

At every time t, the zone is in a certain latent condition
st ∈ S. An observation ot ∈ O is obtained according to the
present zone condition with the probability G(ot|st), the
agent can take an action at ∈ A and receive a reward rt �

R(st, at) from the zone according to the function and the
present condition of the area. In parallel, the zone can make
the transmission to the subsequent condition st+ 1 with the
probability T(st+1|st, at). Repetition of the procedure has
been required till the fnal condition has been achieved. In
the method, the factor aims at determining the best policy
π: O⟶ A, which can map observations to functions and
maximize the anticipated factor overall discounted rewards,
that is, E[􏽐

∞
t�0 ctrt]. Te objective would be to reduce the

expected overall discounted cost for an agent that gets costs
rather than rewards from the environment. If the latter is
taken into account, the POMDP problem is:

min
π: O⟶A

E 􏽘
∞

t�0
c

t
rt

⎡⎣ ⎤⎦. (12)

Afterward, a POMDP setting is used to defne the online
CAD issue. Te assumption is that at the unspecifed time τ,
the cyber-attacks have been started against the network, and
it aims at detecting the attack soon once it has occurred,
without knowing the attacker’s capabilities or strategies.
Here is the defnition of the quickest change detection
problem, which aims at minimizing the average detection
delay and also the FA rate (FAR). It is possible to express the
problem as a POMDP problem (according to Figure 1).
Tere are two hidden states because of the unspecifed
launch time of the attack τ: post-attack & pre-attack. Every
time [t], the agent (defender) has two options following
receiving the measurement vector yt: stop and express the
attack or go ahead to make more measurements. When the
action stop has been selected, the system can move into a
terminal state and stay there permanently.

In order to reduce both FAs and detection delays, both
FA and diagnosing delay occurrences must be accompanied
by several costs. c> 0 is the relevant cost of the diagnosing
delay in comparison with a FA. As a result, when the true
basic condition is pre-attack and the action stop has been
selected, there is a FA, and the defender can receive a cost of
1. However, when the underlying state is post-attack and the
action continue has been selected, so the defender can receive
a cost of c because of the detection delay. Te remaining
(hidden) state-action pairs are supposed to have zero costs.
Furthermore, if the action stop has been selected, the de-
fender does not achieve any more costs as long as staying in
the fnal status.Te defender aims at minimizing its expected

overall cost by carefully selecting the functions. In particular,
the defender must defne the stopping time when an attack
has been declared according to its observations.

Te stopping time selected via the defender is shown by Γ.
In addition, the probability measure is shown by Pk when the
attack has been launched at time k, that is τ � k, and the
related expectation is shown by Ek. It should be noted that as
the attacking strategies are unknown,Pk has been supposed to
be unknown. Te expected overall discounted cost is calcu-
lated for the proposed online CAD issue in the following way:

E 􏽘
∞

t�0
c

t
rt

⎡⎣ ⎤⎦ � Eτ ‖ t≥ τ{ } + 􏽘
Γ

t�τ
c⎡⎣ ⎤⎦

� Eτ ‖ t≥ τ{ } + c(Γ − τ)
+

􏼂 􏼃

� Pτ( Γ < τ{ }) + cEτ (Γ − τ)
+

􏼂 􏼃.

(13)

Here, c � 1 has been selected as the current and sub-
sequent costs have been weighted equally in the subject,
Γ < τ{ } shows the FA occurrence, which has been penalized
with the cost of zero, and Eτ[(Γ − τ)+] shows the mean
diagnosing lag in which every detection lag has been pe-
nalized with the cost of c and (.)+ � max(., 0).

According to equations (12) and (13), the online attack
detection problem is:

min
Γ

Pτ( Γ < τ{ }) + cEτ (Γ − τ)
+

􏼂 􏼃. (14)

As c represents the relevant cost among the FA and the
detection lag occurrences, the transaction curve among
mean detection lag and FAR is determined via changing c

and solving the related problem in equation (14). Further-
more, c< 1 is selected for avoiding frequent FAs.

Te MF-RL method obtains a solution to equation (14)
because the actual POMDP layout is uncertain because of the
uncertain attack start time τ and attack strategy, and the RL
algorithms have been proved to perform well under un-
certain conditions. Tere is therefore a necessity to learn a
direct mapping from observations to functions, that is, the
time of stopping [Γ].

Terminal

Pre attack Post attack

r=1 r=0

r=0 r=c
Continue Continue

Sto
p Stop

t=τ

Figure 1: Diagram of state-machine to investigate POMDP
adjustment.
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Moreover, generally, similar observations can be ob-
tained in both pre-attack & post-attack statuses. It is known
as conceptual harmony and avoids well inferences about the
underlying status from being made via just watching the
observation one time. In addition, it should be noted that in
the problem the decision to attack is only according to a
single observation, which is equivalent to an outlier de-
tection layout with better detectors that require no learning,
refer to [13, 14]. Te purpose of this research is to detect
sudden and persistent attacks or anomalies caused by a
hostile intervention in the system, instead of random dis-
turbances caused by high-level system noise.

Te measurements yt􏼈 􏼉 have been collected via intelli-
gent meters and analysis to gain ot � f( yt􏼈 􏼉). Te defender
observes f( yt􏼈 􏼉) at every time t and has decided on the CAD
statement time [Γ].

f(·) shows the function, which can processes a mea-
surement’s limit history and produce the observation signal,
therefore, ot � f( yt􏼈 􏼉) shows the observation signal at time t

. Afterward, every time, the defender can observe f( yt􏼈 􏼉) and
decide on the stopping time Γ, according to Figure 2. Te
defender aims at solving equation (14) via applying an RL
algorithm. Te following part describes this in more detail.

4. Solution Method

First, the methodology is explained for obtaining the ob-
servation signal ot � f( yt􏼈 􏼉). Te state estimates derived
from the KF and the baseline measurement model in
equation (2) are used to infer the meter measurements PDF
in the pre-attack condition. Particularly, it is possible to
estimate the measurements PDF within usual operating
statuses according to the following:

yt ∼ N Hx
∧

t|t , σ2wIK􏼒 􏼓, (15)

L(yt) is the likelihood of the measurement according to
the estimation of base density:

L yt( 􏼁 � 2πσ2w􏼐 􏼑
(− K/2)

exp
−1
2σ2w

yt − Hx
∧

t|t􏼒 􏼓
T

yt − Hx
∧

t|t􏼒 􏼓􏼠 􏼡

� 2πσ2w􏼐 􏼑
(− K/2)

exp
−1
2σ2w

ηt􏼠 􏼡,

(16)

where

ηt ≜ yt − Hx
∧

t|t􏼒 􏼓
T

yt − Hx
∧

t|t􏼒 􏼓. (17)

Within normal operating situations, it has been antici-
pated that L(yt) will be high. If ηt is small (near zero), the
system is operating normally.Te likelihood L(yt), however,
is anticipated to drop in the cases where the systems deviate
from normal operating conditions as a result of an attack or
anomaly. When high ηt values persist over time, there may
be an attack or anomaly present. As such, ηt might con-
tribute to reducing the uncertainty of the fundamental status
in some cases.

Due to the fact that ηt could have any positive amount,
the observation area has been continued, making the
mapping from every observation to function mathematically
impossible. It is possible to decrease the computing burden
for these continuous spaces by quantizing the observations.
After partitioning the observation area into I disjoint and
exclusive reciprocal distances utilizing β0 � 0< β1 <
· · · < βI − 1 < βI �∞ quantization thresholds, the obser-
vation at time t will be described as θi if
βi−1 ≤ ηt < βi, i ∈ 1, . . . , I is met. Next, θ1, . . . , θI indicate
possible observations for any particular moment. θi’s rep-
resent the quantization levels; therefore, every θi has to have
a diverse value.

Moreover, as discussed previously, even though ηt can be
used for inferring the underlying state at time T, similar
observations can be obtained in the pre-attack & post-attack
statuses. Terefore, a fnite history of observations is pro-
posed. M is the sliding observation window (SOW) size,
therefore, there are IM feasible observation windows that
exist and the sliding window at time [t] includes the
quantized versions of ηj: t − M + 1≤ j≤ t􏽮 􏽯. An observation
o is, therefore, a window, meaning that an observation space
O includes all possible windows. As an example, when I �

M � 2, afterward, O � [θ1, θ1], [θ1,􏼈 θ2], [θ2, θ1], [θ2, θ2]}.
RL algorithm is used for learning a Q(o, a) value, that is,

the expected future cost for every observation-action pair
(o, a), in which all Q(o, a) values have been saved in the Q-
table of size IM × 2. Following the Q-table’s learning, the
defender’s policy is to choose the function a with the
minimal Q(o, a) for every observation o. Generally, as I and
M increase the learning efciency enhances and simulta-
neously causes in a bigger Q table requiring to enhance in the
training episodes number and therefore the calculation
burden of the learning step. Terefore, I and M must be
selected regarding the anticipated exchange among ef-
ciency and calculation burden.

Te learning step and online CAD step are included in
the suggested RL-based detection method. SARSA, which is
a MF-RL control layout [22], performed better than the
model-free POMDP settings [12]. Te SARSA algorithm is
used in order to train the defender on numerous episodes of
experience, and the defender learns a Q-table during the
learning phase. According to Figure 3, the simulation en-
vironment has been produced for training during which the
defender has taken an action according to its observations
and received a cost from the simulation in return. On the
basis of this experience, a Q-table is updated and learned by
the defender. Afterward, according to the observations, in
the online CAD stage, the previously learned Q-table is used
to choose the action with the minimum anticipated future
cost (Q amount) every time. Once the defender selects the
action stop, the online detection phase ends. An attack has
been declared when the stop has been selected, and the
procedure has been stopped.

Defender
{yt} ot

f (.) Smart gridГ

Figure 2: An explanation of the online CAD issue in the SG.
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In the event of an attack declaration, the online detection
phase may be restarted any time the system has recovered
and is back to normal operating conditions. After a defender
has been trained, additional training is not required.

Every iteration of RL (learning episode) involves re-
peating the same actions. An RL algorithm’s time complexity
would then be regarded as a single iteration’s time complexity
[23]. SARSA updates the Q-table one at the time, and the
maximum learning episode time is T, so the time complexity
isO(T). Furthermore,O(TE) shows the total complexity of the
learning process, since E indicates the number of learning
episodes. It should be noted that the space of action and
observation does not afect the time complexity. Increasing I

or/and M, in contrast, requires learning a more complex Q-
table, for which one needs to enhance E. Additionally, the
space complexity (memory cost) isM + 2IM since the SOW is
M and the Q-table is IM × 2. It should be noted that space
complexity remains constant through time. With an SG
model and several attack models, the measurement data is
obtained online throughout the learning process and the
defender has been trained using the observed data streams.
Due to this, storing enormous amounts of training data for
the learning phase is not necessary since the size of SOW (M)
has been saved at every stop.

A distributed SG system is implemented using the
suggested solution layout, in which learning and CAD tasks
have been handled at a single center while meter mea-
surements have been collected on a distributed basis. Tis
setup is shortly described below.

(i) SGs have multiple local control centers as well as a
global control center in the large-scale monitoring
model. Local centers collect and process measure-
ments from smart meters in their neighborhoods,
and they communicate with global centers as well as
neighboring local centers.

(ii) A distributed KF, such as the one developed for
large-scale SGs in [4] is used to estimate the system
state.

(iii) In the measurement matrix, hT
k ∈ RN is the kth row,

that is, HT � [h1, . . . , hk]. A negative log-scaled
likelihood estimate, ηt, is given by the following
(refer to equation (17)):

ηt � 􏽘
K

k�1
yk,t − h

T
k x
∧

t|t􏼒 􏼓
2
. (18)

Te local centers have the capability of estimating the
system state via utilizing the distributed KF for every time t.
Afterward, the local centers could calculate the term
(yk,t − hT

k x
∧

t|t)
2 for their neighborhood meters. R shows the

local centers number and Sr denotes the group of meters in
the neighbors of the rth local center. Terefore, ηt in
equation (18) is:

ηt � 􏽘
R

r�1
􏽘
k∈Sr

yk,t − h
T
k x
∧

t|t􏼒 􏼓
2

� 􏽘
R

r�1
ηt,r. (19)

(i) A distributed implementation allows every local
center to calculate ηt,r and send it to the global center
for summing ηt,r, r � 1, 2, . . . , R􏽮 􏽯 and calculating ηt,

(ii) Learning and detection tasks have been carried out at
the global center on the same basis as previously
described.

5. Simulation Outcomes

5.1. Simulation Setup and Parameters. Te IEEE-14 bus
electrical network with [N + 1 � 14] buses and [K � 23]

intelligent meters is used to perform the simulation. In
MATPOWER [24], the DC optimal power fow algorithm is
used to determine the initial state variables (phase angles).
System matrix A has been selected as the measurement and
identifcation matrixes H based on the IEEE-14 electrical
grid. σ2v � 10−4 and σ2w � 2 × 10−4 have been selected as the
noise variances for the usual operation of the system. As
part of the suggested online CAD layout on the basis of RL,
I � 4 quantization levels are selected and thresholds
β1 � 0.95 × 10−2, β2 � 1.05 × 10−2, and β3 � 1.15 × 10−2 are
selected using an ofine simulation based on monitoring
ηt􏼈 􏼉 throughout normal operation. Te observation window
includes 4 entries, thus M � 4. Additionally, α � 0.1 and
ϵ � 0.1 have been selected as the learning parameters, and
T � 200 has been selected as the episode length. During the
learning stage, the defender has been frst trained more than
4 × 105 episodes with the attack start time of τ � 100 and
next, more than 4 × 105 episodes with τ � 1 for ensuring that
the defender can properly explore the observation space
within usual operating situations and also during an attack.
As a learning episode ends when the action stop has been
selected and observations are available to the defender just
for ≥ τ, τ � 1 has been selected during the half of the
learning episodes to ensure that the defender has been
adequately trained within the post-attack regime.

Te suggested algorithm has been trained for both c �

0.02 and c � 0.2, for illustrating the trade-of between mean
CAD lag and FA probability. It is necessary to train de-
fenders with very low-magnitude attacks associated with
small deviations from the baseline in order to achieve a
detector, which can be robust and useful versus tiny devi-
ations from the usual exploitation of the system. Several
known low-magnitude attack kinds have been applied in this
case. One-half of the learning episodes use random FDIAs
with attack extents equal to uniform random realization
parameter ± U[0.02, 0.06], i.e., bk,t ∼ U[0.02, 0.06] is the
injected false data to the kth meter at time time t≥ τ,

Defender

Environment

aor

Figure 3: Interaction between the environment and defender
within the learning procedure.
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∀k ∈ 1, . . . , K{ }. Te other ones use random hybrid FDI/
jamming attacks with bk,t ∼ U[0.02, 0.06], uk,t ∼ N(0, σk,t),
and σk,t ∼ U[2 × 10− 4, 4 × 10− 4], ∀k ∈ 1, . . . , K{ } and ∀t≥ τ.
Te overall training time costs have been computed about
as [5018sec] and [5106sec] for c � 0.2 and c � 0.02,
respectively.

5.2. Efciency Assessment. Tis part evaluates the efciency
of the suggested CAD method on the basis of RL and
compares it with several current detector methods [25].
First, E∞ [_] is reported as the mean FA cycle of the
suggested CADmethod, that is, the 1th time on the mean the
suggested detector has given an alarm, however, no
anomaly/attack occurs at a whole (τ �∞). Te mean FA
period for c � 0.2 is about E∞[Γ] � 9.4696 × 105 and it is
about E∞[Γ] � 7.921 × 106 for c � 0.02. It is anticipated that
the FAR of the suggested detector decrease by increasing the
relevant cost of the FA occurrence, 1/c.

According to the optimization problem in equation (14),
the efciency factors include the probability of FA, that is,
Pτ( Γ < τ{ }), and the average detection delay, that is,
Eτ[(Γ − τ)+]. It should be noted that the unknown attack
launch time τ afects both efciency factors. Terefore,
generally, the efciency factors must be computed for every
possible τ. To illustrate efciency, τ as the numeral random
parameter is selected with variable ρ so,
P(τ � k) � ρ(1 − ρ)k−1, k � 1, 2, 3, . . . in which
ρ ∼ U[10− 4, 10− 3] shows a uniform random variable.

Monte Carlo simulations over 10000 trials are used to
calculate the average detection delay and the probability of
FA of the suggested detector, the Euclidean detector [13],
and the cosine-similarity factor on the basis of the detector
[14]. Te thresholds of the benchmark tests are changed as
well as c for the suggested algorithm is changed in order to
determine the efciency curves. c � 0.02 and c � 0.2. I are
used for evaluating the suggested algorithm [26]. In ad-
dition, the F-score, recall, and precision for whole sim-
ulation scenarios are reported. Te bound as ten-time
units is selected. Afterward, the F-score, recall, and pre-
cision out of 1 × 104 tests are calculated in the following
way:

Precision �
#trials(τ ≤ Γ≤ τ + 10)

#trials(τ ≤ Γ≤ τ + 10) + #trials(Γ< τ)
,

Recall �
#trials(τ ≤ Γ≤ τ + 10)

#trials(τ ≤ Γ≤ τ + 10) + #trials(Γ < τ + 10)
,

F − score � 2
Precision × Recall
Precision + Recall

.

(20)

Here, “# trials” shows “the number of tests with.” Te
suggested and the benchmark detectors are evaluated within
the below attack case studies:

(1) First, the detectors versus the random FDIA are
evaluated in which bk,t ∼ U[−0.07, 0.07],

∀k ∈ 1, . . . , K{ } and ∀t≥ τ. Figure 4 shows the related
tradeof curves.

(2) Second, the detectors versus a structured FDI attack
are evaluated [3], in which the injected data bt is
located on the column space of the measurement
matrix H. bt � Hgt is selected in which
gt ≜ [g1,t, · · · , gN,t]

T and gn,t ∼ U[0.08, 0.12],

∀n ∈ 1, . . . , N{ } and ∀t≥ τ. Figure 5 shows the re-
lated efciency curves.

(3) Afterward, the detectors are evaluated when the
jamming attack occurs with zero-mean AWGN in
which uk,t ∼ N(0, σk,t) and σk,t ∼ u(10−3, 2e − 3),
∀k ∈ 1, . . . , K{ } and ∀t≥ τ . Figure 6 shows the re-
lated tradeof curves. 4) Te detectors are evaluated
when a jamming attack occurs with jamming noise
related over the meters in which
ut ∼ N(0, Ut), Ut � 􏽐tΣTt , and Σt shows a random
Gaussian matrix with its entry at the ith row and the
jth column can be 􏽐t,i,j ∼ N(0, 8 × 10−5. Figure 7
shows the related efciency curves.

(4) In addition, the detectors are evaluated in the case of
the hybrid FDIA or jamming attack in which
bk,t ∼ U[−5, 5] × 10−2, uk,t ∼ N(0, σk,t), and σk,t ∼
U[5 × 10−4, 10−3],∀k ∈ 1, . . . , K{ } and ∀ t≥ τ. Fig-
ure 8 shows the related tradeof curves.

(5) Next, the detectors are evaluated when a random
DoS attack occurs in which the measurement of
every smart meter is not available for the controller
at every time with probability of 0.2. It means that for
everymeter k, dk,t can be zero with probability 2e − 1
and one with probability 8e − 1 at every time t≥ τ.
Figure 9 shows the efciency curves versus the DoS
attack.

(6) In addition, a network topology attack is considered
in which the lines among the buses (9, 10) and (12,
13) break down. So, the measurement matrix. Ht for
t≥ τ has been obtained. Figure 10 shows the related
tradeof curves.

(7) Finally, a combined technique and hybrid FDIA or
jamming attack are considered, in which the lines
among buses 9–10 and 12–13 break down for t≥ τ
and so, bk,t ∼ U[− 0.05, 0.05], uk,t ∼ N(0, σk,t), and
σk,t ∼ U[5 × 10−4, 10−3],∀k ∈ 1, . . . , K{ } and ∀t≥ τ.
Figure 11 shows the related efciency curves.

Te F-score, recall, and precision for the suggested
detector on the basis of RL for c � 2e − 1 and c � 2e − 2
are summarized in Table 1 and 2, respectively versus
whole the proposed simulation case studies earlier. In
addition, in the case of the random FDI attack, the
precision against recall curves for the suggested and
benchmark detectors is illustrated Figure 12. Because
meter measurements are not partially available in DoS
attacks, therefore, the system signifcantly strays from
the usual operation, whole detectors are capable of
detecting DoS attacks with nearly zero mean detection
lags (refer to Figure 9).

Eventually, the impact of the window size, M, is eval-
uated on the efciency of the detector on the basis of RL
(trained for c � 2e − 1) versus random FDIAs with changing
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Figure 4: Mean CAD lag versus probability of FA curves for the suggested method and the benchmark trails in case of the random FDIA.
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Figure 5: Profciency curves for the suggested method and the benchmark trails in the case of the structured FDIA.
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Figure 6: Profciency curves for the suggested method and the benchmark trails in case of the jamming attack with AWGN.
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Figure 7: Profciency curves for the suggested method and the benchmark trails in case of a jamming attack with jamming noise associated
with the area.
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Figure 8: Profciency curves for the suggested method and the benchmark trails in case of a hybrid FDI/jamming attack.
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Figure 9: Efciency curves for the suggested method and the benchmark trails when the DoS attack occurs.
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Figure 10: Efciency curves for the suggested method and the benchmark trails under the network topology CAD.
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Figure 11: Efciency curves for the suggested method and the benchmark trails under a mixed system topology and hybrid FDIA or
jamming attack.

Table 1: F-score, recall, and precision for the suggested detection
method (c � 0.2) in diferent kinds of cyber-attacks.

Measure F-score Recall Precision
Structured FDI 0.9860 0.9755 0.9967
Corr. Jamm 0.9983 1 0.9967
DOS 0.9987 1
Jamming 0.9986 1 0.9974
Hybrid 0.9985 1 0.9972
FDI 0.9987 1 0.9976
Topology 0.9889 0.9807 0.9971
Mixes 0.9985 1 0.9972

Table 2: F-score, recall, and precision for the suggested detection
method (c = 0.02) in diferent kinds of cyber-attacks.

Measure F-score Recall Precision
Structured FDI 0.9712 0.9448 0.9992
Corr. Jamm 0.9998 1 0.9997
DOS 0.9996 1 0.9994
Jamming 0.9996 1 0.9993
Hybrid 0.9997 1 0.9996
FDI 0.9998 1 0.9997
Topology 0.9890 0.9784 0.9998
Mixes 0.9996 1 0.9994
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extents. Table 3 shows the outcomes for M � 1, M � 2, M �

4, andM � 6 in which bk,t ∼ U[−φ,φ], ∀k ∈ 1, . . . , K{ },

∀t≥ τ and φ has the amounts of [3, 4, and 5] ×10−2.

6. Conclusion

Te present study formulates an online CAD structure as the
POMDP subject and proposes a solution on the basis of MF-
RL for POMDPs. In the numerical tests, the suggested
detection layout proves to be efcient, reliable, and quick in
CADs that target the SG. In addition, RL algorithms have
been shown to have a strong potential for solving difcult
cyber-security problems. It is possible to greatly improve the
algorithm suggested in this study by utilizing additional
enhanced techniques. Tis study is concluded by consid-
ering a single-agent RL setting to optimize the defender’s
policy, such that the attacking methods, like the attack kinds,
magnitudes, set of attack meters, and so on, do not afect the
defender’s optimal policy. Te optimal policy for the de-
fender after launching an attack is to stop and declare an
attack.
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