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Wind power generation is the major approach to wind energy utilization. However, due to the volatility, intermittent, and
controllability of wind power, it is difficult to control and scheduling of wind power, which brings challenges to the grid-connected
operation and dispatch of wind power. Therefore, accurate power prediction of the wind power generation system is worthy of in-
depth study. And this paper proposes a wind power prediction model based on logistic chaos atom search optimization (LCASO)
optimized back-propagation (BP) neural network, aiming to achieve accurate and efficient power prediction. Moreover, this work
utilizes data preprocessing to obtain more precise prediction results and related prediction evaluation indexes to quantificationally
compare the effect of the proposed one with other prediction models based on GA-BP neural network and PSO-BP neural
network. In contrast with the BP neural network, GA-BP neural network, and PSO-BP neural network, the simulation tests verify
the comprehensive prediction performance and wider applicability of LCASO-BP neural network-based power prediction model.

1. Introduction

Under the background of global carbon neutrality, the
process of energy structure transformation is accelerating
[1, 2]. More and more countries take the initiative to in-
troduce relevant preferential policies and measures [3] to
encourage the development of the renewable energy in-
dustry, and the green energy industry has a bright future
[4-6].

However, the inherent intermittency and instability of
wind power seriously restrict the development of wind
power [7]. Prediction of wind power can reduce the oper-
ating cost of the power system [8] and mitigate the adverse
effects of wind power, thus improving the competitiveness of
wind turbines [9].

Several physical models based on weather data have been
developed for wind speed prediction and wind power
forecasting [10]. Physical models typically use global weather
measurement databases or atmospheric mesoscale models
[11, 12], but they require large computational systems to

achieve accurate results and are therefore more reliable for
long-term forecasting.

In addition, neural networks and support vector ma-
chines are representative ML [5, 13] methods that can ac-
curately describe the stochastic nature of wind [14] by
establishing a nonlinear mapping between input and output
through various learning rules [15]. In particular, NNs can
be divided into traditional neural networks and deep
learning [16]. Traditional neural networks may not be able to
identify some complex features of wind [17], such as long-
term dependence. Therefore, deep learning methods have
been introduced in the field of wind power prediction [18].
Reference [19] proposed a short-term prediction method of
wind power based on the grey correlation analysis and
adaptive upgrading of Tianniu Optimization Extreme
learning machine, so as to realize the correction of the error
of wind power short-term prediction model and improve the
prediction accuracy. Reference [20] proposes an improved
Drosophila optimization algorithm, which takes anemom-
eter sequence reconstruction parameters and least squares
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support vector machine parameters as optimization objec-
tives to establish a wind speed prediction model. Reference
[21] uses a small-world optimization algorithm to optimize
the support vector machine combined with grey model to
build wind power prediction model. Compared with a single
support vector machine, this model improves the accuracy
of prediction results. In addition, reference [22] constructed
a wind turbine monitoring index prediction model based on
long short-term memory neural network and an improved
fuzzy comprehensive evaluation method based on the dy-
namic deterioration degree of indicators, which effectively
improve the prediction accuracy of ultra-short-term off-
shore wind power.

With the development of wind power forecasting
techniques [23], hybrid forecasting methods have been
used to achieve better forecasts [24]. Hybrid forecasting is
the use of combined models to obtain the best performance
[25]. The combined models can be physical and statistical
models, with different time scales or different statistical
models [26]. In addition, horizontal combination methods
employ weight coefficient assignment strategies, while
vertical hybrid methods employ different methods at dif-
ferent prediction stages [3], such as parameter selection,
data preprocessing, and data postprocessing. In addition,
new techniques such as spatial correlation forecasting [27],
regional forecasting, and offshore forecasting, which have
been developed in recent years, have also received wide
attention [28].

Based on the above research, a more accurate and ef-
fective prediction of the output power of wind and pho-
tovoltaic power generation systems is important not only
for optimizing equipment capacity and installed frequency
regulation but also for grid dispatch and online optimi-
zation of the unit mix. In summary, it is worthwhile to
study and analyze the power prediction model of wind
power systems.

The contributions made in this paper are as follows:

(i) The back-propagation (BP) neural network pre-
diction model based on logistic chaos atom search
optimization (LCASO) optimization is proposed.

(ii) The wind power prediction model based on LCA-
SO-BP neural network is designed and compared
with BP neural network, GA-BP neural network, and
PSO-BP neural network through simulation, which
effectively verifies its comprehensive prediction
performance and wide applicability.

The rest of this paper is organized as follows: Section 2
introduces the modeling of the wind power generation
system. Section 3 introduces LCASO-BP neural network.
Section 4 introduces the wind power prediction based on
LCASO-BP neural network, including data preprocessing,
evaluation criteria, simulation test design, and simulation
result analysis. Section 5 is a detailed summary and analysis
of this paper. Section 6 looks forward to the future research
direction.
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2. Modeling of Wind Power Generation System

2.1. Effect of Wind Speed. The wind turbine’s wind turbine
absorbs energy from the natural wind and converts it into
wind energy [29, 30], which is expressed as follows:

1 3 2
P, = pV'nRC,, (1)

where P, is the wind power absorbed by the wind turbine
(kW); p is the air density (kg/m?); V is the wind speed at the
hub height of the wind turbine (m/s); and R represents the
radius of the wind turbine’s sweeping surface (m).

However, in the actual operation of wind farms, given
the changing air density and wind speed under actual
conditions, the wind speed and wind power are in a complex
nonlinear relationship with each other, which can be de-
scribed by the following equation:

0, 0<v<v,,
, V_<v<V,,
Pv=4{ " ° ‘ (2)
Pr’ VCSVSVL,,
0, v2V,,

where V, represents the cut-in wind speed of the wind
turbine; V. represents the rated wind speed; V,, represents
the cut-out wind speed; and P, represents the rated
output power.

From equation (2), it can be found that wind farm wind
power and wind speed in different intervals have different
functions, wind speed below V', and above V,, wind turbine
shutdown work, but no change in output power, wind speed
between V, and V. will cause a significant change in output
power, wind speed between V_ and V,, the generator set
normal work under P,.

2.2. Effect of Wind Direction. The influence of the natural
wind direction of a wind farm on the output power of a wind
turbine includes the following two aspects.

Above all, in wind turbine operation, in order to make
the wind turbine capture as much wind energy as possible,
the yaw device of the wind turbine will adjust the position of
the wind turbine according to the recorded data of the
anemometer and wind vane, however, since most of the yaw
devices are time-delayed, the wind turbine cannot effectively
align with the incoming wind, which will make the output
power of the wind turbine different at the same wind speed.

Secondly, the wake effect will vary with the wind di-
rection. That is, after the wind turbines of the upwind wind
turbines capture the wind energy, the natural wind speed
gradually decreases, making the wind energy through the
downwind wind turbines significantly lower, and the cor-
responding output power will also decrease. Therefore, in
the field setting and arrangement of wind farms, wind
turbines are usually spaced far apart in order to reduce the
harm of the wake effect.
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2.3. The Effect of Air Density. It is obvious that the size of air
density also affects the amount of natural wind energy
captured by the wind turbine [31]. In addition, the air
density is also closely related to the external temperature,
relative humidity, atmospheric pressure, and other factors,
which can be described as follows:

b= 1276 (P - 0.378 (h/100)P,)

. , 3
(1 +0.00366t)/1000 %)

where t represents the wind farm ground temperature; h
represents the relative humidity; P represents the atmo-
spheric pressure; and P, represents the saturated water
vapor pressure. From the above equation, it can be obtained
that the wind turbine output power and air density are
directly proportional to each other in the case of the
remaining factors being constant. However, in the actual
wind power output prediction, the NWP data are generally
integrated, plus the influence of temperature, air pressure,
and relative humidity.

3. LCASO-BP Neural Network

3.1. Logistic Chaos. Chaos is an inherent randomness phe-
nomenon in certain nonlinear systems. Its change is not
random but seemingly random, and it has the following
characteristics: initial value sensitivity, boundedness, ergo-
dicity, internal randomness, positive Lyapunov exponent,
etc. [32]. The generation methods of chaotic sequences
mainly use the following chaotic chaos: Logistic mapping,
Tent mapping, Henon mapping, Lorenz mapping, and
segment-by-segment linear chaotic mapping [33].

Logistic chaos is a relatively simple mapping method in
mathematical form, and empirical experiments show that
its chaotic system has good security and stability. Therefore,
Logistic is used in this study to carry out chaotic mapping
for the optimal individuals in the population. In addition,
compared with other systems that generate chaotic vari-
ables, Logistic mapping is simple to use and requires less
calculation. Therefore, Logistic mapping will be used to
generate chaotic phenomena in standard atomic groups.
The iterative equation of traditional logistic mapping is as
follows:

Xnt1 = UXp (1 - xn)’ (4)

where p represents the control parameter, 4 € (0,4] and x,,
represents the » th chaotic variable, x,, € (0,1),n=10,1,2,---4,
which is defined between 0 and 1 in the continuous field of real
numbers.

Particularly, when 3.57 <p <4, the whole system is in
a chaotic state, so it is necessary to select ¢ The closer of y it is
to 4, the better of the whole chaos system. However, con-
sidering the actual situation when initializing the population
position of atoms for chaotic mapping, this study sets 4 = 3.8,
which is more effective and convenient.

Because when x, € (0,1) and x,, ¢ (0.25,0.5,0.75), the
system is in the chaotic region, a small change of the initial
variable will cause great differences in the subsequent orbits.

"’J') (5)
Xnel,j = bn,j + Cn+1,j(vn,j - bn,j)’

where C,, ; denotes the initial value of the chaotic sequence; j
represents the dimension of the decision variable; and v, and
b, represents the upper and lower limits of the initial de-
cision variables, respectively.

In this way, the whole atomic group can use the global
ergodic property of chaotic variables to optimize all solution
spaces without falling into local extreme points. The general
flow chart of Logistic chaotic mapping is shown in Figure 1.

3.2. BP Neural Network. BP neural networks consist of three
layers: input, hidden, and output. Each layer consists of
a certain number of neurons [34]. Each neuron has
a threshold value and each level is connected by weights [35].
The relationship between the two levels of inputs and
outputs can be considered as a mapping relationship, i.e.,
each set of inputs corresponds to a set of outputs, weights (or
thresholds) are used to represent this relationship, and then
the problem processing is performed.

In BP neural network, all layers except the input layer are
composed of neurons, each of which is equivalent to
a perceptron. The artificial neuron contains several parts,
firstly, the input variable x=(x;, x5, ..., X,,,). Then is the
threshold vector of the i-th neuron corresponding to the
input variable w = (wj, wyjs . . ., W,;). The neuron threshold is
©;, the bias value of the neuron is b, the activation function is
f, and the corresponding output value of the neuron is y;. The
correspondence between neuronal input and output is as
follows:

Yi =f<zwijxm+b>' (6)
izl

The typical construction of a common three-layer BP
neural network is shown in Figure 2. The left side is the input
node, the right side is the output node, and the middle is the
hidden layer.

The two phases of BP network learning are the forward
scaling of the input signal and the backward scaling of the
mistake. In the first stage, the training sample information
is input to the input layer, then the hidden layer process it,
and then passed it to the output layer. If there is a real
output there is an error between the actual output and the
predicted output, the second process is implemented. The
second process is to pass the error of the output signal
through the original path from the hidden layer to the input
layer. Then, according to the assigned error signal, each
neuron in each layer adjusts the connection of each net-
work’s weights and thresholds, last, the error signal is
gradually reduced. These two processes are repeated al-
ternately until the algorithm converges and satisfactory
error accuracy is obtained.
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FIGURE 1: General flow chart of logistic chaotic.
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FiGUrE 2: Basic structure of BP neural network.

3.3. Improved ASO Based on Logistic Chaos. The original
ASO algorithm has a simple design and good applicability.
However, it has the following two main defects: premature
convergence and easy to fall into local optimization. Pre-
mature convergence will affect the exploration operation,
that is, the global search ability, and falling into local op-
timization will affect the mining operation, that is, the local
search ability. Therefore, the improved method designed in
this study aims to balance the exploration and mining
process in the optimization process of the original ASO.
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Based on this idea, this study introduces the logistic chaos
theory into ASO (LCASO). By initializing the population
position of atoms, the population individual with the best
fitness is selected as the initial population, which further
improves the quality of the initial atomic population solu-
tion and the efficiency of the algorithm. The optimization
principle of LCASO is to add the logistic chaotic strategy to
the group optimal value obtained by the optimization of
ASO. Figure 3 is the flowchart of the LCASO algorithm.

4. Wind Power Prediction Based on
LCASO-BP Network

4.1. Data Preprocessing. Generally speaking, there are two
sources that affect the quality of input data samples. First, the
input data samples have quality problems such as abnormal and
missing values. Second, the magnitude and dimension of input
data samples vary greatly. Common data sample problems can
be roughly divided into three categories: integrity, accuracy, and
effectiveness. In view of these problems, this section makes
a simple cause analysis and expounds on the relevant detection
standards. Among them, the detection standards of wind power
data can refer to GB/T 18710-2002 standard [36].

First, the data integrity test. Incomplete data refer to the
lack of a data value and some important attributes. The reason
may be that the collection equipment has system failure and
human operation error during data collection, or different
factors are considered in data collection and data component
analysis, as well as problems in data storage. The data integrity
test can be carried out according to the following formula:
Cyata = Neaa = Nomiss 10095, (7)

data

where Cg,,, represents the integrity rate of wind measure-
ment data; Ny, indicates the number of data points that
should be tested; and N, is expressed as the number of
data points missing the test.

4.2. Evaluation Criteria. At present, there is no unified and
specified evaluation standard to evaluate the prediction
model. Some of the most commonly used evaluation in-
dicators are mean absolute error (MAE), mean square error
(MSE), mean absolute percentage error (MAPE), and root
mean square error (RMSE). These four evaluation indexes
can be expressed by the following formula:

>

1 n
MAE =~ DEES?
i=1

n

1 2
MSE == (x;- y,)%,
SE=_ ) (xi=y)

i=1

(8)

1 — 1.
MAPE = 1 D i = v x 100%,
- i

S

RMSE =
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!

Parameter initialization: set atomic initial
population size, maximum number of
iterations, depth, multiplier weight, etc

!

Population initialization: initialize population position of
the atom, and select the population individual with the best
fitness as the initial population

le
T

Fitness evaluation: calculate and rank the fitness of
atomic individuals in initial population, and update
optimal location of atomic individuals and population

)

Chaotic variation: for optimal position of population, carry
out chaotic iteration and fitness evaluation according to Eqs.
(5) and (6), and select the global optimal feasible solution

A4

position

Update the atomic acceleration, velocity and

A

Calculate fitness of atomic population and reorder
it to update location of atomic population

Is the number of iterations
meet requirements?

FiGure 3: Flowchart of the LCASO algorithm.

where 7 is the number of prediction points and x; and y; is
the predicted value and actual value, respectively.

4.3. Simulation Test Design. This section aims to apply
LCASO-BP neural network to wind power system power,
and to further verify the comprehensive performance of its
prediction model, standard BP neural network, GA-BP
neural network, and PSO-BP neural network are selected as
comparison models for comparative simulation tests. The
specific design process is as follows:

In the first step, a 2017 historical data set of a wind
power station located in Ma Huang Mountain is firstly
imported as the input dataset, followed by a series of
preprocessing of the dataset so as to improve the quality of
the input dataset, followed by dividing the training set into

27990 datasets and the test set into 50 datasets, and then
linear normalization is performed on the input dataset. The
simulation experiment is carried out on a personal com-
puter based on MATLAB 2019b platform, in which the
sampling time of MATLAB platform is 0.01 seconds, the
solver is ode 45, and the computer uses Intel(R) Core TM
i7-8650U CPU.

The second step is to determine the parameter settings of
BP neural network and LCASO algorithm and comparison
algorithm. The parameters of BP neural network are set as
follows: the number of training times is 1000, the learning
efficiency is set to 0.1, the network target accuracy is 0.1%,
and the momentum coefficient is 0.8; the parameters of
LCASO algorithm are set as follows: the initial population
size is 30, the maximum number of iterations is 50, and the
upper and lower limits of independent variables are (1, 3)



Wind power prediction based on standard BP neural network

z
2
5}
=
o
(=¥
5 10 15 20 25 30 35 40 45 50
Sampling points (15 min/point)
—— Actual value
-~ Predicted value
(a)
Wind power prediction based on standard PSO-BP neural network
45
40
§ 35
S 5 AWAVN
2\ \//\\/
£ 25 \ 7 \
20
15 /

5 10 15 20 25 30 35 40 45 50
Sampling points (15 min/point)

—— Actual value

Predicted value

()

International Transactions on Electrical Energy Systems

Wind power prediction based on standard GA-BP neural network
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FiGURE 4: Wind power prediction curve based on (a) standard BP neural network; (b) GA-BP neural network; (c) PSO-BP neural network;

(d) LCASO-BP neural network.

and (-3, 1), the depth and multiplier weights are 50 and 0.2,
respectively.

In the third step, the optimal number of neuron nodes in
the hidden layer of the three prediction models was de-
termined as 9 by the experimental method and empirical
formula method, and the input variables were wind speed
(m/s) at 70m of the wind measurement tower, wind di-
rection (degree) at 70m of the wind measurement tower,
temperature (°C), air pressure (hPa), and humidity (%), and
the output variable was the predicted output power (kW),
and the input and output variables could be determined
based on the input and output variables. The neuron nodes
in the input and output layers are 5 and 1, respectively, so the
structure of all three prediction models is a three-layer
network structure with 5-9-1. In particular, to reduce the
effect of random initialization on the overall prediction
results, the average value of 20 independent experimental
results is used for all the simulation test error evaluation
index values in this section.

4.4. Simulation Results Analysis. The wind power prediction
curves of BP neural network, GA-BP neural network,
PSO-BP neural network, and LCASO-BP neural network are

shown in Figures 4(a)-4(d). The comparison shows that the
LCASO-BP neural network has the best prediction fit,
compared to the GA-BP and PSO-BP neural networks,
which have the second worst prediction fit and the BP neural
network is the worst. This indicates that the trend of the
power prediction of the BP neural network after LCASO
optimization conforms to the actual power trend to a great
extent. In addition, the comparison between the predicted
power and the actual power in Figure 5 shows that the
predicted power of the preoptimized BP neural network
model, which can over- or lag to the peak, has been greatly
improved, while the prediction accuracy of the three models
after optimization has been improved to a certain extent,
especially the predicted power curve of the LCAS-BP neural
network basically matches the actual output power curve,
which has a good understanding of the short-term power
trend of the wind power system. The power trend of the wind
power system has been well presented.

Figures 6 and 7 show the comparison of the four pre-
diction models in terms of wind power prediction error
indicators. It is easy to find that compared with the other
three prediction models, the LCASO-BP neural network is
much smaller in terms of AE and RE indicators, which
indicates its better prediction effect and more stable
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Wind Power Forecast Comparison Results
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Ficure 6: Comparison results of wind power prediction error AE.

prediction results. In addition, Table 1 shows the prediction
and error values of the four prediction models at each of the
five sampling points, and the table shows that the AE and RE
values of the LCASO-BP neural network are the smallest at
most of the sampling points, especially the RE value, which
verifies the superior prediction performance of the LCA-
SO-BP neural network model.

And Table 2 shows the results of the error evaluation
metrics of the four prediction models. Compared with the
other three prediction models, the LCASO-BP neural net-
work has the smallest error evaluation metrics of MAE, MSE,
RMSE, and MAPE, followed by the PSO-BP neural network.

Among them, the MSE value of LCASO-BP is only 0.80% of
the MAPE value in BP, and its MAPE, RMSE, and MAE
values are only 9.12%, 0.80%, 8.96%, and 8.66% of the values
in BP. It is noteworthy that the validation test of the
comprehensive prediction ability of the relevant prediction
models is more effective and accurate due to the significant
increase of the input data sample size and the number of
network training in this section, while the MSE, RMSE,
MAE, and MAPE values in LCASO-BP are only 1.89%,
13.82%, 14.65%, and 18.65% of those in PSO-BP compared
with the prediction model after PSO-optimized BP neural
network, 14.65% and 18.54%, which further indicates that
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TaBLE 1: Results of power prediction values for the four prediction models.

Sampling 5 10 15 25 30 35 40 45 50
points
Measured values 21.7242 19.7778 23.2253 35.6639 34.5001 29.7842 30.1208 30.6493 29.1846 41.0771
BP predicted values 22,4122  20.7560 24.2829 36.3452 35.3211 30.2889 30.6706 31.1948 29.6624  41.4405
GA-BP predicted values 21.5707 19.7018 229188 349702 33.7510 29.3096 29.6088 30.1063 28.6340 40.3058
PSO-BP predicted values 21.6433 19.7858 23.0024 35.0307 33.8162 29.3884 29.6889 30.1845 28.7146 40.3577
LCASO-BP predicted values 21.8132 19.8748 23.3081 35.6955 34.5366 29.8400 30.1753 30.7016 29.2429 41.0865
AE values of BP 0.6880 0.9782 1.0576 0.6813 0.8209 0.5048 0.5498 0.5454 0.4778 0.3634
AE values of GA-BP 0.1535 0.0760 0.3065 0.6936 0.7490 0.4746 0.5120 0.5430 0.5505 0.7712
AE values of PSO-BP 0.0809 0.0080 0.2228 0.6331 0.6838 0.3958 0.4319 0.4648 0.4700 0.7194
AE values of LCASO-BP 0.0889 0.0969 0.0827 0.0316 0.0364 0.0558 0.0545 0.0522 0.0583 0.0094
RE values of BP 0.0316 0.0494 0.0455 0.0191 0.0238 0.0169 0.0183 0.0178 0.0163 0.0088
RE values of GA-BP 0.0070 0.0038 0.0132 0.0194 0.0217 0.0159 0.0170 0.0177 0.0188 0.0187
RE values of PSO-BP 0.0037 0.0004 0.0096 0.0177 0.0198 0.0133 0.0143 0.0151 0.0161 0.0175
RE values of LCASO-BP 0.0040 0.0049 0.0035 0.0008 0.0010 0.0019 0.0018 0.0017 0.0020 0.0002

TaBLE 2: Error evaluation results of four prediction models.

Error assessment metrics BP neural network

GA-BP neural network

PSO-BP neural network  LCASO-BP neural network

MSE 0.5526 0.2886
RMSE 0.7434 0.5373
MAE 0.7020 0.4726
MAPE 2.7839% 1.5495%

0.2323 0.0044

0.4820 0.0666

0.4149 0.0608
1.3699% 0.2540%

the prediction accuracy after optimization of BP neural
network by LCASO algorithm is the most accurate among
the four prediction models, and its comprehensive pre-
diction performance and applicability are also the strongest.

In summary, the LCASO-BP neural network obtained
the best prediction performance in the comparative simu-
lation experiments of wind power prediction. On the one
hand, the LCASO-BP neural network prediction model not
only has some enhancement and improvement in overall
stability and convergence speed compared with the other

three prediction models, which indicates that the LCASO
algorithm can be generally applied to the improvement of BP
neural network in engineering practice. On the other hand,
the LCAO-BP neural network prediction model obtains the
smallest error and the best fitting accuracy, and it can be seen
that the BP neural network improved by LCASO algorithm
greatly improves the comprehensive prediction perfor-
mance, which also verifies that the LCASO algorithm can
better optimize the weights and thresholds of the BP neural
network.
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5. Conclusion

The development and utilization of increasingly popular new
energy sources have been the focus of attention of re-
searchers in the engineering field, and wind power gener-
ation has been widely used due to its advantages such as
nonpollution and sustainability, but because wind power
generation is difficult to predict, control, and dispatch, it
poses a large hidden danger to the safety and grid stability.
Furthermore, most of the current research is focused on
wind power prediction, and the research horizon is not
broad enough. To predict the power of wind power system
more accurately, so as to reduce the errors of generation and
consumption and ensure safety, reliable, and economic
operation of power system, this study creatively designs and
implements a wind power prediction model based on
LCASO-BP neural network, which can effectively predict the
future wind power.

The main contents and conclusions of this paper are
briefly summarized as follows:

(1) A detailed introduction of the research background
and significance of wind power system power pre-
diction, and a detailed analysis and summary of the
wind power characteristics analysis and its power
prediction technology, provide a sufficient theoret-
ical basis and rationale for the overall construction of
the wind power system power prediction model.

(2) The BP neural network model based on LCASO
optimization is elaborated. First, the ASO algorithm
based on logistic chaos mapping is introduced in
detail, and simulation tests and analysis are con-
ducted to determine its feasibility and effectiveness.
Then the principles of BP neural network and its
shortcomings are analyzed, based on which a BP
neural network prediction model based on LCASO
optimization is proposed, and its prediction per-
formance and generality are verified through
simulation tests.

(3) A detailed analysis of the data preprocessing process
and relevant prediction evaluation indexes of wind
power generation systems is presented, and power
prediction models based on GA-BP neural networks
and PSO-BP neural networks are established and
simulated and tested to provide effective and sci-
entific references for subsequent comparative sim-
ulation experiments.

(4) Based on the previous research and analysis, the
wind power prediction model based on LCASO-BP
neural network is designed and its comprehensive
prediction performance and wide applicability are
effectively verified through comparative simulation
tests with BP neural network, GA-BP neural net-
work, and PSO-BP neural network, respectively. The
simulation results show that the LCASO-BP neural
network prediction model has excellent prediction
accuracy and fitting effect, and has significant ad-
vantages in overall stability and convergence.

6. Prospect

In the course of this research, a short-term power pre-
diction model for wind power generation system based on
LCASO-BP neural network has been designed, but there are
still some future works in this subject area that need to be
studied and solved in depth, mainly in the following
aspects:

(1) Prediction Time Scale. In this study, several short-
term prediction models based on improved BP
neural networks have been designed for wind power
generation systems, but the feasibility and effec-
tiveness of BP neural networks and their improved
models for medium and long-term power prediction
of wind power generation systems have not been
studied in depth.

(2) Prediction Spatial Scale. In this study, only the re-
source data related to a single wind power plant at
a location in Ma Huang Mountain are used as the
research object.

(3) In practice, many wind farms appear to be clustered
and scaled, so future research can focus on the power
prediction of the entire wind farm cluster area.

(4) Prediction Algorithm Model. This study only applies
the heuristic algorithm and its improvement algo-
rithm to optimize the BP neural network model in
the wind power system power prediction and does
not further research and analysis on other advanced
models, and innovative research on prediction
models can be conducted in the future, such as
machine learning algorithms and hybrid artificial
intelligence algorithms.

(5) Input Data Preprocessing. This study only uses
common data preprocessing methods to examine
and process the input dataset, which has certain
uncertainties and limitations, and other input data
preprocessing mechanisms, such as principal com-
ponent analysis, feature selection methods, and
methods based on cluster analysis, can be further
investigated in the future.

(6) Power Uncertainty Analysis. As the power prediction
of wind power generation system is inherently un-
certain, accurate analysis of its power prediction
uncertainty is the key to ensure grid dispatch and
safe and stable operation. The power uncertainty
analysis can be roughly divided into parametric and
nonparametric methods according to the modeling
framework, which can be analyzed qualitatively and
quantitatively in the future.

Data Availability

The wind power data used to support the findings of this
study were supplied by State Grid Corporation of China
under license and so cannot be made freely available. Re-
quests for access to these data should be made to Peng Li,
lipeng_ac@outlook.com.
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