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Tis paper discusses the efcient implementation of a new hybrid approach to forecasting short-term PV power production for
four diferent PV plants in Algeria. Te developed model incorporates a time-varying flter-empirical mode decomposition (TVF-
EMD) and an extreme learning machine (ELM) as an essence regression. Te TVF-EMD technique is used to deal with the
fuctuation of PV power data by splitting it into a series of more stable and constant subseries. Te specifed set of features
(intrinsic mode functions (IMFs)) is utilized for training and improving our forecasting extreme learning machine model. Te
adjusted ELM model is used to evaluate prediction efciency. Te suggested TVF-EMD-ELM model is assessed and verifed in
various Algerian locations with varying climate conditions. In all examined regions, the TVF-EMD-ELM model generates less
than 4% error in terms of normalized root mean square error (nRMSE).

1. Introduction

Te vision and goal of countries around the world have been
to create a sustainable and environmentally friendly econ-
omy by developing plans for a promising future by investing
in green and renewable energies, notably solar energy.

Te future installation of PV capacity is expected to reach
4,815GW by 2040, according to the IEA 2019 Sustainable
Development Scenario [1]. In this regard, Algeria, like other

countries in the world, has begun investing in the feld of
photovoltaic energy in order to diversify energy sources and
not rely entirely on fossil energy within a time frame set by the
Algerian government to reach 22,000 megawatts of electricity
production from renewable sources, which is 2011–2030 [2].
To achieve this goal, the task of installing photovoltaic stations
was entrusted to the national company Sonelgaz, which has
experience in the feld of renewable energies, as it installed 23
photovoltaic stations connected to the network and wind
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farms throughout the country. However, we see that most of
the grid-connected solar energy production plants are afected
by several factors, including photovoltaic panels, inverters,
meteorological conditions, and dust accumulation on pho-
tovoltaic panels. Terefore, it becomes necessary to analyze
and forecast the PV generation capacity [3, 4].

Decomposition algorithms are considered a type of
statistical method that can be used to analyze time series
data, such as data on solar photovoltaic (PV) power gen-
eration.Temain beneft of using decomposition algorithms
in PV power forecasting is that they can help to identify and
separate diferent components of the time series data, such as
trend, seasonality, and noise. Tis can make it easier to
understand the underlying patterns in the data and to make
more accurate forecasts of PV power generation. Decom-
position algorithms can also be used to remove the efects of
these components, which can improve the accuracy of
forecasts by reducing the amount of noise in the data. In
summary, the use of decomposition algorithms in PV power
forecasting can help to improve the accuracy and reliability
of the forecasts, which can be useful for a variety of ap-
plications, such as grid management and renewable energy
planning. Tere have been many studies that have investi-
gated the use of decomposition algorithms for PV power
forecasting. Some of the most commonly used decompo-
sition algorithms include the seasonal decomposition of time
series (STL), moving average (MA), autoregressive inte-
grated moving average (ARIMA), empirical mode decom-
position (EMD), ensemble empirical mode decomposition
(EEMD), a new version of the basic EMD (CEEMDAN) [5],
and iterative fltering decomposition method (IF). Das et al.
[6] reviewed the usage of various adaptive decomposition
algorithms for time series analysis. In their work, they de-
scribed the computational stages for several adaptive de-
composition strategies in detail, which can be very useful for
researchers working on time series data forecasting.

In the literature, there are many methods for predicting
PV production [7, 8]. Tese methods can be grouped into
three leading families: statistical methods, physical methods,
and hybrid methods [9]. Tese methods provide either ir-
radiation forecasts or direct production forecasts.Te option
of a forecasting method can be guided by several parameters:
the forecast, the forecast horizon envisaged, and the type of
data available. Tere are various sources of data that can be
used in the context of PV production forecasting, namely,
production measurements and meteorological variables
such as solar irradiation, weather forecasts, and camera or
satellite images. An interesting approach is to group the
forecast models by increasing horizons from a few minutes
to several days. Intra-hourly and very short-term forecasts
that cover horizons ranging from less than a fewminutes to a
few hours are essential to the activities of variability treat-
ment, production monitoring, load adjustment, and storage
management.

Te medium-term forecast is used in the context of
energy management and trading. Long-term forecasting
allows for better planning and optimization of resources. We
fnd in the literature comparisons of forecasting methods for
short and very short-term horizons and detailed analyses of

these methods according to the type of input data. In this
study, we have presented the hybrid decomposition models
in the four grouped diferent classes based on the adopted
decomposition algorithms for PV forecasting. Firstly, the
method of EMD. [10], proposed a forecasting method has
been mentioned that is contingent on a hybrid empirical
mode decomposition (EMD) and extreme learning machine
(ELM) [11], Te proposed EMD-CNN-based combined
forecasting method and voltage time series data are
decomposed by EMD [12], has contributed to short-term PV
power forecasting by an approach called EMD-SCA-ELM,
which is a parameter optimization process for ELM that is
controlled by SCA with EMD signal fltering technique,
prediction, and training based on SLFN. Te [13] proposed
EMD-BPNN method is estimated on a PV power dataset
collected from a 100 kW roof-top grid-connected solar plant.
Secondly, the method of (VMD). Subsequently [14], pre-
sented a hybrid method of VMD and deep CNN with
multiple input factors that have been proposed, which is able
to improve the accuracy of short-term PV power predictions
[15], applied VMD to decompose PV power into diferent
fuctuating components. And then, a deep belief network
and an autoregressive moving average were used to predict
the fuctuating component. However, the VMD has the
disadvantage of setting the mode number and the penalty
factor by experiencing a decision [16], proposed a model of
variational modal decomposition (VMD), maximum cor-
relation minimum redundancy (mRMR), and deep belief
network combination (DBN) to predict photovoltaic output,
which efectively improved the prediction accuracy. Refer-
ence [17], used VMD to decompose the historical PV power
and then combined it with the LSTM optimized by the
improved particle swarm optimization (IPSO) algorithm to
predict. Te residual error of VMD is also very important to
the prediction results, which have not been predicted and
analyzed. Tird, the method of WD shows [18], this study
focuses on forecasting the power output of a photovoltaic
system located in Puglia-South East Italy at diferent forecast
horizons, using historical power output data and performed
by statistical models. hybrids based on least squares support
vector machines (LS-SVM) with wavelet decomposition
(WD) [19], proposes an improved DL model to improve the
accuracy of day-ahead solar irradiance prediction. It should
be noted that the DWT-CNN-LSTM model is individually
established under four general weather types due to the
strong dependence of solar irradiance on the meteorological
state [20], presents a method combining an artifcial neural
network (ANN) and a wavelet decomposition (WD) for
power prediction of a PV system. Solar irradiance and six
other parameters are chosen as input to the hybrid model
based on WD and ANN [21], compared wavelets ANFIS,
ANFIS, and ANN based on various performance indices,
including RMSE, nRMSE, MAE, MAPE, and standard de-
viation. Finally, the method of (CEEMDAN) [5], applied a
hybrid deep learning model that combines two popular deep
neural networks to extract spatiotemporal information from
degenerate solar radiation subsets of CEEMDAN. Variable
empirical mode analysis can divide noisy and fuctuating
time series into several subsets called intrinsic mode
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functions [22], proposes a deep learning model based on
bidirectional long-term memory (BiLSTM), sinusoidal co-
sine algorithm (SCA), and full ensemble empirical mode
decomposition with adaptive noise (CEEMDAN) for solar
radiation prediction. Prediction results show that the pro-
posed methodology provides high prediction accuracy
compared to the independent BD-LSTM and SCA-Bi-LSTM
[23], proposes a closed recurrent unit (GRU) neural network
prediction model based on Full Ensemble Empirical Mode
Decomposition with Adaptive Noise (CEEMDAN). Uses
Approximate Entropy (AE) to rearrange each subsequence
to generate low-frequency, mid-frequency, and high-fre-
quency signals, then feeds them into the model for pre-
diction [24], have developed a hybrid interval prediction
model by combining Fuzzy Information Granulation (FIG),
Network Enhanced Long and Short-Term Memory
(ILSTM), and Automatic Regression Diferential Moving
Average Model (ARIMA) for the interval prediction of PV
output power. A summary of articles on PV power fore-
casting is reported in Table 1.

However, decomposition algorithms do have some
limitations. One weakness is that they may not be able to
accurately forecast PV power generation in situations where
the underlying patterns in the data are complex or nonlinear.
In addition, decomposition algorithms can be sensitive to
the choice of parameters, and selecting the wrong param-
eters can lead to poor forecasts. Finally, decomposition
algorithms may not be able to capture unexpected events or
changes in the data, such as sudden changes in weather
conditions or equipment failures, which can afect PV power
generation. In an efort to address the gap in decomposition
technique for PV power forecasting, we have suggested the
use of a new decomposition technique called TVF-EMD,
which stands for time-varying flter-ensemble empirical
mode decomposition. Our approach uses a combination of
time-varying flters and ensemble empirical mode decom-
position coupled with the ELM model to efectively de-
compose the PV power signal into its underlying
components, allowing for more accurate forecasting of PV
system output. Trough the use of this new decomposition
technique, we aim to make signifcant contributions to the
feld of PV power forecasting.

Tis paper is organized as follows. Section 2 describes the
four studied PV plant systems. Section 3 presents the key
elements of our proposed model. Section 4 describes the
main components of our hybridization strategy. Section 5
outlines the model evaluation process. Results and discus-
sion are presented in Section 6. Finally, in Section 7, we
summarize the main fndings of this work and suggest
potential areas for future research.

2. Overview of the Four Solar
Photovoltaic Plants

Te study area included the areas of photovoltaic power
plants in Algeria, and four solar plants were selected from
among 22 photovoltaic plants connected to the grid in
diferent climatic regions to validate the models [25, 26].Te
frst area is the Laghouat photovoltaic station, which is

characterized by a semi-continental climate with geo-
graphical coordinates located at 33°48′10N 2°52′30E; the
second region is the region of Ghardaia, which is charac-
terized by a semi-desert climate with geographical coordi-
nates 32°29′N 3°40′E. Te third region is the Sidi Bel Abbes
region which has a dry climate with geographic coordinates
35°11′38N 0°38′29W; the fourth area is the Djelfa region
which has a cold climate with geographic coordinates
34°40′30N 3°15′30E [27, 28].Te geographical coordinates of
the study sites are shown on the map of Algeria (see
Figure 1).

Te solar photovoltaic plant in Laghouat, Djelfa, and Sidi
Bel Abbes was commissioned in 2016, except for the pilot
plant in Ghardaia that was commissioned in 2014, which is
part of the National Renewable Energy Program and is one
of 23 similar plants built across the highlands and the south
of the country to produce 400 megawatts [29]. Te studied
site’s location of the PV central is shown in Figure 1.

Te modules used in these solar power plants are
combinations of diferent technologies used in the four
projects. Te total capacity of these plants is 135.1MW. Four
diferent technologies were used in the Ghardaia solar power
plant with several energy classifcations, thin amorphous
silicon (a-Si) (Cd-Te), amorphous silicon (a-Si), polycrys-
talline silicon, and monocrystalline silicon (a-Si n la-Si). For
the remaining three solar power plants, crystalline poly-
technology was used, with a variation of the technology
manufacturer (Table 2).

3. Methodology

3.1. Principle of TVF-EMD. EMD decomposes a given signal
x(t) into a limited number of single-component IMFs and a
nonzero average residual r(t), namely,

x(t) � 􏽘
N

i�1
imfi(t) + r(t), (1)

where imfi(t) is the i-th IMF. To obtain each IMF, an it-
erative procedure called the sifting process is used. Te
sifting process of EMD is mainly carried out by two steps: (1)
estimate the “local mean” and (2) recursively subtract the
local mean from the input signal until the resulting signal
becomes an IMF.

To improve the efectiveness of the empirical mode
decomposition (EMD) approach, the time-varying flter-
empirical mode decomposition (TVF-EMD) method re-
places monocomponents with local narrow-band signals
that have similar properties to IMFs but can generate a more
pronounced Hilbert spectrum. Local narrow-band signals
are defned based on their instantaneous bandwidth; if the
signal’s local instantaneous bandwidth is less than a certain
threshold value, it is classifed as a local narrow-band signal.
Te basic idea behind this approach is to determine the local
cutof frequency and then apply time-varying fltering. Te
shifting process of TVF-EMD is achieved using a time-
varying flter, which is carried out in three main steps.

Phase 1. Estimate the local cutof frequency.
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Table 1: Summary of literature on PV power forecasting using the four models.

Ref. Methodology Forecast
horizon Findings

Method of EMD

[10] EMD-ELM, ELM 5min, 30min
(i) Te EMD-SCA-ELM with 15min time interval data forecasting
method provides an enhancement in the performance of the ELM
model concerning short-term PV power forecasting

[11] EMD-CNN 1–6–12 h

(i) Te results show that the proposed model has less error than
other conventional forecasting models, and as the prediction time
scale becomes larger, the prediction accuracy of EMD-CNN does
not decrease too much, and the complexity of the EMD-CNN
model does not increase in the case of too many decomposition
components

[12] EMD-SCA-ELM,ELM, EMD-ELM, and SCA-
ELM

5 min, 30min,
60min

(i)Te results signify that the recommended technique performs in
an outstanding manner than the conventional ones while
addressing short-term PV power

[13] EMD-BPNN 1–12–24 h

(i) Decomposition-based BPNN model performs better as
compared to the BPNN method due to EMD; the input space was
expanded due to the increased number of data points created by the
IMF

Method of VMD

[15] ARMA, DBN, EMD-ARMA-DBN, EEMD-
ARMA-DBN, and VMD-ARMA-DBN 1 d

(i) Te short-term prediction accuracy of the nonlinear PV power
time series in this work proposes a multifrequency combined
prediction model based on VMD mode decomposition

[14] VMD-CNN 8h

(i) Te proposed hybrid model improves short-term PV power
forecasting precision and can meet the needs of practical projects.
With the rapid development in the feld of deep learning, the model
will have advantages in computation efciency and become more
practical in the near future.

[16] VMD 1d
(i) Determines the candidate feature set of each component using
the incremental search method and sorts the features in the
candidate feature set in descending mRMR value order

[17] OVMD-IPSO-LSTM 1d
(i) Te advanced decomposition method is developed to
decompose the PV power into the diferent fuctuation
components more efectively

Method of WD

[18] LS-SVM+WD 1–24 h

(i) Analysis of three forecast models concludes that the LS-SVM
with WD also permits reaching the greatest revenue with lower
costs for unbalancing penalty with respect to the ANN and the LS-
SVM

[19] DWT-CNN-LSTM 1d ahead
(i) Te proposed DL technique-based day-ahead solar irradiance
forecasting model has a high potential for future practical
applications

[20] WD+ANN 5d
(i) Te proposed model is validated by experimental data that
predict the output power PV systems accurately, which is useful to
enhance the safety and stability of the electrical grid

[21] Wavelet-ANFIS 10min, 30min,
60min

(i) Demonstrates that the connective forecast with discrete wavelet
decomposition and ANFIS could be an outstanding tool for the
short-term forecasting of PV output power

Method of CEEMDAN

[5] CEEMDAN–CNN–LSTM 1h
(i) An average RMSE of 38.49W/m2 indicates that CEEMDAN-
CNN-LSTM model has a relatively stable prediction performance
in diferent climatic conditions

[22] CEN-SCA-BiLSTM 1h (i) Te CEN-SCA-BiLSTM model obtains the smallest

[23] CEEMDAN-AE-GRU 1 d (i) A desirable method for accurate short-term PV power
forecasting

[24] CEEMDAN-FIG-ILSTM-ARIMA 7h (i) Decomposition and reconstruction of historical PV output
power
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Te purpose of determining the local cutof frequency is
to handle the separation and intermittency issues. Using the
signal x(t) as an example, the following steps are performed
[30]:

(i) Step 1. Find the maximum timing of x(t) expressed
as ui, i= 1, 2, 3, . . ..

(ii) Step 2. Find out all intermittences, expressed as ej,
j= 1, 2, 3, . . . which satisfy
max[φbis′ (ui ≤ t≤ ui+1] − min[φbis′ (ui ≤ t≤ ui+1]/
min[φbis′ (ui ≤ t≤ ui+1]> ρ
where φbis′ (t) stands for the bisecting frequency and
ρ is the preset threshold on the frequency change
rate between two consecutive maxima.
Subsequently, the timing of ui is taken as an in-
termittence, namely, ej= ui.

(iii) Step 3. Assume ej, locates on the rising edge
φbis
′ ((e(j−1))≤ t≤ ej) could be regarded as a foor. If

they are on the falling edge, φbis
′ ((ej ≤ t≤ e(j+1)) is

considered to be a foor. Te remaining parts of
φbis′ (t) are regarded as peaks.

(iv) Step 4. Obtain the fnal local cutof frequency by
interpolating between the peaks.

Phase 2. Filter the input signal using a time-varying flter to
obtain the local mean.

B-spline approximation is used to conduct the flter on
the signal x(t), which takes the extrema timing of h(t)as
knots.

h(t) � cos 􏽚φbis′ (t)dt􏼔 􏼕. (2)

By this means, the flter cutof frequency is in accordance
with φbis′ (t). Subsequently, flter the input signal x(t) using
the built B-spline approximation flter. Te approximate
result is denoted as m(t).

Phase 3. Check whether the residual signal meets the
stopping criterion.

A narrow-band signal is defned by its instantaneous
bandwidth. In this approach, a relative criterion, namely,

Figure 1: Studied sites’ location of the PV central.

Table 2: Te studied PV plant systems.

PV solar felds Total power plant (MWc) Area (Ha) Type of photovoltaic modules installed
Djelfa I and II 53 120 (i) Crystalline poly, type: YL250P-29bLaghouat I and II 60 60
Sidi Bel Abbes 12 36.6 (i) Crystalline poly, two types: HSL60P6-PB-1-250

Ghardäıa piloté 1.1 10

(i) Tin flm (Cd-Te), type: FIRST SOLAR FS-380
(ii) Amorphous silicon (a-Si), type: SCHOTT ASI 103
(iii) Polycrystalline silicon, type ATERSAA-235P
(iv) Monocrystalline silicon, type AtersaA-250M
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θ(t) �
BLoughlin(t)

φavg(t)
, (3)

whereBLoughlin(t) is the Loughlin instantaneous bandwidth
and φavg(t)denotes the weighted average of the instanta-
neous frequency of the individual components.

For a given bandwidth threshold ε, the signal can be
viewed as a local narrow-band if θ(t)< ε [30].

3.2.ExtremeLearningMachines. Extreme learning machines
are feed-forward neural networks with single or multiple
hidden node layers for classifcation, regression, clustering,
sparse approximation, compression, and feature learning.
Tese hidden node parameters might be assigned at random
and never updated, or they can be acquired from their
predecessors and never changed. In most cases, the weights
of hidden nodes are usually learned in a single step, resulting
in a fast-learning scheme [32, 33]. According to their in-
ventors, these models can create good generalization per-
formance and learn faster than backpropagation networks.
According to the research, these models can also outperform
support vector machines in classifcation and regression
applications. depicts the [34].

4. The Hybrid Forecasting Model

Figure 2 depicts the fundamental structure of the proposed
model. Furthermore, the following are the essential stages
related to the construction of the combined TVF-EMD-ELM
forecasting models:

(i) PV power data are collected and processed to
generate training and testing samples. Training is
applied for hyperparameter tuning, while the rest is
used for model assessment.

(ii) Te TVF-EMD technique is employed for decom-
posing PV power data into K distinct frequency
components. Te nonstationary characteristics of

the data can be addressed adequately using this
technique.

(iii) Te generated IMF sequences from the TVF-EMD
algorithm are employed as input parameters for the
forecasted model.

(iv) Te forecasting quality on the test set is then
evaluated using the fully trained ELM model.

(v) Te forecasting quality on the test set is then
evaluated using the fully trained ELM model on the
four studied regions.

5. Evaluation Metrics

Diferent quality assessments were employed to study the
quantitative impact of the proposed combination technique,
and they are expressed as [35–37]

RMSE �

������������

1
n

􏽘

n

i�1
(H − H)

2

􏽶
􏽴

,

nRMSE �
RMSE
􏽐

n
i�1H

,

MABE �
1
n

􏽘

n

i�1
|H − H|,

NMAE �
􏽐

n
i�1 |H − H|

􏽐
n
i�1 H

,

r �
􏽐

n
i�1(H − mean(H))(H − mean(H))

􏽐
n
i�1 (H − mean(H))

2
(H − mean(H))

2.

(4)

25.6

25.62

25.73

25.93
26.35

26.58

26.2925.57

26.1

PV-9

PV-8

PV-7

PV-6
PV-5

PV-4

PV-3

PV-11

PV-10
nRMSE Variation Sidi Belabasse Site

Figure 2: Performance comparison of stand-alone ELM against
diferent time delays of input PV power (Sidi Bel Abbes).
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Te fowchart of the proposed method is shown in
Figure 3.

6. Results and Discussion

Accurate short-term PV power forecasting is essential for
assuring needed power grid capacity availability and storage.
Tis part evaluates the efectiveness of the developed TVF-
EMD-ELM approach for half-hour PV output power fore-
casting utilizing various PV power outputs measured in four
diferent PV systems in Algeria. Te suggested TVF-EMD-
ELM approach is established to a maximum horizon of 30
minutes, used in the initial phase to extract meaningful
information andmanage nonstationary characteristics in PV
power time series. Tis study split the original data into
thirty IMFs (IMF1, IMF2... IMF30). As can be seen, the
resulting subseries appear to exhibit less nonstationarity
behavior than the overall data. Te developed TVF-EMD-
ELM model is tested on four separate PV power datasets,
with half of each dataset used for training and the rest
utilized for model evaluation. Te PV power is the desired
output of the proposed TVF-EMD-ELM in the current study
and its previously decomposed data with optimal delay
selection.

Tere are several factors that can impact the amount of
power generated by a photovoltaic (PV) system, including
the amount of solar irradiation, the temperature, and the
angle at which the PV array is installed. In this study, we
focused on examining the relationship between the PV
power that was actually generated and the desired output of
the PV system. To do this, we used a trial-and-error

approach to evaluate the contribution of various time lags
and determine the optimal number of delays.

During the initial phase of our testing, we employed a
stand-alone extreme learning machine (ELM) model to
identify the most efective delay for our specifc application.
We evaluated the performance of the forecasting algorithm
by analyzing the total PV power generation across four
diferent datasets. Te results of all experiments were ana-
lyzed using commonly usedmetrics. As shown in Tables 3–6,
the impact of diferent delays of endogenous variables on the
target output was found to be signifcant for all of the regions
under study.

As demonstrated by the numerical results of our trial-
and-error approach, each region had its own optimal lag for
forecasting 30-minute PV power. In the Ghardaia region,
using ten previous PV inputs was found to be the most
suitable lag. For the Laghouat, Djelfa, and Sidi Bel Abbes PV
plants, the optimal lags were ten, thirteen, and eleven, re-
spectively. Tese diferences in the selected lags for each
region can be attributed to variations in climate conditions
and PV plant capacity. Te forecasting errors for diferent
delays are clearly depicted in Figures 4–6.

In the second part of our experiment, we used the
specifed endogenous PV variables to forecast 30-minute
ahead of PV power using the proposed combination
methodology. We compared the performance of this
methodology, called the TVF-EMD model, to that of the
conventional ELM model for four PV plants. Te best
results for each case are shown in bold in Table 6. We
evaluated the performance of the forecasting algorithms on
diferent types of days. Te proposed TVF-EMD-ELM

Data
Preprocessing

Hourly global
solar radiation 

Clearness index
(CSI) Lag selection

Measuring Station 

Learning Set
50% 

Testing Set
50% 

Testing IMFs Input

Decomposition Block
TVF-EMD Algorithm

Train ELM
model 

Training IMFs Input 

Forecasted Hourly
Global Radiation

1000

1000

900

900

800

800

700

700

600

600

500

500

400

400

300

300

200

200

100

100
0

0

(a, b) β

ELM

Figure 3: Flowchart of the proposed method.
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Table 4: Achieved results with diferent input data for studied models for the Laghouat PV system.

Input parameters/metrics RMSE nRMSE nMAE MABE R (%)
PV−1 1453.96 32.50 1117.35 24.60 87.3
PV−1–PV−2 1363.89 30.49 880.18 18.93 89.0
PV−1–PV−3 1357.41 30.35 866.94 18.59 89.2
PV−1–PV−4 1368.29 30.60 871.27 18.68 89.0
PV−1–PV−5 1354.76 30.30 871.70 18.60 89.3
PV−1–PV−6 1395.87 31.22 885.47 18.74 88.7
PV−1–PV−7 1361.44 30.45 88.86 18.61 89.5
PV−1–PV−8 1381.12 30,89 891.89 18.69 89.2
PV−1–PV−9 1367.43 30,58 896.16 18.76 89.6
PV−1–PV−10 1346.30 30.11 898.09 18.86 89.9
PV−1–PV−11 1313.98 29.38 910.03 19.26 90.5
PV−1–PV−12 1293.31 28.92 911.37 19.39 90.8
PV−1–PV−13 1255.5 28.07  21.53 1 .73  1.6

Table 5: Achieved results with diferent input data for studied models for the Djelfa PV system.

Input parameters/metrics RMSE nRMSE nMAE MABE R (%)
PV−1 6.93 30.94 4.99 22.37 88.27
PV−1–PV−2 6.31 28.17 3.79 16.91 90.30
PV−1–PV−3 5.99 26.74 3.52 15.74 91.38
PV−1–PV−4 5.95 26.58 3.45 15.46 91.483
PV−1–PV−5 5.90 26.35 3.40 15.18 91.63
PV−1–PV−6 5.85 26.10 3.43 15.37 91.79
PV−1–PV−7 5.81 25.93 3.43 15.37 91.91
PV−1–PV−8 5.76 25.73 3.43 15.34 92.04
PV−1–PV−9 5.74 25.62 3.42 15.32 92.11
PV−1–PV−10 5.73 25.60 3.44 15.44 92.12
PV −1–PV−11 5.73 25.57 3.44 15.41  2.10

Table 6: Achieved results with diferent input data for studied models for Sidi Bel Abbes PV system.

Input parameters/metrics RMSE nRMSE nMAE MABE R (%)
PV−1 6770.32 27.720 5131.00 21.034 90.59
PV−1–PV−2 5918.87 24.23 3635.63 14.89 92.84
PV−1–PV−3 5642.91 23.099 3206.30 13.18 93.51
PV−1–PV−4 5571.20 22.80 3132.00 12.87 93.68
PV−1–PV−5 5497.10 22.49 3118.73 12.77 93.85
PV−1–PV−6 5424.72 22.20 3093.78 12.65 94.02
PV−1–PV−7 5342.29 21.86 3042.88 12.44 94.20
PV−1–PV−8 5300.11 21.69 3030.17 12.38 94.30
PV−1–PV−9 5269.46 21.56 3035.67 12.39 94.37
PV−1–PV−10 5266.62 21.55 3037.15 12.38  4.37
PV−1–PV−11 5274.95 21.59 3055.62 12.45 94.36

Table 3: Achieved results with diferent input data for studied models for the Ghardaia PV system.

Input parameters/metrics RMSE nRMSE nMAE MABE R (%)
PV−1 128.06 25.43 96.15 19.65 88.91
PV−1–PV−2 124.23 24.67 90.52 18.35 89.53
PV−1–PV−3 113.42 22.52 74.66 15.07 91.34
PV−1–PV−4 108.81 21.60 68.02 13.77 92.09
PV−1–PV−5 107.24 21.29 64.62 13.15 92.37
PV−1–PV−6 107.015 21.24 65.25 13.33 92.45
PV−1–PV−7 106.88 21.21 66.90 13.73 92.51
PV−1–PV−8 106.72 21.19 67.17 13.77 92.52
PV−1–PV− 106.29 21.93 67.11 13.75 92.57
PV−1–PV−10 106.73 21.18 67.30 13.74 92.47
PV−1–PV−11 107.224 21.28 68.64 14.04 92.42
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model demonstrated superior forecasting performance for
30-minute ahead PV power across all of the studied PV
plants in the database. As shown in Table 7, the TVF-EMD
decomposition technique signifcantly improves the fore-
casting performance of the conventional ELM model. For
the Ghardaia region, the nRMSE value was reduced by
17.72% from 21.8% to 3.64%. For the Laghouat, Djelfa, and
Sidi Bel Abbes regions, the proposed integration scheme
resulted in a reduction of the forecasting error in terms of
nRMSE of 19.6%, 23.297%, and 25.796%, respectively. Te
variability range of the correlation coefcient of the TVF-
EMD-ELM model was greater than 99%, while the varia-
tion values for the stand-alone ELM model were limited to
the range of [91.6%–94.37%].

As can be seen from Figures 7–10, the dispersion between
the measured and forecasted PV power of the stand-alone
model is very large, compared with the case of the TVF-EMD-
ELM model, where the dispersion is low in all studied regions.
Te lower the spread, the higher the accuracy, resulting in
minor forecasting errors. Comparison performance of the used
models in terms of statistical metrics shows that the conven-
tional model cannot provide sufcient forecasting performance
for PV plant systems. However, the use of the decomposition
technique can boost the forecasting ability of stand-alone
models with considerable improvement.

As demonstrated, the dispersion between the measured
and forecasted PV power is much larger for the stand-alone
model compared to the TVF-EMD-ELM model, where the
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Figure 4: Performance comparison of stand-alone ELM against diferent time delays of input PV power (Ghardaia).
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Figure 5: Performance comparison of stand-alone ELM against diferent time delays of input PV power (Laghouat).
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Figure 6: Performance comparison of stand-alone ELM against diferent time delays of input PV power (Djelfa).

Table 7: Performance comparison of the proposed TVF-EMD-ELM model and ELM model.

Model ELM model TVF-EMD-ELM model
PV plant/metric RMSE nRMSE MABE nMAE R (%) RMSE nRMSE MABE nMAE R (%)
Ghardaia 106.73 21.18 67.30 13.74 92.47 18.38 3.64 13.63 2.70 99.80
Laghouat 5266.62 21.55 3037.15 12.38 94.37 585.31 2.39 376.60 1.54 99.93
Djelfa 5.73 25.57 3.44 15.41 92.10 0.509 2.27 0.355 1.58 99.94
Sidi Bel Abbes 1255.59 28.07 921.53 19.73 91.6 101.72 2.27 79.06 1.76 99.90
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dispersion is low across all studied regions. A smaller spread
indicates a higher level of accuracy and leads to lower
forecasting errors. When comparing the two models using
statistical metrics, it is clear that conventional models do not

provide sufcient forecasting performance for PV plant
systems. However, the decomposition technique can sig-
nifcantly improve the forecasting ability of stand-alone
models.
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Figure 9: nRMSE of Laghouat region.
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7. Conclusion

In this paper, a novel integrated model based on the de-
composition approach was introduced 30 minutes ahead of
forecasting PV power. Te historical PV power was divided
into multiple IMF components from high-low frequency
bands through the TVF-EMD algorithm, and the obtained
IMF series were supplied into the ELM regression to build
the TVF-EMD-ELMmodel for PV power forecasting. Based
on the results, the suggested TVF-EMD-ELM model can
estimate the intra-hour variation of PV power with high
precision in diferent regions in Algeria. Te performance of
the proposed hybridization methodology is validated on
four PV power plant systems. Te developed forecasting
model is easy to build, fast to converge, and uses only ex-
ogenous PV power.

Tis paper focused primarily on assessing the perfor-
mance of the TVF-EMD decomposition method in im-
proving the time series related to the ELMmodel’s PV power
forecasting accuracy without considering other meteoro-
logical or electrically measured parameters such as irradi-
ation temperature and wind speed. Tese factors will be
considered in future research for more exact predictions.

Nomenclature

AI: Artifcial intelligence
ANN: Artifcial neural network
ARIMA: Autoregressive integrated moving average
ELM: Extreme learning machine
EMD: Empirical mode decomposition
GB: Gradient boosting
IEA: International Energy Agency
IMF: Intrinsic mode function
RMSE: Root mean square error

KNN: K-nearest neighbor
LS-SVR: Least squares support vector regression
MABE: Mean absolute bias error
MAPE: Mean absolute percentage error
MQR: Multiple quantile regression
NMAE: Normalized mean absolute error
nRMSE: Normalized root mean square error
NWP: Numerical weather prediction
QRF: Quantile regression forest
r: Correlation coefcient
RF: Random forest
SARIMA: Seasonal autoregressive integrated moving

average
SD: Seasonal decomposition
SKTM: Shariket Kahraba wa Taket Moutadjadida
SVM: Support vector machine
SVR: Support vector regression
NARX: Nonlinear autoregressive with exogenous inputs
TVF-
EMD:

Time-varying flter-empirical mode
decomposition.
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