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Due to the strong uncertainties of renewable energy and load demands, the new type of power systems is facing severe challenges
in terms of generation control and load dispatch. Considering the uncertainties of the penetrated renewable energy and diversifed
load demands, this paper proposes a random fuzzy power fow analysis method (RFPF) to exactly depict the impact on the various
fows of power systems. In the RFPF, the random fuzzy models of wind turbine generators, photovoltaic generators, and load
demands are established utilizing the stochastic probability functions and fuzzy interval to reveal the uncertainties with high
precision. Afterwards, the random fuzzy mean value is developed as an index of accuracy, and the fuzzy number of the output
variables is extracted under the 95% confdence level. Furthermore, the proposed RFPF model is executed by applying a three-
point estimate method (3PE) to fgure out the corresponding power fow of the power system, costing less computation burden
compared with the Monte Carlo simulation. Simulation studies conducted on the IEEE-33 system verifes the accuracy of the
RFPF and the efciency of the 3PE.

1. Introduction

In the context of the “dual carbon” goal, the traditional
power system can no longer meet the carbon emission re-
quirements, so it is an inevitable trend of the power industry
to promote the new type of power system, gradually using
renewable resources, and replacing traditional energy under
the premise of safety and reliability [1, 2]. Te new type of
power system is a power systemwith the basic characteristics
of clean and low-carbon, safe and controllable, fexible and
efcient, intelligent and friendly, and open interaction, with
the primary goal of meeting the power demand of economic
and social development, and with the main task of maxi-
mizing the consumption of new energy [3]. Te new type of
power system with renewable energy sources can save 10.5%
of electricity costs and greatly improve the utilization rate of
the available energy, and it is a revolution of the conven-
tional power system [4].

In the construction of the new type of power systems,
many technologies have emerged for the reduction of carbon

emissions and energy consumption, such as hydrogen
storage and carbon capture technology [5], among which it
is particularly noteworthy that, the proportion of wind
turbine (WT), photovoltaic (PV), and other renewable en-
ergy generation has increased signifcantly [6]. However, due
to the strong uncertainty of renewable energy itself, its high
proportion to the power grid will change the basic form of
the power system, and correspondingly produce a strong
uncertainty problem of the multitemporal coupling of the
power system [7]. Te uncertainty features of renewable
energy generation will also cause some problems in the
construction of the dispatch region [8] and collaborative
optimization of the sustainable energy system [9]. On the
other hand, the type of load demands tends to be diversifed,
which is no longer just a simple power load [10]. It may be
coupled with gas or heating/cooling subsystems to form an
integrated energy system with multienergy complementarity
[11, 12]. In the new type of power system, the load-side
components mainly include electric vehicles, electric boilers,
and heat pumps. Due to the spatiotemporal randomness and
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intermittency of the charging behavior of electric vehicles, it
will afect the power quality and bring certain fuctuations
and impact the operation of the power system [6].

Terefore, the uncertainties introduced by intermittent
renewable generators and variable load demands will afect
the economy and the security of the power system [13], and
it is inevitable and urgent to consider the uncertainties in the
power fow analysis. Moreover, engineering practice shows
that, the uncertainties of the power system contains both
random and fuzzy one [14]. Random uncertainties from
wind speed, solar radiation, and so on, are usually modelled
by the probability theory. Fuzzy uncertainties due to sub-
jective reasons which are described in words, are often
modelled by the fuzzy set theory. Tey are independent
theoretical systems in the feld of basic mathematics [15].

Solving the problem of uncertainties in the power system
is a basic and hot issue, and scholars have been engaged in
this research for a long time. In dealing with the random
uncertainties, the probabilistic power fow (PPF) was frst
proposed by Borkowska in 1974 [16] and developed by Allan
[17]. Te authors in reference [18] considered the single
random factor of wind speed, and used the Monte Carlo
Simulation method (MCS) to calculate the PPF in the power
system with a wind farm. Te authors in reference [19]
employed the Nataf inverse transform to consider the
correlation of variables, and proposed an improved multi-
linearMCSmethod based on K-means clustering technology
for PPF, and the calculation time was greatly shortened.
Reference [20] adopted the cumulant method combined
with Cornish–Fisher, which required fewer iterations and
less computation time while maintaining satisfactory ac-
curacy. In addition, it is also proved that the Cornish–Fisher
series expansion works better than the Gram–Charlier for
non-Gaussian for random input variable. Te authors in
reference [12] presented a gradient descent direction iter-
ative method based on cumulants to analyse the PPF of
a heterogeneous integrated energy systems. Te authors in
reference [21] proved that the point estimate method (PE)
with 2m+ 1 scheme has precise results, smaller computa-
tional burden, and time, compared to MCS and PE with 2m
scheme.Tese studies have fully explored the randommodel
of input variables and algorithm of PPF, which lays
a foundation for the subsequent studies of double
uncertainties.

On the other hand, to consider fuzzy uncertainties in the
power system, fuzzy power fow (FPF) developed by Mi-
randa [22, 23] provides an information modeling tool for
inaccurate load predictions, model parameters, and system
parameters that are neither deterministic nor random. In
FPF, the uncertain parameters of the system are represented
by fuzzy numbers, such as trapezoidal and triangular fuzzy
numbers, and then the FPF calculation is carried on
according to the fuzzy number calculation rule, and fnally
the output variables are obtained in the form of membership
function [24]. Most of the earlier work in this area was for
radial distribution systems, but the authors in reference [25]

present a fuzzy distribution power fow for the weakly
meshed balanced and unbalanced distribution systems,
which can handle the simultaneous presence of several
uncertainties of input variables such as network parameters,
load model coefcients, load forecast, and bus shunts. Te
authors in reference [26] proposed an improved forward-
backward method for FPF in distribution networks, proving
that this method has the property of linear convergence for
solving FPF in radial distribution networks. Tese studies
have provided ideas for the modeling and analysis of fuzzy
uncertainties, and they have applied fuzzy set theory to the
power system, which brings great convenience for the un-
derstanding and application of the theory.

In recent years, there have been many problems re-
garding the double uncertainty of random fuzziness, such as
transportation problem [27], image repair [28], and the
fractional optimization issue [29]. Researchers also have
struggled to tackle the random and fuzzy factors of power
fow analysis simultaneously, in order to depict the uncertain
characteristics with high precision. Te credibility theory is
a branch of mathematics completed in the feld of basic
mathematics, providing a rigorous mathematical basis for
the comprehensive evaluation of randomness and fuzziness
[15]. Ten, Liu established the random fuzzy theory in 2009
that fully supported and synthesized these two uncertainties
[30], which lays the foundation of the random fuzzy
modeling and algorithm. Based on the random fuzzy sim-
ulation technology (RFS), the authors in references [31, 32]
adopted the simulation method to deal with random
fuzziness.Te results obtained by this method can be used as
the benchmark for the accuracy of other methods, but the
computational efciency decreases as the number of input
variables increases. Te authors in reference [33] proposed
a cumulant PPF calculation method based on the fuzzy
incremental method, considering the parameter fuzziness of
wind speed and load.Te authors in reference [34] employed
the cumulant method and the fuzzy simulation technology
to calculate RFPF. Nevertheless, the power fow equation still
needs to be linearized, so when the system input variable
fuctuates greatly, the algorithm error may be larger. Te
authors in reference [35] established a random fuzzy output
model of WT, PV, and load, and proposed a two-stage
calculation method based on PE for RFPF, but this
method did not extract the fuzzy characteristics of state
variables.

Based on these existing works, this study adopts 3PE
with RFS to calculate RFPF, considering the random fuzzy
two-fold uncertainty of renewable energy and load demands.
Based on the random fuzzy theory, this study establishes the
random fuzzy model of WT, PV, and load demands, and
extracts the triangular fuzzy numbers of the output variables,
so as to obtain their membership functions. At the same
time, the probabilistic density function (PDF) and cumu-
lative distribution function (CDF) of the state variables are
obtained by the Cornish–Fisher series expansion theory.
Moreover, the proposed RFPFmodel is executed by applying
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a 3PE to describe the corresponding power fow of the power
system, costing less computation burden compared with the
Monte Carlo simulation. Finally, the efectiveness of the
proposedmethod is verifed in the modifed IEEE-33 system.

2. Random Fuzzy Model for Power Flow

In order to make the system equation have both randomness
and fuzziness, based on the random fuzzy theory, the au-
thors express the input variables of the system equation
(such as the output of WT, PV, and load demands) with the
random fuzzy models. Te detailed modeling process is
described below in the study.

2.1. Power Flow Formulation Embedded with WT and PV.
In this study, the AC power fow formulation is utilized to
calculate the random fuzzy power fow. Hence, the active
and reactive power injection at each bus can be written as

Real V(YV)
∗

(  − PS � 0, (1)

PS � Pgen + PWT + PPV − PLD, (2)

Imag V(YV)
∗

(  − QS � 0, (3)

QS � Qgen − QLD, (4)

where V is the voltage vector, Y is the node admittance
matrix, Pgen and Qgen denote the active and reactive power of
traditional generators, such as hydroelectric generators and
thermal generators, PWT and PPV are the output of wind
turbine generators and photovoltaics, and PLD and QLD
represent the electrical load. It is worth noting that, PWT,
PPV, PLD, and QLD are all random fuzzy variables.

2.2. Random Fuzzy Model of Renewable Energy Generators
and Load Demands. Let Θ be a nonempty set and P(Θ) the
power set of Θ. Each element in P(Θ) is called an event. Pos

denotes the possibility measure. Tey make up the possible
space (Θ, P(Θ), Pos). Random fuzzy variable is defned as
a function from the possible space (Θ, P(Θ), Pos) to random
variables [30]. Based on this defnition, we can establish
random fuzzy model of WT, PV, and load demands.

2.2.1. Wind Turbine Generators Model. We use the Weibull
distribution to describe the random feature of wind speed
[36] and use the triangular fuzzy number to describe the
fuzzy uncertainty of the Weibull parameters [31]. Tere are
the following three reasons:

(i) Te two-parameter Weibull PDF has 87.19% to
describe the wind speed, which is not fully ft to the
historical data [37]

(ii) Because the measuring process of equipments is
often afected by some factors such as weather

condition and temperature, most of the historical
data would be imprecise

(iii) Te deviation between the forecast Weibull PDF
and the real one is often described qualitatively and
in linguistic, according to the experience of the
operator

Tus, the ftting degree of the Weibull distribution and
the accuracy of the historical data are not negligible and can
be depicted by the fuzzy language mathematically. So, the
simplifed expression of wind speed can be described as

v(θ) ∼ W(c(θ), k(θ))

c, k ∼ r1, r2, r3( 
 , (5)

where W represents the Weibull PDF, v denotes wind speed
which is random fuzzy variables, θ is the element from
possible space, and k and c are both triangular fuzzy
numbers.

Moreover, triangular fuzzy number is fully determined
by the triplet (r1, r2, r3) of crisp numbers with r1 < r2 < r3
[30], whose membership function is given by

μ(θ) �

θ − r1

r2 − r1
, if r1 ≤ θ≤ r2

θ − r3

r2 − r3
, if r2 ≤ θ≤ r3.

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

Ten, we can achieve the detailed formulation of the
random fuzzy model of the wind speed [35]

f(v) �
ξk
ξc

v

ξc
 

ξk− 1

exp −
v

ξc
 

ξk
⎡⎢⎣ ⎤⎥⎦,

ξk, ξc ∼ r1, r2, r3( ,

(7)

where ξk and ξc are, respectively, the shape and scale pa-
rameters, and they are triangular fuzzy variables.

Te functional relationship between the output of WT
generators and wind speed can be evaluated by

PWT �

0 v≤ vin or v≤ vout

k1v + k2 vin ≤ v≤ vr

Prw vr ≤ v< vout

⎧⎪⎪⎨

⎪⎪⎩
, (8)

where PWT is the actual output ofWT, Prw is the rated power
ofWT, vin, vr, and vout are the cut-in, rated, and cut-out wind
speed, respectively. k1 and k2 are evaluated as

k1 �
Prw

vr − vin
, k2 � −k1vin. (9)

Based on the statistics, the wind speed usually falls into
the range vin to vr, so the PWT is approximation a linear
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function of v [38]. Te random fuzzy model of the output of
WT in equation (2) is formulated by

f PWT(  �
ξk
k1

PWT − k2

k1ξc
 

ξk− 1

exp −
PWT − k2

k1ξc
 

ξk
⎡⎢⎣ ⎤⎥⎦.

(10)

2.2.2. Photovoltaic Generators Model. Similar to the above
process, we can build the random fuzzy model of the output
of PV generators.Te best distribution function to depict the
regular of the solar radiance is the Beta PDF. Te solar
radiance random fuzzy model [34] can be modeled as

T(r) �
Γ ξa + ξb( 

Γ ξa( Γ ξb( 

r

rmax
 

ξa− 1

1 −
r

rmax
 

ξb− 1

,

ξa, ξb ∼ r1, r2, r3( ,

(11)

where Γ is the Gamma function; r and rmax are, respectively,
the actual and maximum solar radiance; ξa and ξb are the
shape parameters of Beta PDF which are both triangular
fuzzy variables.

Ten, the random fuzzy model of output of PV is for-
mulated by

T PPV(  �
Γ ξa + ξb( 

Γ ξa( Γ ξb( 

PPV

RM
 

ξa− 1

1 −
PPV

RM
 

ξb− 1

, (12)

where PPV is the actual solar generation output and RM is the
maximum power available from the modules. Te power
factor of PV is approximately 1.

2.2.3. Load Demands Model. Te load demands are often
modeled as a normal distribution function [39], and their
random fuzzy model can be formulated by

f PL(  �
1

���
2π

√
ξσP

exp −
PL − ξμP 

2

2ξ2σP
⎛⎝ ⎞⎠,

f QL(  �
1

���
2π

√
ξσQ

exp −
QL − ξμQ 

2

2ξ2σQ
⎛⎝ ⎞⎠,

ξμP, ξσP, ξμQ, ξσQ ∼ r1, r2, r3( ,

(13)

where PL and QL are the active and reactive load powers,
respectively, ξμP and ξμQ are the mean of the active power
and the reactive power, respectively, and ξσP and ξσQ are the
standard deviations of the active power and the reactive
power, respectively, which are triangular fuzzy variables.

3. Calculation of Random Fuzzy Power Flow
Using 3PE

3.1.TeBrief Principle of 3PE. Te PE selects some estimated
points that can refect the digital characteristics of the input
variable through the numerical method, so that the output
points can also approximate the digital characteristics of the
output variable. Tis can greatly reduce the number of
samples and improve the calculation efciency.

When the selected estimated point m is 2, the accuracy of
the algorithm is low; when m≥ 4, the number of samples is
too large, resulting in low-computational efciency, and
high-order moments are difcult to solve. However, when
m � 3, the algorithm can obtain more accurate results in
a short time. Terefore, 3PE is taken in this study for power
fow calculation [40].

In the 3PE, calculating the estimated points and their
weights is the most important step.

Suppose that the input random variables (x1, x2, . . . , xn)

are independent of each other, and then we can get three
estimated points based on the following equation:

xk,i � μk + lk,iδk, i � 1, 2, 3; k � 1, 2, . . . , n, (14)

where μk and δk are the mean and standard deviation of the
input random variable xk. Te location lk,i is determined by

lk,i �
λk,3

2
+(−1)

3− i

���������

λk,4 −
3λ2k,3

4



, i � 1, 2,

lk,3 � 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(15)

where λk,3 and λk,4 denote the 3rd and 4th standard central
moment of the random variable xk with PDF fk, that is
calculated by equation (16).Tey are also called the skewness
and kurtosis of the input random variable xk

λk,3 �

∞
−∞ xk − μk( 

3
fkdxk

δk( 
3

λk,4 �

∞
−∞ xk − μk( 

4
fkdxk

δk( 
4

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

. (16)

Ten, the weight wk,i can be fgured out by

wk,i �
(−1)

3− i

lk,i lk,1 − lk,2  
, i � 1, 2

wk,3 �
1
n

− wk,1 − wk,2 �
1
n

−
1

λk,4 − λ2k,3

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

. (17)
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Once the estimation points xk,i and weights wk,i of input
random variable xk are obtained, the functions (1–4) are
evaluated at points (μ1, μ2, . . . , xk,i, . . . , μn) by the New-
ton–Raphson method yielding Z(k, i), where Z is the vector
of output random variables.

Finally, by using the weighting factors wk,i and Z(k, i)

values, the jth raw moment of the output random variables
can be estimated according to the expression:

Epro Z
j

  � 
n

k�1


3

i�1
wk,i × f μ1, μ2, . . . , xk,i, . . . , μn 

j
 .

(18)

3.2. RandomFuzzy Simulation. Suppose ξ is a random fuzzy
variable in the possible space (Θ, P(Θ), Pos) and f is
a measurable function, then, ∀θ ∈ Θ, the random fuzzy
mean value of ξ is defned as

Epro−fuz[ξ] � 
∞

0
Cr Epro(f(ξ(θ))) ≥ r dr

− 
0

−∞
Cr Epro(f(ξ(θ))) ≤ r dr,

(19)

where Cr ·{ } denotes the credibility measure.
RFS can be used to obtain random fuzzy mean value

Epro−fuz as shown in Algorithm 1[41], where ∨ is the max-
imum operator, ∧ is the minimum operator, and O denotes
null set.

3.3. Te Process of 3PE-RFS

3.3.1. Te Flowchart of 3PE-RFS. In order to deal with the
two uncertainties, this study combines the three-point es-
timate method and random fuzzy simulation technology
(3PE-RFS) to calculate the RFPF.

Suppose N is the number of samples of the fuzzy
number. W, B, and N are represented Weibull, beta, and
normal distribution separately. Te fowchart of 3PE-RFS
and the processing of output results are shown in Figure 1.

3.3.2. Detailed Algorithm Process. Te algorithm process is
briefy described as sampling, power fow calculation, and
processing output stage.

Te sampling stage is shown in the red shade in Figure 1,
and the specifc process is as follows:

(1) According to triangular fuzzy number (r1, r2, r3), we
can write the corresponding membership function
like formula (6). Ten, a series of fuzzy samples of
(ξc, ξk), (ξa, ξb), and (ξμ, ξσ) are randomly drawn
from the possibility space, each corresponding to
a membership degree [31, 34, 41].

(2) With one set of fuzzy sample of parameters, we can
obtain PDF of output of WT, PV, and load described
in (10)–(13)

(3) Based on the distribution obtained, three estimated
points of 3PE will be fgured out in the probability
space according to (14)–(17)

Te power fow calculation stage is shown in the yellow
shade in Figure 1, and the specifc process is as follows:

(1) Under each set of fuzzy parameters, the 3PE prob-
ability power fow calculation is carried out with
these three estimated points based on the New-
ton–Raphson method to solve the nonline equations
(1)–(4). Te iteration function is as follows:

ΔF � J∗ΔX

X
(i+1)

� X
(i)

− ΔX(i)
 , (20)

where ΔF is the mismatch calculated by (21), X is the
state variables including voltage amplitude and
voltage angle, J denotes Jacobian matrix, and i

represents the number of iterations.

ΔF �
ΔP � Real V(YV)

∗
(  − PS � 0

ΔQ � Imag V(YV)
∗

(  − QS � 0.

⎧⎨

⎩ (21)

(2) A random mean value Epro,i(Z) of the state variable
Z based on (18) is obtained

(3) Tis calculation process will be performed N times
and obtain N values of Epro,i(Z)

Te output procedure stage is as follows:

(1) Calculating the random fuzzy mean value
Epro−fuz(Z) with Epro,i(Z) as mentioned in the sec-
tion “Random fuzzy simulation,” and the process is
shown in the green shade in Figure 1

(2) On the other hand, in order to extract the triangular
fuzzy numbers (r1, r2, r3) of mean value of output
variables which can derive their membership func-
tions, the confdence interval of Epro,i(Z) under the
95% confdence level is obtained, and fnd the ap-
proximate center of the interval as r2 is found, and
the minimum lower limit is set as r1 and the max-
imum upper limit is set as r3 [32], which is shown in
the blue shade in Figure 1.

4. Case Study

4.1. Parameter Setting and Performance Test. Te method
proposed in this study is simulated in the modifed IEEE-33
system [35], compared withMCS based on the random fuzzy
simulation technology (MCS-RFS).Tere are 2 wind turbine
generators located at bus 13 and bus 23, and one photo-
voltaic generator installed at bus 28, respectively. Te rated
power of WT and PV is 0.2MW.

For wind turbine generators, the Vin, Vr, and Vout are
4m/s, 15m/s, and 25m/s, respectively. Te number of fuzzy
sample is 100. Te range of the fuzzy parameters is set to
(99%r2, r2, 101%r2), which uses (99%, 101%) for short and
r2 is the mean value of the fuzzy parameter.
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In order to simplify the description, the simulation
process takes only the random fuzziness of load as an
example.

According to the interval (99%, 101%), 100 fuzzy
samples of parameter (ξμ, ξσ) are selected in the possibility
space as shown in Figures 2(a) and 2(b), and they are subject
to triangular membership function.

Under each set of fuzzy samples, the random samples of
load are obtained, which follow the normal distribution, as
shown in Figure 2(c). Te number of random samples is 300
of MCS-RFS, while that of the proposed method is 71. Tese
samples are used to calculate the PPF and obtain the random
mean value Epro,i(Z) and the variance value Varpro,i(Z) of
the state variable Z. Tis calculation process is done
100 times.

Finally, Epro,i(Z) and Varpro,i(Z) are used for the fol-
lowing processing:

(i) On the one hand, the random fuzzy mean
Epro−fuz(Z) is calculated, which is used to compare
with MCS-RFS

(ii) On the other hand, obtaining their triangular fuzzy
number, which is used to compare with 3PE

4.1.1. Comparison between 3PE-RFS and MCS-RFS. In order
to verify the accuracy of the proposed method, the relative
error of Epro−fuz(Z) is used as an indicator for the com-
parison of the two methods [42], as shown in the given
equation, and the results are drawn in Figure 3.

X∗ �
X3PE−RFS − XMCS−RFS

XMCS−RFS




× 100%, (22)

where X∗ denotes the relative errors ofEpro−fuz(Z), X3PE−RFS,
and XMCS−RFS are Epro−fuz(Z) of the proposed method and
MCS-RFS. X represents the state variable, such as voltage
amplitude Vm, voltage angle Va, active power of lines Pline,
and reactive power of lines Qline.

It can be seen intuitively from Figure 3 that the maxi-
mum value of X∗ of Vm, Va, Pline, and Qline do not exceed
0.005%, 0.14%, 0.1%, and 0.09%, respectively, which shows

(1) e � 0;
(2) θ � rand([1 n]), satisfying (θ)≤ ϵ(ϵ> 0);
(3) Calculate Epro(f(ξ(θ)));
(4) a � min1≤i≤nEpro(f(ξ(θ)));
(5) b � max1≤i≤nEpro(f(ξ(θ)));
(6) r � a + (b − a)∗ rand([1 n]) ∈ (a, b);
(7) for i � 1: n do
(8) if r(i)≥ 0 then
(9) e � e + Cr θ ∈ Θ ∣ Epro(f(ξ(θ)))≥ r ;
(10) else
(11) e � e − Cr θ ∈ Θ ∣ Epro(f(ξ(θ)))≤ r ;
(12) Epro−fuz(f(ξ(θ))) � a∨O + b∧O + e × (b − a)/n

ALGORITHM 1: Te algorithm of RFS.

Figure 1: Flowchart of the calculation process of 3PE-RFS.
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that the proposed method has extremely high accuracy. On
the other hand, the time consumed by MCS-RFS is 230 s,
while the proposed method just needs 63 s, which shows that
the proposed method has relatively faster calculation speed.

4.1.2. Comparison between 3PE-RFS and 3PE. In order to
compare the diference in output between 3PE-RFS and 3PE,
we record the mean and variance values of Vm of the two

methods in Table 1 and unify the variance value into units of
(1e− 3) for easy observation.

Since bus 1 is selected as the slack bus, Vm of bus 1 is
a specifed value and its mean or variance is 0. Te results at
other buses in Table 1 presents that the mean and variance of
Vm are a fxed value in 3PE, but that of 3PE-RFS is triangular
fuzzy numbers.

In order to more clearly display the relationship between
the two method, we draw the picture of the membership
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function of the mean and variance of Vm, as shown in
Figure 4, which shows that the result of 3PE is just a single
point in the result interval of 3PE-RFS.

Although a very small amount of the data of 3PE is not
included in this interval, such as the situation of bus 16, most
of the data are included in the results of 3PE-RFS. Tis is

Table 1: Mean and variance of Vm.

Bus
3PE 3PE-RFS

Mean Variance (1e− 3) Mean Variance (1e− 3)
1 0.00000 0.0000 (0, 0, 0) (0, 0, 0)
2 0.99703 0.0730 (0.99702, 0.99703, 0.99704) (0.0727, 0.0729, 0.0732)
3 0.98294 0.4532 (0.98288, 0.98293, 0.98301) (0.4514, 0.4525, 0.455)
4 0.97545 0.6336 (0.97537, 0.97544, 0.97556) (0.6317, 0.6336, 0.6367)
5 0.96806 0.8328 (0.96794, 0.96803, 0.96819) (0.8303, 0.8322, 0.8374)
6 0.94965 1.3969 (0.94946, 0.94959, 0.94988) (1.3923, 1.3966, 1.4065)
7 0.94617 1.4700 (0.94596, 0.94611, 0.94641) (1.4656, 1.47, 1.4795)
8 0.94132 1.5679 (0.9411, 0.94126, 0.94158) (1.5638, 1.5688, 1.5775)
9 0.93505 1.6837 (0.93481, 0.93504, 0.93534) (1.6807, 1.6858, 1.6941)
10 0.92924 1.8127 (0.92898, 0.92923, 0.92954) (1.8108, 1.816, 1.8243)
11 0.92838 1.8336 (0.92811, 0.92835, 0.92868) (1.8318, 1.837, 1.8454)
12 0.92688 1.8723 (0.92661, 0.92685, 0.92719) (1.8707, 1.8762, 1.8844)
13 0.92076 2.0520 (0.92047, 0.92073, 0.92111) (2.0513, 2.0569, 2.0664)
14 0.91850 2.1286 (0.91819, 0.91847, 0.91885) (2.1283, 2.1334, 2.1442)
15 0.91708 2.1664 (0.91677, 0.91705, 0.91744) (2.1664, 2.1723, 2.1825)
16 0.91572 2.2072 (0.9154, 0.91569, 0.91608) (2.2077, 2.2139, 2.2241)
17 0.91369 2.2784 (0.91336, 0.91366, 0.91406) (2.2795, 2.2853, 2.2969)
18 0.91308 2.3050 (0.91275, 0.91303, 0.91346) (2.3065, 2.3122, 2.3244)
19 0.99650 0.0820 (0.99649, 0.9965, 0.99652) (0.0818, 0.082, 0.0823)
20 0.99293 0.2531 (0.99289, 0.99292, 0.99296) (0.253, 0.2539, 0.2559)
21 0.99222 0.2939 (0.99218, 0.99221, 0.99227) (0.2932, 0.2942, 0.2968)
22 0.99158 0.3361 (0.99154, 0.99157, 0.99164) (0.3346, 0.3361, 0.3392)
23 0.97935 0.6307 (0.97926, 0.97933, 0.97945) (0.6267, 0.6283, 0.6334)
24 0.97268 1.0616 (0.97253, 0.97265, 0.97284) (1.0522, 1.0565, 1.067)
25 0.96935 1.3116 (0.96917, 0.96931, 0.96955) (1.2982, 1.3034, 1.3188)
26 0.94772 1.4749 (0.94752, 0.94766, 0.94796) (1.4698, 1.4745, 1.4854)
27 0.94516 1.5855 (0.94494, 0.94509, 0.94542) (1.5797, 1.5842, 1.5972)
28 0.93372 2.1603 (0.93342, 0.93366, 0.93406) (2.1507, 2.1578, 2.1791)
29 0.92550 2.6092 (0.92514, 0.92538, 0.92591) (2.5968, 2.6049, 2.6333)
30 0.92194 2.8122 (0.92155, 0.92183, 0.92239) (2.7983, 2.8124, 2.8385)
31 0.91778 2.9545 (0.91737, 0.91766, 0.91825) (2.9401, 2.9549, 2.9795)
32 0.91686 2.9901 (0.91646, 0.91674, 0.91734) (2.9754, 2.9885, 3.0147)
33 0.91658 2.9951 (0.91617, 0.91646, 0.91705) (2.9804, 2.9953, 3.0197)
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Figure 4: Membership function of Vm of bus 10. (a) Mean value. (b) Variance value.
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because the result of 3PE-RFS in Table 1 is a set of triangular
fuzzy numbers obtained at the 95% confdence interval.

Taking the help of the Cornish–Fisher series expansion
theory, we draw the PDF and CDF images of bus 10 in
Figure 5, and it shows that the PDF and CDF images of
3PE-RFS are no longer a single curve such as 3PE but in the
form of cluster.

As can be seen from the aforementioned comparison, the
results obtained by 3PE-RFS include that of 3PE, which
means when the actual value of the load output deviates
from the predicted value or the output of WT and PV
fuctuates sharply, the results of 3PE are likely to deviate
from the actual value, if a single PDF curve is used to analyze
the operating characteristics of the system by only consid-
ering the randomness.

When the random fuzziness is considered, the decision
set of PDF curves can be obtained, and the operators can
make decisions on fuzzy parameters according to the actual
operation of the system and diferent risk preferences, and
the decision plan is more reasonable than a single curve.

4.1.3. Te Impact of Fuzzy Factor. In order to analyse the
efect of increasing volatility on the system, the range of
fuzzy parameters of WT, PV and load is set to (99%, 101%),
(98%, 103%), (95%, 107%), (85%, 117%), (75%, 127%), and
(65%, 137%).

Taking the result of (99%, 101%) as a reference, the
authors calculate the mean value of X∗ of each state variable,
as shown in Figure 6.

0

50

100

150

200

250
f (

V)

3PE-RFS
3PE

0.925 0.93 0.9350.92
V (p.u.)

(a)

3PE-RFS
3PE

0

0.2

0.4

0.6

0.8

1

F 
(V

)

0.928 0.9320.930.926 0.9340.924
V (p.u.)

(b)

Figure 5: Te PDF and CDF images of Vm of bus 10. (a) PDF. (b) CDF.
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In order to facilitate the observation, we reduced the
mean value of X∗ of Va by 1/200. It is obvious that, when the
variation range of fuzzy parameters is enlarged, the mean
value of X∗ of the state variables increases correspondingly.

To see this phenomenon from probability view, the
authors plot the PDF and CDF images of bus 10 in Figure 7.
It is clear to see that the boundaries of cluster of the PDF and
CDF curves expand to the left and right as the fuzzy pa-
rameter ambiguity increases. Tis is the result of the fuzz-
iness of the input variables being passed through the system
to the output variables.

4.2. Analysis of Sensitivity. In order to analyze which re-
newable energy has the greatest impact, just one kind of
fuzzy parameters is relatively larger, for example, we only
enlarge the range of fuzzy factor of WT to (85%, 117%),
while that of PV and load maintain (99%, 101%).

Ten, taking the result of the condition as a reference
where all the three kinds of fuzzy factors are set to
(99%, 101%), and calculating the absolute errors of state
variables between the enlarged condition and the reference
condition. For the convenience of comparison, the absolute
errors are processed as (23), and the results are shown in
Figure 8.

Xabs �
Xlarge,i − Xref

Prate,i




, (23)

where Xabs denotes the absolute errors after processing,
Xlarge,i and Xref are Epro−fuz(Z) of state variables Z of en-
larged condition and reference condition and
i ∈ WT, PV, Load{ }. Prate,i is the rated output of WTor PV or
the active power of load.

As shown in Figure 8, we can fnd that, changes in the
fuzzy parameters of load, WT, or PV all have an impact on
state variables. And in the fgures of Va and Pline, the impact
of WT and PV is more obvious than that of load at most of
the places. Tis is due to the fact that WT and PV directly
inject active power into the system, and active power is
strongly correlated with Va. In the fgures of Vm and Qline,
this phenomenon also occurs in the places close to WT and
PV. Tat is, the closer a location is to WTand PV, the more
vulnerable it is to their fuctuation.Terefore, with more and
more renewable energy access systems, it is moremeaningful
to study the fuzziness of WT and PV than load.

4.3. Infuence Analysis of Penetration of WT. In this section,
the penetration of WT changes from 20% to 50%, while the
other parameters remain unchanged and the value of X∗ of
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Figure 9: Te value of X∗ with diferent penetrations of WT. (a) Vm. (b) Va. (c) Pline. (d) Qline.
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state variables is shown in Figure 9. It is obvious that the
values of X∗ of all variables increase in general with the
development of penetration, but increase mostly near re-
newable energy access points.

Tus, we select bus 33 and bus 13 which are far from and
near points, respectively, to plot the CDF curves of Vm as
shown in Figure 10.

From the point of view of randomness, the CDF curve
clusters all have a certain degree of displacement, and the
displacement of the near point (bus 13) is more than that of
the far point (bus 33). Terefore, the state variables of the
near point have the risk of exceeding the limit and need to be
paid more attention.

From the fuzzy point of view, the increase in the pen-
etration of WT does not lead to a signifcant increase in the
bandwidth of the CDF curve clusters. Combined with the
abovementioned analysis, it can be seen that the change of
the fuzzy number range of output variables lies more in the
range of fuzzy number of input variables, and has less re-
lationship with the penetration of renewable energy.

5. Conclusion

To analyze the infuence from the two type of uncertainties
produced by renewable energy and load demands penetrated
in power systems, this study has established the random
fuzzy model of WT, PV, and load, and combined the three
point estimate method and random fuzzy simulation
technology to calculate the random fuzzy power fow. Te
proposed method has been tested on the IEEE-33 system,
and the following conclusions have been verifed by the
simulation results:

(1) Te proposed 3PE-RFS has relatively faster calcu-
lation speed than MCS-RFS, and maintains high
accuracy

(2) Compared with the traditional probability analysis
method, more information of the power fow can be
provided by the RFPF, in terms of mean, variance,
PDF and CDF of the output variables,

(3) With the expansion of the fuzzy parameter range of
input variables, the mean value of X∗ increases
correspondingly, and at the same time, the bound-
aries of clusters of CDF expand to the left and right

(4) Te fuctuation of renewable energy and load de-
mands causes noticeable changes of state variables,
and with more and more renewable energy access
systems, it is more meaningful to study the fuzziness
of WT and PV than load

(5) With the development of penetration of WT, the
near points have the risk of exceeding the limit and
need to be paid more attention. But there is no
signifcant increase in the bandwidth of the CDF
curve clusters. Terefore, the change of the fuzzy
number range of the output variables lies more in the
fuzzy number range of the input variables, and has
less relationship with the penetration of renewable
energy.
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