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Megatrends, such as the proliferation of distributed generation, electrifcation, and the appearance of aggregator companies, put
the low voltage power grids under intense pressure. Since the network infrastructure developments cannot keep up with the
trends, distribution system operators turned to alternative solutions. Smart grid assets, such as on-load tap-changing distribution
transformers or serial low voltage regulators, are promising solutions. However, the energy transition cannot be handled with the
network expansive on the distribution level. Control centers are predicted to expand to this voltage level in the near future, and
distribution system state estimation could be an enabler of all functionalities. On the low voltage level, data scarcity is a great
challenge in observability; therefore, research must focus on the creation of pseudomeasurements and integration of available data
sources.Tis paper examines the inclusion of smart assets from the conceptual point to the application on two sites, based on data
from operational environments, both with a pseudomeasurement and an integrated metering point approach.Te results showed
that integrating smart assets could considerably mitigate voltage fuctuations, and reduce estimation errors by two magnitudes on
the low voltage network.

1. Introduction

Nowadays, continuous change is the only permanent
process in the energy industry. Volatile market prices,
renewable generation, emerging technology solutions, and
many other aspects are infuencing the distribution system.
In the past, electricity was provided to the consumers
mostly from centralized, large power plants. However, this
system had its own challenges, such as power losses and
reliance on fossil fuels, and thus the contribution to the
greenhouse efect [1]. Distributed generators, defned as
electricity sources connected directly to the distribution
network, have become a solution for the economical
supply of consumers with reliable electricity. However,
there are many technical challenges in the integration
process of these elements. Voltage stability and voltage
control are of utmost importance in the integration; and
parameters for control should be based on a network

calculation. Voltage control may be the most signifcant
technical challenge limiting the penetration of renewable
distributed generators into the distribution system.
Mahmud and Zahedi [2] reviewed the concept regarding
smart distribution networks thoroughly, observing the
latest research advancements of voltage control strategies
for distribution systems with a high share of renewable
distributed generators and ofered a brief overview of
diferent control methods. Xu and Taylor [3] provide
a comprehensive overview of voltage control techniques
for distributed generation-related electrical distribution
networks, making recommendations for increasing grid
voltage stability and maximizing distributed generation
utilization; and prove that it is possible to gain enhanced
voltage control capability via state estimation. State esti-
mation is a technique that uses mathematical methods in
power systems. It is basically a data processing algorithm
that uses measurements and other information sources to
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create the state of the electric power system: voltage
magnitudes and angles on busbars and power fows on
branches.

Observability is a key attribute for distribution system
operators to identify issues and react accordingly [4]. As for
the distribution system, where there are usually lack of
measuring units and control devices, the “hardware” should
be substituted with “smart solutions.” One of these solutions
is state estimation, which can enhance the observability and
situational awareness on the distribution level. State esti-
mation is currently well-founded at the transmission system
level of the electric grid, as this is the feld in which the
procedure has been applied for decades. It is also currently
one of the most important elements of energy management
systems used in monitoring, in addition to the control
centers of electrical transmission systems [4]. Despite it is
wide spread in transmission system monitoring, state esti-
mation has not yet been widely extended to distribution
system monitoring, as these network parts have mostly
existed passively with unidirectional power fow. Tis object
scenario is currently going through changes: the concept of
the smart grid modifes the properties of electrical distri-
bution networks. Distributed generation is spreading,
demand-responsive loads emerge, and new types of
metering devices are introduced, which can handle multiple
data rates. Tus, it is an absolute must to develop a tool for
distribution system state estimation (DSSE). Also, in-
novative technologies are required in order to protect and
optimize the system and apply novel control techniques and
other functions that are entailed by the smart grid
concept [4].

Owing to the diferent features of distributing elec-
tricity from transmission systems, the conventional and
industry-ready state estimation solutions cannot be applied
to these systems without further research. Creating a sus-
tainable energy environment leads to active distribution
networks, where diferent kind of generation and load are
simultaneously present. In setting up appropriate network
models in order to make online monitoring and analysis
possible, state estimation is a key function [5]. DSSE re-
quirements are becoming increasingly stringent in the
modeling process of the emerging new system. Te oper-
ational methods for integrating distributed energy re-
sources into the grid and the introduction of cutting-edge
technologies into the distribution network also require the
results of DSSE.

Te data source and themeasurement information are the
key criteria for state estimation applicability. As the amount of
measured data increases, the more accurate the estimation
result can be. Abdolahi and Kalantari [6] proposed a method
to minimize the measurement device numbers in large scale
asymmetric distribution networks with an innovative two-
stage stochastic programming model.

Unlike transmission systems, distribution systems are
sparsely monitored, making estimation challenging. When
measurement cannot be deployed due to economic, tech-
nical, or other reasons, pseudomeasurements [7] are used to
ensure observability. Pseudomeasurement is a key concept
in distribution system state estimation: artifcially generated

datasets are produced in order to substitute actual mea-
surements when there is insufcient information about the
network’s physical quantities. Pseudomeasurements ap-
proximate these unmeasured quantities, and as such, are
commonly devised, applying historical datasets and load
profles. In this paper, direct measurements of physical
quantities obtained from the network are referred to as
“measurements.” Conversely, pseudomeasurements en-
compass any input data to the state estimation that is
artifcially synthesized to approximate nonmeasured phys-
ical quantities, e.g., load profles or known voltage control
device set points.

Due to the lack of adequate measurements in distri-
bution systems, state estimation heavily relies on pseudo-
measurements; therefore, the accuracy of
pseudomeasurements directly impacts the accuracy of state
estimation. In recent years, several pseudomeasurement
generation techniques have been proposed, aiming to im-
prove accuracy. A framework to estimate the condition of
the distribution system based on robust pseudomeasure-
ment modeling is proposed by Cao et al. [7]. Measurement
data at the user level were applied to train the gradient
boosting tree models to generate pseudomeasurements. In
the next step, a ladder iterative state estimator solved the grid
equation in the diferent system states, relying on the output
of the previous step.

Branch current estimation methods and algorithms have
proven to be efective in comparison to the distribution
system model based on classical node voltages [8]. Despite
its success, the international literature basically lacks the
description of a detailed system model that includes all
components, involving transformers and regulators as well.
Neto and Asada [9] discussed component modeling and the
necessary changes to the composition of an algorithm which
includes various transformer and regulator models. Sub-
station voltage estimation is also carried out using the theory
of multisensor data fusion, which describes diferent classes
and measurement types. Another approach is the stochastic
gradient method [10], which helps the development of new,
fast DSSE paradigms relying on the real-time data stream of
asynchronous measurements, which are made available by
the latest info-communication technology.

Power grid condition assessment, which is based on
machine learning, faces serious challenges, as model training
requires a lot of time, and local optima are easy to fall into.
To solve these issues, Luo et al. [11] proposed a novel broad,
learning-based state estimation approach for the power
system. Relying on the theory of matrix pseudoinverse, the
proposed learning system does not only solve the problem of
speed by computing the connection weights between the
diferent network layers at a high pace, but can also learn in
an incremental way.

Besides the observability that DSSE ofers, it has several
more applications, as twenty diferent use cases prove that
the method ofers valuable results [12]. Despite that, it seems
that theory and practice difer considerably, and most au-
thors aimed to increase accuracy by integrating new mea-
surement and information sources. Tere are four major
application felds [12].
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(i) Outage management and power quality
(ii) Data analysis
(iii) Integration of renewables and e-mobility
(iv) Coordinated control

If taking into account economic considerations, pseu-
dodata generation is essential for low voltage (LV) topol-
ogies to complement real measuring devices. However, the
performance of this novel method is signifcantly dependent
on the structure of the actual grid and the metering point
distribution [12].

As a result of the growing penetration of renewable
energy sources, operating conditions of distribution systems
are becomingmore uncertain and volatile.Tus, besides grid
state monitoring, the DSSE must also follow the state of
renewable energy sources even in unbalanced conditions
[13]. A joint state estimation model for unbalanced distri-
bution systems was proposed [13]. Te model can handle
a system that includes both single-phase and three-phase
solar photovoltaic (PV) power plants. Also, an extended
weighted least square (WLS) model complements their
system. In the view of the problems arising from the in-
sufciency of real-time measurements in active distribution
networks, Cheng et al. [14] created a state estimationmethod
for such grids based on the forecast of PV energy pro-
duction. First, an extreme learning machine integrated with
a genetic algorithm predicts the amount of power generated
by the PV cells. Second, forecast error is estimated by the
Gaussian mixture model. Te forecast value of PV power
generation is corrected by the weighted average of the
forecast error, while the weighted standard deviation of the
forecast error serves as the basis for pseudomeasurement
weight setting. In the last step, the WLS algorithm is applied
to estimate the state of the active distribution network, using
the real-time measurements collected by the supervisory
control and data acquisition system, the predicted pseu-
domeasurements, and the virtual measurements. A dynamic
state estimation installed locally in the converter was pro-
posed by Zhang et al. [15]. Tis method relies on the voltage
and current sampling values of the common coupling point
and the direct current bus instead of phasors for estimation,
in order to reach real-time high accuracy. A mathematical
model of the grid-connected converter is proposed for the
most typical topology and control strategy.

Te main problem with the LV DSSE is the lack of low-
error meters implemented in the distribution system. For the
characterization of LV loads, usually synthetic load profles
(SLPs) are used, historical data is only available with the
smart and automatically read meters (in many countries,
including Hungary, the penetration of such meters is rather
low). Te number of grid meters in the LV network is low,
and the installation of more devices is only to be scheduled
in the upcoming decade. As a consequence, right now in
most of the countries, only the LV pilot projects provide
real-time data. For the monitoring of power quality, periodic
measurements are applied, but these datasets are usually too
small, thus they cannot be used for the development of the

grid. Te number of real-time datasets is even lower. Te
installation of smart devices can be used to increase the
number of measured points. Te number of smart devices is
growing in Hungary, and the implementation of hundreds of
them can be expected in the following years. Tese smart
solutions have two main purposes, with regard to state
estimation.

(i) Tey lower the variation of the parameters, thus the
estimated value of the variables (the voltage mag-
nitude in particular in LV grids) is expected to re-
main in a smaller range

(ii) Tey can be used as a data source in state estimation

(1) If their data are not connected directly to the
state estimation, pseudodata can be created from
their historical measurements, or in other words,
based on their control logic and a few
assumptions

(2) When directly channeled into the state estima-
tion framework, these measurements can in-
crease real-time accuracy

Tis paper analyses the role of smart, innovative devices
in the LV DSSE, with creating a new type of information
source (pseudomeasurement or real measurement), and in
this way extending the WLS framework. Te structure of the
paper is as follows. Te introduction gives a thorough
analysis of international literature, while the second section
introduces the mathematical background of the DSSE
model; and its connection with the electrical calculations are
presented. After that, the modeling considerations, the used
measurements, the contribution of smart assets in LV DSSE,
and the modeling framework are shown, which were used in
the simulation study section. Te simulation study section is
based on the modeling of two MV/LV sites. To simulate the
efect of smart assets, three diferent scenarios were pro-
posed, each improving the precision of DSSE compared to
load fow calculations.

Te results of the paper go beyond the state-of-the-art in
the efect analysis of the use of voltage control devices that
are getting more common in power grids within a DSSE
algorithm as a new data source. Te control logic of these
devices can be used to process historical data, which acts as
a constrain in the making of the measurements. Compared
to normal historical data, the new pseudomeasurements can
decrease the standard deviation (which is defned as the
error in this paper) of voltage magnitude values in the LV
DSSE process. Tese error decreasing data similar to the
previously mentioned measurements will be even more
accessible with the spreading of innovative technologies and
the measurements integrated with them.Te paper evaluates
the actual measurement integration from the devices, which
would require communication and information technology
investments from the DSOs. It is concluded that the use of
innovative tools as a data source in the grid drastically re-
duces the error when using DSSE, which is important in the
process of the LV grid monitoring infrastructure
development.
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2. DSSE Mathematical Background and
Connections with Electrical Calculations

It is worth mentioning some of the aspects from the linear
algebraic background that is important from the viewpoint
of DSSE and load fow equations, and it also helps to un-
derstand in detail the efects of diferent pseudomeasure-
ment techniques and data sources. A brief reminder is
deemed necessary in the area of the applicable matrix
equations to illustrate the way state estimation works with
some examples. Drawing on two authoritative sources by
Monticelli [16] and Strang [17], a discussion is provided
below that links mathematical abstraction with engineering
applications, thus revealing what is behind the well-known
state estimation equations. After outlining the general state
estimation equations, the least square approach is described
in order to make the state estimation logic more un-
derstandable, decoupling form it the load fow equations. It
is worth emphasizing that a state estimator has to handle the
nonlinearity of the load fow equation, similarly to a load
fow approach, but the state estimation is based on the least
square approach.

2.1.Conceptof StateEstimation. Ahmad et al. [4] outlines the
framework of the state estimation equation system, in which
the base equation is as follows:

z � h(x) + e, (1)

where z is the measurements vector, e is the observation
noise, x is the state variable, and h is the nonlinear vector
function relating the measurements to the state variables.
Tis function can be evaluated by solving the power fow
equation system, as described by Abur and Exposito [18] as
follows:

Pi � Vi 

N

j�0
Vj Gij cos θij + Bij sin θij ,

Qi � Vi 

N

j�0
Vj Gij sin θij − Bij cos θij ,

Pij � ViVj Gij cos θij + Bij sin θij  − GiV
2
i ,

Qij � ViVj Gij sin θij − Bij cos θij  + BiV
2
i ,

(2)

where P and Q are the active and reactive power fowing
from the node i to j, whileG and B are the real and imaginary
part of admittance, respectively. Due to the nonlinear nature
of power systems, a linearization process is needed around
a given point (operating characteristics) as follows [4]:

z � h x0(  + x − x0( 
zh(x)

zx
  + e(x) + h.o.t, (3)

where h.o.t. is the higher order term and the index zero
denotes the initial state. After reordering the equation and
neglecting the h.o.t. (frst-order linearization), the following,
widely used formula, can be given as follows [4]:

z − h x0(  � x − x0( 
zh(x)

zx
  + e(x)⟶ ∆z

� H∆x + e(x),

(4)

where H is the Jacobian matrix. Introducing measurement
covariance matrix as the vector of variances from all mea-
surements and its inverse W, which is the measurement
weight matrix, the gain matrix (G) is defned as follows [4]:

G � H
T
WH. (5)

Te WLS method, which is a wide-spread method for
state estimation, is based on error minimalization, with the
objective function f as follows [4]:

minf � (z − h(x))

� min(z − h(x))
T
W(z − h(x)).

(6)

State estimation can be obtained by the iterative solution
of equation (7). Equation (7) itself is a system of equations
which in the practice can be solved by iteration. At iteration
k, the solution for the state variable x is given as follows [4]:

∆x � G
− 1

H
T
W(z − h(x)), (7)

x
k+1

� x
k

+ ∆x
k+1

. (8)

Equation (7) can be derived using equations (4), (5), and
(12)–(14). Otherwise equations (12)–(14) give a better un-
derstanding of the G matrix, which is used commonly in
state estimation literature, frequently without explanation
based on linear algebra. Te solution process is described
with detailed fowcharts in a previous research by Mutanen
et al. [19] or Florez et al. [20], which is useful for further
understanding. Te latter also introduces a new nonlinear
programming model to consider that there are errors in the
measurement and handles this error as a constraint.
Equation (6) defned the minimization problem, meanwhile
Monticelli [16] gave a glimpse behind the curtain. Te least
squares solution provides one way of dealing with over-
determined systems of linear equations (systems with more
equations than variables) of the type. Te following general
equation can be formulated as follows [16]:

Ax � b, (9)

where x and b are n andm element vectors, respectively, with
n<m. A is an m× n matrix. From here, the focus of this
discussion switches to linear algebra. Te residual r can be
defned as follows [16]:

r � b − Ax, (10)

which is minimalized using the least square approach as
follows [16]:

min r
T
r  � min J(x) �

1
2
(b − Ax)

T
(b − Ax) . (11)

At the location of the minimum, all derivatives are zero,
which leads to the following equation (16):
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A
T
Ax � A

T
b,

x � A
T
A 

− 1
A

T
b,

(12)

where x itself is the estimated state, an approximation. Te
following parts can also be defned [16]:

Gainmatrix � G � A
T
A, (13)

Pseudo − inverse of A � A
I

� A
T

A 
− 1

A
T

. (14)

In this way, it is becoming clear, that in the above model,
A corresponds to H in equation (4), and the gain matrix G
corresponds to ATA, respectively. In this formulation,
weighting is not applied; therefore, the weight matrix (W) is
not present. It is very helpful in practice to weigh the
measurements according to their errors, but it is not nec-
essary to introduceW to discuss the mathematical principles
of the state estimation.

2.2. Connection with the Electrical Calculation.
Observability and controllability are two important terms
for future DSSE systems. Observability is strongly connected
to the gain matrix: if it is nonsingular, thus invertible, then
the network (or any system concerned) is observable, all of
the state variables can be estimated [16]. Controllability is
connected to the so-called minimum-norm solution, where
the A matrix is short and wide, so there are more variables
than equations. In this case the underdetermined system can
be solved in a least square sense with the following for-
mulation [16]:

x � A
T

AA
T

 
− 1

b � A
I
b. (15)

If AAT is invertible (nonsingular), then the network
is controllable. In other words, there are enough
control variables to have an impact on controllable
variables in the required way. Moreover, the mathe-
matical expression of controllability makes sense to show
its close connection with the least square approach and
linear algebra.

A system level understanding of the diferent types
of linear equations can be gained from Strang [17].
Furthermore, an overview of the diferent formulations
and their usage in engineering practice is given in
Figure 1.

Tis categorization consists of four types of equations
and their corresponding practical problems. Te bottom of
the fgure contains an overview of matrix structures, using
the reduced row echelon form of matrix R. Tis matrix form
is very useful for illustrating the shape of matrices in the
system of equations. Te diferent types of system equations
are further detailed in Table 1.

For Type 1 scenario of system equations and variables,
there is only one solution. Te number of variables (n) is
equal to the number of equations (m). Regarding Type 2,
there is an infnite number of solutions, as m< n. In the

examples given in Table 1, there are three pivot variables and
two free variables. Te pivot columns represent the in-
dependent variables, and the number equals to the rank of
matrix. Ten, the system is underdetermined. Tis is where
minimum-norm solution or linear programming will be
relevant.Te hyperplane has an infnite number of solutions,
and there are rules to determine which one is appropriate. In
the case of Type 3, there is no “ofcial” solution, as there are
more equations than variables. Te system is over-
determined. Tis is where the least square solution will be
relevant. Tere are many measurement points which have to
be ftted to a line graphically (explanation below). Type 4 has
infnite or zero solutions. Tis is the mixture of least square
and minimum-norm solution. It is rare in practice. How-
ever, some sources, e.g., [21–24], discuss this type from
a mathematical point of view, because the two types of
approximation (least square and minimum-norm) are ap-
plicable here, but with constraints.

From the above types, Type 2 and Type 3 are further
detailed here, as these are the least square solution and the
minimum-norm solution, respectively. Since the focus of
present article is state estimation, a general overview is given
about the minimum-norm solution and the least square
solution. Figure 2 gives a general picture about the geometric
meaning of the two scenarios.

Te left part of the pictures in Figure 2(a) describes the
equations where there are more variables (n) than equations
(m). Te solution can be split into two parts, namely, the
particular (xp) and special solution (xn) as follows:

Ax � b � xp + xn. (16)

Te special solution of Ax� 0 is based on free variables.
Te particular solution is connected to the pivot variables.
Te pivot variables give the rank of the matrix. Tere are n-r
(or with the number of equations, n-m) special solutions.
Figure 3 gives a geometric view about the diferent solutions.

Te left part of Figure 3(a) corresponds to the left part of
Figure 4(a). If there are more variables than equations,
freedom increases. However, there is a feasible solution, e.g.,
on a hyperplane, but it is not known where the optimum is.
Te special solutions give only one way to select a solution.
Tis question leads further to the minimum-norm solution
or linear programming. Te minimum-norm solution se-
lects one point, e.g., from a hyperplane, i.e., the minimum-
norm is the norm of the hyperplane, so the intersection of
the vector and the plane defnes the point. Meanwhile, linear
programs are seeking the optimum, but it is necessary to give
some additional rules for this optimum searching.

Te right part of both Figures 2 and 3(b) depicts the heart
of mathematical basis of state estimation solution with the
least squares. For such a matrix, where there are more
equations than variables, the description corresponds to the
practical problem of power fows, where we have more
measurements than state variables. In state estimation, the
projection is an approximation, which is the estimation of
a state variable (e.g., voltage at a node). Vector b is the
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measurement, where we have no solutions; therefore, we are
seeking the solution which has the minimum error. Tis is
a projection of vector b to a line. Te projection p and the
error e (or in other words residual) give vector b.Te vector e
will have a minimum length if it is orthogonal to a line, so we
are seeking such vector e which is orthogonal to a. Tis will
give the minimum error and leads to the least square
method. If e� b− a, x is orthogonal to a, the dot product is
zero. It is better to use aT instead of a because of matrix
formulation, so the projection, in the case of state estimation,
the estimation itself, is the following; for higher dimensions
see equation (15).

x �
a

T
b

a
T
a

. (17)

So, there is a system of equations consisting of m
equations containing n variables. Tis can be solved by
approximation, similarly to ftting the measurement points
to a straight line (with least squares there as well). Te basis
of the least squares method is the minimization of the re-
sidual squares, which means the minimization of the matrix
product rTr as defned in (11). Minimization can be per-
formed by derivation, as the derivative equals to zero or the
geometry consideration discussed above. x will be the basis
of the solution instead of x (x cannot be calculated and x is
an approximation).

In this way, it is understandable how the additional real
or pseudomeasurements work in the process state esti-
mation. Te more the measurements, the higher the ac-
curacy of the result (more points to be ftted to a “line”).
Naturally, there are diferent types of measurements, the
accuracy of which is varied. Terefore, the engineering

practice uses the so-called W measurement weight matrix.
Békési et al. [25] improved a state estimation process in
which W is used.

If supervisory control and data acquisition (SCADA)
measurements and smart metering consumption data are
used, they difer from the SLP of consumption, as the former
has higher accuracy, so W contains more accurate mea-
surements for state estimation. Furthermore, SCADA
measurement means in this context additional data to SLP
and automated meter reading so the state estimation can use
the advantage provided by the least square. Te aim of the
future operation of grid control systems is to implement
a DSSE framework as accurate as possible. Tere is an
economical constraint as well; therefore, a rational balance is
needed between more accurate pseudomeasurements and
investment. Te so-called smart technologies can give
a support for state estimation, because they gather data
about the LV grid during operation.

Besides smart grid assets, there are further possibilities to
control the system variables. One of them is demand side
response, e.g., if a water heating equipment is controlled
based on network constraints. Tis type of problem is
leading to the minimum-norm solution and linear pro-
gramming. In this case, for example, there is one controllable
variable (voltage at a node), but there are some equipment
(e.g., demand equipment) which means more equations.

3. Methodology

Tis chapter summarizes the modeling considerations used
in the grid calculations. First, the network parameters and
load data are discussed, then the smart asset principles are
covered.

Type of linear equations
based on Matrix structure

r = m, r = n
A is Square and invertible

Ax=b has one solution

r = m, r < n
A is Short and wide

Ax=b has ∞ solution

r < m, r = n
A is Tall and thin

Ax=b has 0 or one solution

r < m, r < n
A has Not full rank

Ax=b has 0 or ∞ solution

Basis:
Ax=b

n = number of variables
m = number of equations

r = rank of matrix

Solvable equations
Classical area of Load Flow

Many solutions in e.g in a
Hyper‐plane

Classical area of Control
and Controlled variables,

there are more variables
than equations

(minimum norm solution,
or Linear programming)

Generally not solvable in
the practice

Classical area of State
Estimation

There are more equitions
than variables

(Least square solution)

Generally not solvable in
the practice

In the practice it is a rare
situation

However there are some
mathematical approach to

solve it

1 2 3 4

Type of matrix in Reduced
Row Echelon matrix form:

I
0

Type of matrix in Reduced
Row Echelon matrix form:

I
0

F
0

Type of matrix in Reduced
Row Echelon matrix form:

I

Type of matrix in Reduced
Row Echelon matrix form:

I F

Figure 1: Type of equations, matrices, and relationship to practical problems.
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3.1. Modeling Considerations. In order to analyze the op-
eration of smart devices, we modeled two medium voltage
(MV)/LV areas based on real life data. In these regions, the
smart solutions have already been operating for years. Te
modeling also validated the conformity of the implemented
SE framework. Te topologies are depicted in Figure 4.

For the control models, the on-load tap-changing (OLTC)
transformer element of pandapower was used, with the pa-
rameters of real devices.Temeasured data are collected from
real measurements of already integrated devices. Te exam-
ination was conducted with the data for the month of May,
2019.Te load behavior is modeled using SLPs. At the time of
the integration of these smart devices, the source measure-
ments were known, these were calculated from the reference
load fow. Tree scenarios were analyzed. In the frst one, no
smart devices are installed in the networks. At the feed-in
point and at the controller locations, a fxed voltage mag-
nitude with known uncertainty is assumed. In the second
scenario, smart devices are integrated into the networks, their
voltage setpoints are set using predefned measurement series
assembled from real life measurement data. In the third
scenario, the smart devices’ behavior is modeled using load
fow simulations, the resulting voltages are then utilized as
pseudomeasurements for the state estimation. Te topology
of the two sites is depicted in Figure 4. On Site A, an OLTC is
deployed, while Site B has a series voltage regulator (SVR)
around the 1/3 of the circuit length. Te loads of both net-
works were modeled using the regular ZIP model. Each load
was represented as a constant impedance, a common as-
sumption for low voltage consumers.

3.2. Framework for Simulations. To analyze the scenarios,
a Python-based state estimation framework was devised (the
development of the framework is discussed in detail in [26]).
Te framework uses the pandapower [27] power systems
analysis toolbox to create the network model representations
and run the analysis.

For the estimation, the WLS algorithm is applied. Te
estimation is validated using a Newton–Raphson load fow
solver (the output of the load fow is the reference for the
estimation). Both are implemented and readily available
within the pandapower toolbox. Te schematic architecture

of the pandapower tool and the workfow of the experiments
are depicted in Figure 5.

Te simulation involves the following steps.

(1) Reading the input fles containing measurements,
pseudomeasurements, and reference data.

(2) Constructing the digital representation of measure-
ments and pseudomeasurements as internal data
structures. Tese structures enable the data to be
readily available for the entire course of the simulation.

(3) Constructing the reference data as a separate data
structure.

(4) Reading the physical parameters and topology graph
of the network from descriptor fles.

(5) Formulating an internal network representation
(pandapower format) using the parameters.

(6) Running the state estimation algorithm on the
network representation using the input measure-
ments and pseudomeasurements. Tis step is re-
peated for a predefned number of steps.

(7) Evaluating a reference load fow as a ground truth for
the state estimation using the reference data as an
input. Te load fow is repeated for the same time
steps as the state estimation.

(8) Comparing the output of both the state estimation
and the load fow, evaluating the error measure
defned in simulation studies. Te output of the
algorithms is voltage amplitudes and phases of each
node for each time step.

(9) Writing the results to the disk as a data table.

Pseudomeasurements are generated in the following man-
ner. SLPs were used to generate pseudomeasurements for each
individual household load in the examined networks. SLPs are
publicly available in Hungary [28], presenting a realistic con-
sumption profle of Hungarian LV consumers. Te DSO has
applied these curves for network planning traditionally and also
to predict electricity consumption.

Te applied dataset contains consumer curves for
multiple load types, of which we used the simple LV
household consumer curve and the PV generation curve for
generation. Te profles include the consumption rates for
the whole of 2022 in a 15-minute resolution. To obtain the
actual power values, the selected curve was scaled by each of
the modeled consumers’ average annual consumption, and
the resulting time series were trimmed to the simulation
period (a 30-day period in the month of May). Reactive
power consumption was directly calculated from the active
power values using a power factor of 0.98, as there were no
data from the customer’s reactive power consumption. Te
goal was to show the efects of the smart assets, and for the
sake of clarity, the loads are kept in an ordinary state. Te
research could be expanded with further simulations, e.g.,
stochastic load profles and enhanced level of PV generation,
but those scenarios should be carried out as a sensitivity
analysis. In this study, we only focused on the quantitative
examination of the smart asset efects, which were integrated
into this WLS-based DSSE framework as a new data source.

Table 1: Scenarios of system equations and variables [17].

Type 1 r � m � n
1 0 0
0 1 0
0 0 1

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

R→ [I]

Type 2 r � m< n
1 0 0 a c

0 1 0 b d

0 0 1 0 e

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

R→ I F 

Type 3 r � n<m
1 0
0 1
0 0
0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

R→ I

F
 

Type 4 r<m, r< n
1 0 a

0 1 0
0 0 1

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

R→ I F

0 0 
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3.3. Load Profles and Voltage Measurements. Te resulting
pseudomeasurement fles contain active and reactive power
consumptions for each node of the simulated networks. Te
data is in a quarter-hour resolution. Behind each node,
multiple loads and generators can reside in the network, the
loading and feed-in of these elements are aggregated prior to
the simulation and represented as a single data-series for
each customer connection point.

State estimation determines which network state has
the highest likelihood, using the reliability of measure-
ments as a starting point. Tis means, measurements with
a lower level of uncertainty are regarded as more reliable,
and thus are taken into account with a higher weight. For
an informative scenario modeling, it is indispensable to set
the values of uncertainty, realistically. For each type of
input data, the following measurement uncertainties
were used.

3.3.1. P and Q Profles. Te SLPs used to generate individual
household loads are representative profles and are typical
on average by the respective group to be modeled. Te
quality of pseudomeasurements based on SLPs are, thus,
largely afected by the size of the group on which the

assumption is made.Te uncertainty of these profles may be
much larger than the measurements, especially for the case
presented, where the time stamps of the voltage and power
measurements are not strictly aligned, and there is a small,
nonrepresentative set of loads and generators in the net-
work. We assume a large uncertainty (1 kW) for the loads for
the state estimation, which on average yields a 200% error
margin for the power measurements (average consumption
is 0.5 kW).

3.3.2. External Grid Voltage and Voltage at the Controller for
the Noncontrolled Scenario. Te uncertainty of the external
grid and noncontrolled scenario voltage measurements are
based on the error of standard voltage measurement devices,
which is 3%. For the state estimation, the uncertainty of the
measurements are taken into account with a standard de-
viation of 1%, assuming a Gaussian error distribution. In the
load fow process, external grid measurements are consid-
ered as error-free and are used to constrain the solution of
the power fow equations. In both regions, measurements
from the external grid were available at a resolution of
10minutes, which were then resampled to a resolution of
15minutes. Figure 6 shows the time series data.
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3.3.3. Controller Voltage. Te uncertainty of the voltage
measurements at the controllers is based on the controller
tolerance around the setpoint voltage, which is 1.5%. Te
uncertainty for the state estimation is set to 0.5%, assuming

a Gaussian error standard deviation. Te rationale behind
the assumption of an uncertainty of 1.5% for the voltage
measurement at the SVR control device is based on the
calibration characteristics of the SVR device, as we assume
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that the regulator can control the voltage with this error
margin around the setpoint voltage (1 p.u.). For the load fow
process, the controller voltage is considered error-free.

In the second scenario, synthetic measurements called
“pseudomeasurements” were utilized. Tese were generated
through the use of a Python loop that implemented the control
logic of an actual OLTC transformer. Since the data set used
was obtained from the secondary side of the previous trans-
former, the resulting output was similar to real data (Figure 7).

Compared to the SLP pseudomeasurements, these
controller-based pseudomeasurements, as new kinds of
pseudomeasurement sources result in lower standard de-
viation in LV DSSE, similarly to real measurements, thus

they enable a more precise state estimation. SLPs are
commonly used in studies, while the controller-based data
presented for example in Figure 7 are introduced in this
paper. Tis is an extension of the currently achievable DSSE,
as DSOs lack the availability of online data and pseudo-
measurements as well. We focused on 2 devices which are
getting more common on the LV level, but the technique can
be extended on any controller or smart asset. Also, using the
historical data as pseudomeasurement does not require any
investments to create a measurement integration. To
compare the values of the latter, the paper analyses both
solutions: pseudomeasurement generation from historical
data and measurement integration. At Site B, no on-feld
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Figure 6: External grid measurements: site A (a) and site B (b).

10 International Transactions on Electrical Energy Systems



measurement is necessary to create the pseudovalues. Te
secondary side of the SVR control device can be assumed to
have a voltage magnitude of 1 p.u., with an uncertainty of
less than 0.5% (0.005 p.u.) as specifed above.

3.4. Smart Assets in the DSSE Process. DSOs are currently
embracing diferent smart grid solutions, which our research
group reviewed in a previous paper thoroughly [29]. At the

high voltage substation level, OLTC transformers are ex-
tensively applied; meanwhile, MV/LV transformers usually
lack this device. Controlled voltage can be ensured by power
electronic converter-based SVRs at a certain node, as a result
of which the volatility of the voltage is considerably de-
creased along the radial line. In LV pilot projects, energy
storage systems, i.e., battery technologies together with the
distributed generator’s inverter control are capable of
controlling state variables at a given grid point. Loads in
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direct load control systems may be predicted more accu-
rately, and thus may be regarded as reliable pseudomea-
surements. Tis paper analyses two assets from the
viewpoint of DSSE integration, the OLTC, and the SVR,
respectively.

MV/LV transformers are generally characterized by
fxed tap positions. Tese are altered only if the equipment
is de-energized. In the course of the commission, the
electricians position the taps following the guidelines.
However, if the MV loading conditions result in the MV
voltage fuctuating higher than usual, or the LV customers
cause large voltage changes, an OLTC might be a viable
technical solution. Regarding the LV circuits, OLTC is
more efcient if the voltage profle of the circuits supplied
by the transformer is similar, because it controls the whole
secondary substation area. As for higher seasonal variance,
which might occur in a holiday resort area, loads may
signifcantly difer in various times of the year. Te control
dynamics can be safely neglected in the static condition
DSSE, as the duration of the transient caused by tap-
changing is signifcantly shorter than the time step of
the DSSE, which uses one-minute averages for the simu-
lation. Measurements from the LV terminal are also pro-
vided by the OLTC transformer. Figure 8 shows the
operation principle of the OLTC; there is a regulation
bandwidth around the nominal terminal voltage. If the
voltage stays within the regulation bandwidth, no control
action happens. When the LV terminal voltage goes outside
the regulation bandwidth due to changing load conditions,
the OLTC controller (after a preset delay time) switches the
tap to bring the voltage back into the regulation bandwidth.

As the penetration of renewable energy sources in-
creased, power electronic converters as voltage regulators
have also become more common. Such devices, which may
be connected either serially or in parallel, accurately control
node voltages in a fexible manner. Te control dynamics
may be neglected (even with the commercially available
devices with discrete steps). Te connection of an inverter-
based SVR is depicted in Figure 9. Te voltage levels of
a system with and without an SVR from a Hungarian pilot
project [29] are shown in Figure 10. Basically, the main task
of an SVR is to divide the circuit into two parts. Starting
from the LV busbar, which is generally characterized by
a slightly fuctuating voltage, to the SVR, the connected loads
modify the voltage profle depending on their current op-
eration points. Te SVR should be mounted on the pole to
the grid at the point where the voltage profle is sure to
remain within the limits without any control, where it
provides controlled voltage for the rest of the network. Te
SVR provides voltage control downstream from the
mounting point. When the SVR operates, this point behaves
similar to a feeding point with high short-circuit power. Te
controller maintains a preset voltage at the regulated point
within a strict limit, practically constant.

Tis application separates the electric circuit into two
distinct parts, which reduces the volatility of the voltage
profle, and at the same time implicitly provides voltage
magnitude pseudomeasurements of constant value at the
controlled point due to the fxed setpoint. In this context,

SVR could become an important data source in the LVDSSE
algorithm. Table 2 summarizes the data sources used in the
simulations.

Figure 10 shows the voltage at the two sides of the SVR-
uncontrolled point (Figure 10(a)) and SVR controlled point
(Figure 10(b)) [29].

4. Simulation Studies

Te goals with the implementation of state estimation
augmented with smart solutions are as follows:

(i) Analysis of the range of low voltage smart devices
and their integration into state estimation

(ii) Te integration of low voltage SVR and OLTC
models into

(1) Load fow calculations
(2) State estimation with pseudomeasurement data
(3) State estimation with real measurement data

(iii) Case study for a period of 1month

(4) Without control devices
(5) Modeling control devices with pseudomea-

surements (in the absence of real
measurements)

(6) Modeling control devices with real measure-
ments (measurements with known uncertainty)

Te simulation results were evaluated by using an error
metric defned as the root mean square diference between
the reference load fow and the results obtained from the
suggested DSSE method. In this system, the reference load
fow serves as an appropriate benchmark to establish a vir-
tual scenario, from which the proposed method results can
be compared and the efects of integrating smart assets on
the power system can be observed in terms of both space and
time. Additionally, this approach can be further validated if
online measurements are available on the sites, as the in-
stallation of such devices is ongoing. Terefore, the results
presented in this paper will be validated in practice in the
future.

Te paper evaluates the state estimation performance by
observing the voltage profle over 2880 time steps and
calculating the mean diference throughout this simulation
period. Tis method provides a more comprehensive un-
derstanding of the various operation states and conditions of
the networks and the accuracy of the state estimation al-
gorithm under these conditions compared to an ad hoc
Monte Carlo test, which may only analyze individual time
steps but fails to systematically evaluate the accuracy over the
entire simulation period.

4.1. Simulation Studies: Site A. In the frst case, the base state
of the network was calculated, without the OLTC. For each
scenario, the external grid voltage profle is used as
a pseudomeasurement. In each scenario, we used box plots
to show the variation of the voltage on a given node, in per
unit values. Tis method helps to visualize the behavior of
the values in only 1 diagram. In each case, there are 3 output
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diagrams. Te frst one is the voltage magnitude result of
DSSE, the second is the reference load fow result, and the
third is the diference between the two calculations (error).

In the case of SVR, it is assumed that if the device is
deployed, an LV terminal measurement is also present.
Figure 11 depicts the base case results for Site A. In each
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Figure 10: Voltage at a given node before the SVR application and after the SVR application.
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simulation, the blue frame depicts the state estimation
voltage magnitude results (green is for the load fow, while
the red frame shows the error).

In the case of Site A, one circuit was considered from the
transformer to the endpoint to have clear results along the
line.Te voltage does not fuctuate greatly on the grid, which
is the result of simplifed load modeling. However, it can be
considered a realistic scenario and appropriate for the smart
asset analysis.

Te blue rectangle on the left is theMV external grid.Te
large diference between the frst two nodes is due to the
settings of the transformer. For the frst scenario, mea-
surements from the transformer sides were used. In the
results from the frst scenario of Site A, one can see a jump in
the voltage magnitude. Tis jump originates from the tap
settings of the transformer. Te typical setting for MV/LV
transformer taps is to provide the mean value of 1.03 p.u on
the LV terminal. With that in mind, we had real measured
data from the region. Te primary side measurements were
22 kV (or around 1 p.u), but the secondary side, keeping in
mind the previously mentioned reason, were above the per
unit. In other simulations, it does not occur due to the fact
that smart assets are applied, not the conventional devel-
opment guidelines.

Te voltage profle is smooth along the circuit, the
voltage and error curves are similar to that of other LV DSSE
implementations. Te error slightly increases from the
transformer’s LV terminal to the endpoint due to the

uncertainty of the connecting parallel elements. Te error is
in the range of± 0.02 per unit most of the time.

Te case utilizing pseudomeasurements is shown in
Figure 12 (Scenario 2). Te OLTC’s efect on the voltage
magnitudes can be observed. Te voltage variation is de-
creased compared to Scenario 1, and this efect propagates
along the line. Te error of the simulation is overall reduced,
and this is mainly due to the smaller fuctuations in the input
values, which leads to a signifcant improvement in DSSE
accuracy.

Te case where the OLTC measurements are directly
integrated into the DSSE is shown in Figure 13 (Scenario 3).
Here, the voltage profle does not change drastically from the
pseudomeasurement case (OLTC was applied and had efect
in those cases, which is a diference compared to the base
case), but the error is reduced by orders of magnitude due to
the improved accuracy of the used measurement. Mean-
while, the spatiality of error is also changed. Tere is
a greater relative increase along the line from the accurate
measurement to the more uncertain endpoint. However, any
error here is much smaller than in the previous scenarios.

4.2. Simulation Studies: Site B. In the frst case, the base case
state of the area (without the SVR) was calculated similarly
to the OLTC network.Te external grid voltage profles were
used as input for this network as well. Here, the diference
between the MV and LV terminal voltage equals the

1.15

1.1

1.05

0.95

0.9
nodes along the line

no
de

 v
ol

ta
ge

 [p
.u

]

1

(a)

1,15

1,05

1,1

0,9
nodes along the line

0,95no
de

 v
ol

ta
ge

 [p
.u

]

1

(b)

0,1
0,08
0,06
0,04
0,02

0

no
de

 er
ro

r [
p.

u]

-0.02
-0,04
-0,06
-0,08

nodes along the line

(c)

Figure 11: Site A: base case results. State estimation (a), load fow (b), and error (c).
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transformer drop. After the feed-in point, the voltage
magnitudes along the line are depicted using box plots. Te
circuit shows the expected behavior, as the voltage variation
and the error increases from the LV terminal to the endpoint
(Figure 14).

Te pseudomeasurement scenario (Scenario 2) is
depicted in Figure 15. Here, we can see a large error re-
duction, as well as the expected change in the voltage profle
due to the SVR. Te device is connected between nodes 13
(light blue) and 14 (light red), and the setpoint of the
controlled node is 1 per unit.Te voltage variation shows the
expected pattern, it increases from the LV terminal until the
last uncontrolled point, then the SVR control greatly reduces
it, and until the endpoint, the monotonous increase appears
again. Te error decreases by one order of magnitude in
comparison to the frst scenario, as seen in Figures 14 and 15.
Despite the presence of the SVR, the error profle remains
unchanged, which is likely due to the pseudomeasurements
not accurately refecting the operational conditions at the
regulated point.

Te measurement-integrated case (Scenario 3) is shown
in Figure 16. Te error is further reduced. However, the
voltage variation does not difer from the previous (pseu-
domeasurement) scenario. Another interesting remark is the
error’s spatiality. Te proximity of the SVR lowers the error,
as well as the LV terminal measurement, and from the

measured points to the end of the line, the error increases
again. Te decreased error profle observed is believed to be
a result of the regulated point voltage being derived from the
load fow simulation. Tis measurement provides a closer
alignment with the benchmark conditions compared to the
pseudomeasurements utilized in Scenario 2, leading to
a reduction in the error at the regulated point and at its
vicinity.

As a result, it can be concluded that even the in-
tegration of the control principles via low-uncertainty
pseudomeasurements have a good efect on the estima-
tion accuracy. Te main conclusion is that the
measurement-integrated scenario has proven to be the
most accurate and useful for modeling and monitoring LV
networks with smart assets.

Another conclusion is that the error results (the red
blocks) in Figures 11, 13, and 14 show that the state es-
timation results are strongly biased, with the error tending
to be negative. Tis is surprising, as the weighted least
squares (WLS) method, which is used in the work, is
known to be an unbiased estimator under Gaussian noise
assumptions.

It appears that the bias in the error results is due to the
defnition of error used in the paper, which is the diference
between the load fow and state estimation results, rather
than the estimation error, which would be the diference
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Figure 12: Site A: pseudocase results. State estimation (a), load fow (b), and error (c).
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Figure 13: Site A: measurement-integrated case results. State estimation (a), load fow (b), and error (c).
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Figure 14: Continued.
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Figure 14: Site B: base case results. State estimation (a), load fow (b), and error (c).
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Figure 15: Site B: pseudocase results. State estimation (a), load fow (b), and error (c).
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between the true state of the system and the estimated state.
Tis diference in defnition may explain why the error
results are showing a negative bias, as it appears to be
a positive diference in the load fow results compared to the

true state of the system. Tis positive diference is likely due
to inaccuracies in the assumed power values at feed-in
points, which is causing the load fow results to be higher
than the true state of the system.
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Figure 16: Site B: measurement-integrated case results. State estimation (a), load fow (b), and error (c).
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5. Conclusions

Tis paper examined the concept of smart asset, namely,
OLTC and SVR, integration into the DSSE process. First, it
was outlined that LV DSSE lacks the reliable metering data,
and that due to the distributed generation, electrifcation,
and active customers, distribution system operators have
already deployed smart assets at many sites. Tese devices
locally control voltage; furthermore, they can transmit
measured data to the system operators, which can be
channeled into a DSSE framework to increase network
observability. Our research group developed a DSSE analysis
framework and modeled two real LV network sites to an-
alyze the operation of such assets and their efect on state
estimation accuracy. Te sites have the devices already in-
stalled; therefore, the input data for the simulation is con-
sidered realistic. Te goal was to show that the devices
reduce the estimation errors. Currently, there is no real-time
transmission of the measured data yet; therefore, load fow
simulations were created as a reference.

Te results show that using the SVR and OLTC setpoints
as pseudomeasurement data reduces the error by an order of
magnitude, while using them as online measurements fur-
ther reduces the error by another order of magnitude.
Figures 17 and 18 show the error comparison on the sites.
Regarding Site A, the customer connections caused a change
in the error (there are no loads at the beginning of the line),
while at Site B, the monotonicity changes due to the SVR.
Te error distribution along the line also proved that if the
SVR is integrated, it reduces the error greatly in the prox-
imity (Figure 16). However, with the current SVR tolerance
settings, the error function spatiality fnding was not ex-
tendable to the pseudomeasurement case, as the voltage
bound of the controller is in the range of the error of the
controller voltage pseudomeasurement of the DSSE,
resulting in a somewhat larger error at the control point
compared the integrated case. Te OLTC scenario showed
the expected results, as the error was reduced, but there was

no change in its spatial distribution. Both smart assets
showed good results in terms of voltage control before; this
paper described the possibilities to use the voltage control
devices as a data source for DSSE, either as a control,
function driven, highly reliable pseudomeasurement, or as
an integrated real measurement.

In the next steps, meters will be installed on the sites,
which will create an opportunity to compare the DSSE
results to actual online measurements. With this extension,
these results are expected to create an expansion in the WLS
DSSE framework algorithm, to integrate smart assets as data
sources.

Figures 17 and 18 illustrate the advantages of our
methodology compared to the base case DSSE. Te pseu-
domeasurements used in the case depicted with yellow are
easily accessible with the manipulation of real measurements
from the site (therefore, can applied without integrating
communication systems for measurements), which later can
be reused in the DSSE. It is also noticeable that the use of
these data mitigated the value of error in both cases, es-
pecially in case of the SVR, where between the base case
DSSE and the pseudodata DSSE, a reduction of an order of
magnitude is present. Tis means that the use of innovative
tools contributes greatly to accuracy and the data considered
in this method are accessible for operators who use such
equipment.

Nomenclature

DSSE: Distribution system state estimation
LV: Low voltage
MV: Medium voltage
OLTC: On-load tap-changing
PMU: Phasor measurement unit
PV: Photovoltaic
SCADA: Supervisory control and data acquisition
SLP: Synthetic load profle
SVR: Serial voltage regulator
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WLS: Weighted least square
ZIP: Constant impedance, constant current, and

constant power.
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