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Te escalating growth of electric vehicle (EV) load has emphasized the growing importance of efective scheduling strategies. Due
to the discrepancies among EV owners, their responses to scheduling can difer signifcantly. Terefore, to achieve better
scheduling results, it is crucial to consider the impact of these discrepancies on the optimal scheduling. Tis paper proposes
a classifed scheduling method for diferent types of EV owners. According to charging and vehicle-to-grid (V2G) data of EV
owners, the K-means clustering algorithm (K-means) is used to classify EV owners, and the demand response (DR) model is
established based on the classifcation results. Te DR model is designed to account for the diverse responses of diferent EV
owners, and the price elasticity, time gap elasticity, and preference time elasticity are important factors in the model. Tis paper
adopts the maximization of smart grid’s revenue as the optimization objective through three approaches: (1) modifying the
charging and V2G of EV; (2) obtaining V2G prices for all types of EV; and then (3) adjusting the power output of each unit. To
evaluate the proposed method, the IEEE 10-unit system is employed for simulation, and the optimization problem is solved using
the CPLEX solver. Compared to previous studies, the proposed classifed scheduling method exhibits signifcant improvements in
terms of revenue maximization, load distribution among diferent types of EVs, generation cost savings, and load variance
reduction.

1. Introduction

Power generation and transportation are two of the largest
sources of energy consumption in the space [1]. Fuel
vehicle (FV) is the most widely used vehicle of trans-
portation, and their low energy utilization efciency has
resulted in signifcant energy waste. Te escalating
adoption of electric vehicles (EVs) has resulted in a sub-
stantial shift of transportation load to the electrical grid.
EVs have more advantages compared to FVs in terms of
economy and environment [2]. Replacing FVs with EVs is
an efective method to reduce carbon emissions [3].
Vehicle-to-grid (V2G) technology discharges EVs energy
back to the smart grid [4]. Due to the large number of EVs,

the application of V2G can alleviate the problem that
electric energy is not difcult to store, but the cost is
relatively high. Alizadeh et al. [5] developed a two-layer
optimization model for the management of charging and
discharging of EVs in parking lots, exploring the appli-
cation value of V2G. With the development of battery
technology, the cost of battery loss decreases rapidly,
which has signifcantly promoted the popularity of V2G
[6]. EVs with V2G can serve as fexible storage for smart
grids, and Wei et al. [7], studying 300 EVs in three areas
with two climate conditions, verifed the environmental
and economic benefts of V2G. Coupling a large number
of EVs with V2G into a smart grid makes full decar-
bonization of transportation possible [8].
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With the development of science and technology, the
ability to collect data and extract valuable insights from
massive amounts of data has been improved [9]. Various EV
owners have diferent demands for EVs, and Roni et al. [10]
conducted a study on EV charging in several areas in Seattle
and found that the charging time of EVs in diferent regions
varies. Based on power grid data, Yadav et al. [11] established
an RBF-CNN-integrated model to predict short-term load
and validated its results.Terefore, analyzing the behavior of
EV owners is of critical importance. By analyzing the
characteristics of EV owners, efective scheduling of EV
charging can be achieved, which can improve the economy
of the smart grid [12, 13].

Classifying EV owners is an efective way to distinguish
EV owners’ discrepancies. Cluster analysis is a crucial
classifcation method based on the correlation of data [14],
which divides the data into multiple clusters according to the
distance between various data points. Te K-means is the
most commonly used clustering algorithm [15], and it has
many advantages such as simplicity, convergence, scalability,
and high efciency. Ren et al. [16] used K-means to analyze
probabilistic power fow. Al-Obaidi et al. [17] used the K-
means clustering algorithm to divide EV owners into 9
clusters based on four dimensions: time, location, charging
duration, and time gap between charges. Soltani et al. [18]
conducted a double-layer clustering for EV owners, and EV
owners were divided into two groups based on their
charging patterns in the morning and evening. Ten, each
group was further divided based on whether they charge
their EVs at their workplace or at home. Te classifcation of
EV owners is conducive to distinguishing the characteristics
among them and then scheduling their charging and V2G
activities based on their respective characteristics.

Electric power load scheduling plays a crucial role in
ensuring stable smart grid operation [19, 20]. Price-based
demand response models (PBDRMs) are widely used in
smart grid schedule study, and price guidance is the simplest
and most efective scheduling method [21]. Liu et al. [22]
provided the elasticity curve of users, which refects the
sensitivity of nonresponsive users to changes in prices. EV
charging and V2G demand can be infuenced by price
fuctuations in diferent time periods. A price elasticity
matrix can be defned to refect the response of EV charging
and V2G to price in each period. Te price elasticity of
demand can be divided into two parts: (1) response to the
price changes in this period, which is called self-elasticities,
and (2) response to the price changes in the other period,
which is called cross-elasticities [23]. To illustrate the re-
sponse of hourly demand to hourly price changes, a 24× 24
price elasticity matrix was defned to refect the demand
response (DR) to price changes in each period [24] and
schedule the charging load of EV based on the price elasticity
matrix [25]. Te charging and V2G demand of EV owners
are not only afected by the price but also by time. Lijesen
[26] studied the impact of time on customers’ DR and found
that customers are more likely to accept schedules with
minor changes in time, while they are less likely to accept
schedules with signifcant changes in time, and various
customers have diferent preferences for time [27]. Te

disorderly charging and V2G of EV will afect the reliability
of the smart grid. Aalami et al. [28] established the demand
response model of EV owners and calculated it for diferent
power markets, efectively improving the reliability of the
smart grid. Huang [29] employed a price elasticity matrix to
quantify the impact of changes in electricity prices on EV
charging and V2G behavior.

Te above literature review highlights the research status of
related felds. Previous studies in the feld of classifcation and
scheduling have made signifcant achievements. However,
there is no integration of the results of these two felds when
studying EV scheduling problems.Terefore, there is a need for
further research to integrate classifcation and scheduling to
better solve EV scheduling problems in the smart grid.

Previous studies usually used uniform prices to schedule all
EV owners, but since EV owners have varied demand for EVs,
they may have diferent responses to price changes. Applying
the uniform pricing strategy to all EV owners may lead to some
owners not responding to the schedule and not achieving the
optimal scheduling efect. In contrast, amore targeted classifed
scheduling based on the characteristics of EV owners can better
manage the diverse EV loads, thereby efectively reducing the
gap between peak and of-peak periods and increasing grid
revenue. Tis paper proposes a classifed scheduling method
that adjusts prices according to the characteristics of EV
owners. Te main contributions are as follows:

(1) To diferentiate various types of EV owners and
extract their characteristics, this paper employs the
K-means algorithm to classify EV owners into dif-
ferent types based on charging and V2G data;

(2) To capture the varying responses of diferent EV
owners to scheduling, this paper establishes DR
models for diferent types of EV owners based on
price elasticity, time preference elasticity, and time
gap elasticity. By incorporating these factors, the
models aim to refect the diverse behaviors of EV
owners in response to price changes;

(3) To demonstrate the signifcance of scheduling EV
loads for the smart grid, the DRmodels of EV owners
are incorporated into the smart grid model. Te
maximization of revenue is adopted as the optimi-
zation objective, and these prices are used to guide
their charging and V2G demand.

In conclusion, this paper presents an optimal scheduling
strategy for EV loads. Trough the classifcation of EV
owners and the implementation of dynamic pricing strat-
egies, the study efectively addresses the diverse responses of
EV owners. Moreover, the integration of DRmodels into the
smart grid model optimizes revenue and guides charging
behavior.

Te structure of the remaining paper is outlined as
follows. Section 2 introduces EV data simulation and cluster
analysis. Section 3 establishes the model of smart grid
scheduling with EV demand response. In Section 4, a case
study is conducted based on the charging data of EV users.
Section 5 presents the conclusions and further work of
this study.
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2. EV Data Simulation and Cluster Analysis

2.1. EV Data Simulation. EV charging and V2G behaviors
exhibit a high degree of randomness. To further investigate
the scheduling of EV loads, a large amount of relevant data is
required. In particular, the application of V2G is only ap-
plied in microgrids, and its scale is relatively small. Tere-
fore, this paper uses Monte Carlo simulation to generate
a substantial amount of charging and V2G data for EVs.
Based on these data, a classifcation approach is applied to
categorize the EVs. As per the statistical data of the 2009
National Household Travel Survey (NHTS2009) [10], the
distribution function of EV driving mileage conforms to the
lognormal distribution is expressed as follows:

f(L) �
1

LσL

���
2π

√ −
ln L − μL( 􏼁

2

2σL
2􏼢 􏼣, (1)

where L represents the EVs’ driving distance; σL is the
standard deviation; and μL is the mean value. EV owners do
not necessarily recharge their EVs every day. Most EV
owners recharge their EVs every 3-4 days. Terefore, the
charging demand of EV owners is equal to the product of the
driving mileage and the energy consumption per unit
mileage, multiplied by the number of days between
recharging.

Most EV owners charge V2G when they get home.
Assuming that EV owners’ get-home time is EV charging or
V2G start time, according to NHTS2009 statistics, EV
owners’ get-home time meets the normal distribution which
can be expressed as follows:
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where t represents the arrival time of an EV owner at home;
σt is the standard deviation; and μt is the mean value. In this
paper, it is assumed that the EV owner’s arrival time at home
is the starting time for charging.

Tis paper assumes that the distribution functions for
the V2G demand and V2G starting times of EV owners are
similar, with diferences observed only in certain parame-
ters. Te charging, V2G demand, and V2G time of each EV
can be obtained through Monte Carlo simulation based on
the probability distribution.

As shown in Figure 1, the distribution functions for
various parameters are inputted, including EV driving
mileage, home arrival time, V2G demand, and V2G time.
Based on these distribution functions, the charging and V2G
load as well as their corresponding time durations are
extracted for each EV owner. Te charging demand of EV

owners is prioritized over the V2G demand to ensure that
their charging needs are met frst. During the data simu-
lation, the charging status is recorded for each time period,
with a value of 1 indicating a charging demand and 0 in-
dicating no charging demand. V2G operations are only
performed during time periods with a charging status of 0.
Once the charging and V2G data for all EV owners are
extracted, the results are outputted, completing the data
simulation process.

2.2.ClassifcationofEVOwners. Diferent EV owners exhibit
diferent behavioral patterns, leading to varying demands for
charging and V2G. By classifying EV owners, their behav-
ioral characteristics can be highlighted, facilitating further
analysis of EV owners. For the smart grid, the charging
demand, charging time, V2G demand, and V2G time of EVs
are crucial data. Te charging demand directly afects the

Start

Input data (EV driving mileage,EV
owners’gethome time,V2G

demand,V2G time…)

EV number i=1

Extracting EV charging and V2G time and demand

Record the charging amount for each time period

Assign the charging state for each time step.The
charging state is set to 1 if charging occurred at

that time step, and it is set to 0 if no charging took
place at that time step.

Record the discharge amount at time steps when
the charging state is 0.

i=i+1

i>=n?

Outputting the simulation results

End

Yes

No

Figure 1: Flowchart of EV loads simulation based on Monte Carlo
simulation.
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magnitude of the load, while the charging time determines
the timing of the load. Moreover, the demand data provide
insights into the behavioral patterns of EV owners, such as
the intensity of EV usage inferred from the demand mag-
nitude and the time periods of EV usage inferred from the
demand time.

EV data are multidimensional and massive. K-Means
is a suitable method for classifying such data due to its
ability to handle multidimensional and massive datasets.
K-Means follows two principles for data classifcation: (1)
minimizing the distance between points in the same
cluster and (2) maximizing the distance between diferent
cluster centers. It has the advantages of a simple principle
and fast convergence speed.

According to the charging time and demand data of
EV owners, the EV owners are divided into a clusters by
K-means, with the EV owners in the 1-th cluster being the
1-th type of EV owners and the EV owners in the a-th
cluster being the a-th type of EV owners. Similarly,
according to V2G time and demand data of EV owners,
the EV owners are divided into av clusters by K-means,
with the EV owners in the av-th cluster being the av-th
type of EV owners. EV charging obtains electric energy
from the smart grid, while V2G releases EV’s stored
electric energy to the smart grid. Since the two types of
data are relatively independent, the clustering of EV
owners is divided into charging clusters and V2G clusters;
for example, EV charging is divided into i-th type, while
V2G is divided into j-th type.

3. Modeling of Smart Grid Scheduling with EV
Demand Response

3.1. DR Model of EV Owners. EV owners’ DR refers to the
EV owners adjusting their electricity consumption in
response to changes in electricity prices. Guiding EV
loads in a reasonable method can be of great help to the
smart grid. Te load demand of EV owners is mainly
infuenced by two factors: time and price. Te impact of
time on the load demand of EV owners can be further
divided into two aspects: (1) Time preference elasticity of
EV owners: diferent EV owners have diferent preferred
time periods for charging and V2G. Tey are more
willing to engage in charging or V2G activities during
their preferred time periods. As a result, their response to
price changes is more signifcant during these time pe-
riods, while it is relatively small outside of their preferred
time periods. (2) Time gap elasticity of EV owners: time
gap elasticity refers to the interval between price changes
and the corresponding demand time periods. For ex-
ample, when considering the impact of price changes at
10 o’clock on the demand at 6 o’clock, the time gap is
4 hours. Te price impact on the load demand of EV
owners is refected in the fact that when prices change,
consumers’ demand for the product also changes ac-
cordingly, which is known as price elasticity.

Te response of a single EV owner to price guidance is
difcult to refect; therefore, this paper takes a cluster of EV
owners as the smallest unit for scheduling. Te total charge
and V2G demand of cluster a-th and av-th EV owners in this
period are equal to the sum of all EV charging demand d0

a(t)

and V2G demand d0
av(t) of this cluster, as shown in the

following equations, respectively:
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where dV
a (t, v) is the charging demand of cluster a-th v-th

EV owner and dV
av(t, v) is the V2G demand of cluster a-th

v-th EV owner.
Taking the cluster center to represent the characteristics

of this cluster EV owners, the charging and V2G time of the
cluster center can represent the charging and V2G time
preference of these cluster EV owners. Te preference
charging time elasticity ETL

a (j) for cluster a-th EV owners at
time j is stipulated as follows:
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where ∆tTLa (j) is the time gap between the a-th cluster center
and the time of price change, and the time j may be later or
earlier than time t, but the interval is within 12 hours; ta is
the charging time of a-th cluster center. ∆tTL

a (j) is stipulated
as follows:

∆t
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Te elasticity of preference V2G time ETL
av (j) and the

scheduling time gap ∆tTLav (j) are similar to charging, so the
preference V2G time elasticity for cluster av-th EV owners at
time j is stipulated as follows:

E
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av (j)≤ 8,
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EV owners also have diferent responses to price change
times [26]. Te response of demand time t to the scheduling
time j is shown as follows:

E∆T(t, j) � c∆t
− μ

(t, j), (8)
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where c and μ are two constant coefcients; ∆t is the
scheduling time gap; the calculation for ∆t is similar to that
of ∆tTLa (j); and it is stipulated as follows:

∆t(t, j) �

t − j, t − j> 0 and t − j≤ 12,

24 − (t − j), t − j> 0 and t − j> 12,

j − t, t − j< 0 and t − j≤ 12,

24 − (j − t), t − j< 0 and t − j> 12.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)

Te response of EV owners’ demand to scheduling time
gap can be refected by a 24× 24 matrix, and this matrix
refects the fact that EV owners have lower responsiveness to
price changes with longer scheduling time gaps, while their
responsiveness to price changes is higher with shorter
scheduling time gaps, and the scheduling time gap matrix is
shown as follows:

E∆T(1, 1) E∆T(1, 2) · · · · · · E∆T(1, 24)

E∆T(2, 1) E∆T(2, 2) · · · · · · · · ·

⋮ ⋮ ⋮ ⋮ ⋮

· · · · · · E∆T(t, j) · · · · · ·

· · · · · · · · · · · · · · ·

E∆T(24, 1) · · · E∆T(24, j) · · · E∆T(24, 24)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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. (10)

Te charging price elasticity Ea(t, j) refects the response
of EV owners to price.Te charging price elasticity of cluster
a-th EV owners of the demand time t versus price change
time j can be defned as follows:

Ea(t, j) �
ρ0(j)

d
0
a(t)
∗

zda(t)

zρa(j)
, (11)

where ρ0(j) is the initial charging price at time j, which is
equal to the initial electricity price, and d0

a(t) is the initial
charging demand of cluster a-th EV owners at time t.

Te load at each hour will be afected by the corre-
sponding price variation at that hour, and the response of
EV owners’ charging demand to price changes throughout
the day can be represented as a 24× 24matrix. In this matrix,
each element of thematrix represents the degree of change in
EV owners’ charging demand in response to a price variation
at a particular hour.

Ea(1, 1) Ea(1, 2) · · · · · · Ea(1, 24)

Ea(2, 1) Ea(2, 2) · · · · · · · · ·

⋮ ⋮ ⋮ ⋮ ⋮

· · · · · · Ea(t, j) · · · · · ·

· · · · · · · · · · · · · · ·

Ea(24, 1) · · · Ea(24, j) · · · Ea(24, 24)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

Te diagonal elements of this matrix are the self-
elasticities that refect the response of charging demand to
price change in the current period, and the of-diagonal
elements are mutual elasticity that refect the response of
charging demand to price change in other periods.

V2G price elasticity Eav(t, j) of av-th EV owners can be
defned as follows:

Eav(t, j) �
ρ0V2G(j)

d
0
av(t)
∗

zdav(t)

zρav(j)
, (13)

where ρ0V2G(j) is the initial V2G price at time j and d0
av(t) is

the initial V2G demand of cluster av-th EV owners at time t.
Similar to the EV owners’ charging price elasticity

matrix, the EV owners’ V2G price elasticity matrix is shown
as follows:

Eav(1, 1) Eav(1, 2) · · · · · · Eav(1, 24)

Eav(2, 1) Eav(2, 2) · · · · · · · · ·

⋮ ⋮ ⋮ ⋮ ⋮

· · · · · · Eav(t, j) · · · · · ·

· · · · · · · · · · · · · · ·

Eav(24, 1) · · · Eav(24, j) · · · Eav(24, 24)
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.

(14)

3.2. Modeling of DR for EV Owners’ Charging and V2G.
According to Section 3.1, the charging demand of EV owners
will be afected by the price change, scheduling time gap, and
preference time. Te DR model of cluster a-th EV owners
charging can be expressed as follows:

∆da(1)

∆da(2)

⋮
∆da(j)

· · ·

∆da(24)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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Te left side of equation (15) is the changing of cluster a-
th EV owners’ charging demand, and the right side contains
the price elasticity matrix, scheduling time gap elasticity
matrix, and preference charging time elasticity. It can be
seen that the DR model proposed in this paper not only
considers the impact of price on demand but also considers
the impact of price change time on demand. Te charging
demand ∆da(t) of cluster a-th EV owners in time t is
expressed as follows:

∆da(t) � 􏽘
24

j�1
Ea(t, j)∗E∆T(t, j)∗E

TL
a (j)∗∆ρa(j), (16)

where ∆ρa(j) is the change of charging a price for cluster a-
th EV owners at time j.

Te charging demand da(t) of cluster a-th EV owners at
time t after scheduling is equal to the initial demand added to
the demand change, and it is expressed as follows:

da(t) � d
0
a(t) + ∆da(t). (17)

Also, the charging price ρa(t) of cluster a-th EV
owners at time t after scheduling is equal to the initial
demand added to the demand change, and it is expressed
as follows:

ρa(t) � ρ0(j) + ∆ρa(t). (18)

TeDRmodel of cluster av-th EV owners V2G is similar
to charging, so the V2G demand change ∆dav(t) is expressed
as follows:

∆dav(t) � 􏽘
24

j�1
Eav(t, j)∗E∆T(t, j)∗E

TL
av (j)∗∆ρav(j),

(19)

where ∆ρav(j) is the change of V2G price for cluster av-th
EV owners at time j.

Te V2G demand dav(t) of cluster av-th EV owners at
time t after the schedule is expressed as follows:

dav(t) � d
0
av(t) + ∆dav(t). (20)

Also, the V2G price ρav(j) of cluster av-th EV owners at
time t after the schedule is expressed as follows:

ρav(j) � ρ0V2G(t) + ∆ρav(j). (21)

To ensure that the charging and V2G behavior of EV
owners are feasible, certain parameters should be consid-
ered. First, it is necessary to ensure that the charging and
V2G price fuctuations for EV owners are within a reason-
able range, as shown in equations (22) and (23); second, in
order to meet the demands of diferent types of EV owners,
the charging and V2G load fuctuations of each type of EV
owner should be limited, as shown in equations (24) and
(25); fnally, constraints on the total EV charging and V2G
load should be enforced, as shown in equations (26) and
(27), respectively:

ρmin
a ≤ ρa(t)≤ ρmax

a , (22)

ρmin
av ≤ ρav(t)≤ ρmax

av , (23)

d
min
a (t)≤da(t)≤ d

max
a (t), (24)

d
min
av (t)≤dav(t)≤ d

max
av (t), (25)

d
min
ch (t)≤ 􏽘

k

a�1
da(t)≤d

max
ch (t), (26)

d
min
V2G(t)≤ 􏽘

kv

av�1
dav(t)≤d

max
V2G(t), (27)

where ρmin
a is the lower limit of charging a price for cluster a-

th EV owners; ρmax
a is the upper limit of charging a price for

cluster a-th EV owners; ρmin
av is the lower limit of V2G price

for cluster av-th EV owners; and ρmax
av is the upper limit of

V2G price for cluster av-th EV owners. dmin
a (t) is the lower

limit of charging demand for cluster a-th EV owners;
dmax

a (t) is the upper limit of charging demand for cluster a-
th EV owners; dmin

av (t) is the lower limit of V2G demand for
cluster av-th EV owners; and dmax

av (t) is the upper limit of
V2G demand for cluster av-th EV owners. dmin

ch (t) is the
lower limit of the sum of charging demand for all EV owners;
dmax
ch (t) is the upper limit of the sum of charging demand for

all EV owners; dmin
V2G(t) is the lower limit of the sum of V2G

demand for all EV owners; and dmax
V2G(t) is the upper limit of

the sum of V2G demand for all EV owners.

3.3.OptimizationObjectives of SmartGridSchedulingwithEV
Demand Response. Tis paper adopts to maximize the
revenues of smart grid, and the revenues C of smart grid are
expressed as follows:

MaxC � 􏽘
24

t�1

⎛⎝ρ0(j)∗PLoad(t) − C
gen
i (t) + ρa(t)∗ 􏽘

k

a�1
da(t)

− ρav(t)∗ 􏽘
kv

av�1
dav(t)⎞⎠,

(28)

where PLoad(t) is the base load of the smart grid and C
gen
i (t)

is the output cost of unit i. Te objective function can be
divided into two parts: revenue and cost. Revenue includes
both basic load and EV charge sales revenue, while cost
includes output and V2G cost.

Te output cost of unit i consists of fuel and start-up
costs. Te output cost of unit i is shown as follows:

C
gen
i (t) � ai + bi ∗Pi(t) + ci ∗P

2
i (t) + Ui(t) − Ui(t − 1)( 􏼁∗ Si(t),

(29)

where ai, bi, and ci are three diferent coefcients of fuel cost;
Pi(t) is the output of unit i; Ui(t) is the state variable of unit
i, 1 is start, 0 is of; and Si(t) is the start-up cost of unit i.
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To ensure the stable operation of the smart grid, it is
necessary to impose constraints on the generator units.
Tese constraints include the output limits of the generator
unit, as shown in equation (30); the load balance constraint,
the sum of the generator unit output and the V2G output of
EVs, equals the sum of the base load and the charging load of
EVs, as shown in equation (31); the constraint on spinning
reserve of generation units refers to the additional capacity
provided by generation units within a certain period of time
to ensure the stability operation for smart grid, as shown in
equation (32); the constraint on the ramp rate of the gen-
erator unit, the output increase, and decrease of the gen-
erator unit should be within the rated range, as shown in
equation (33); after starting or stopping the generator unit, it
needs to meet a certain time requirement before it can start
or stop again, as shown in equations (34) and (35).

P
min
i ≤Pi(t)≤P

max
i , (30)

􏽘

n

i�1
Pi(t) + 􏽘

k

a�1
da(t) � PLoad(t) + 􏽘

kv

av�1
dav(t), (31)

􏽘

n

i�1
P
max
i + 􏽘

kv

av�1
dav(t)≥ 􏽘

n

i�1
Ri(t) + PLoad(t) + 􏽘

k

a�1
da(t), (32)

∆P
down
i ≤Pi(t) − Pi(t − 1)≤∆P

up
i , (33)

Ui(t) − Ui(t − 1)􏼂 􏼃∗ T
off
i (t) − T

off
i,min􏽨 􏽩≥ 0, (34)

Ui(t − 1) − Ui(t)􏼂 􏼃∗ T
on
i (t) − T

on
i,min􏽨 􏽩≥ 0, (35)

where Pmin
i is the minimum output of unit i, Pmax

i is the
maximum output of unit i; PLoad(t) is the base load at time t;
Ri(t) is spinning reserve of unit i at time t; ∆Pdown

i is the
maximum output ramp-down rate for unit i; and ∆P

up
i is the

maximum output ramp-up rate for unit i.

4. Numerical Studies

In this paper, IBM’s CPLEX is used to fnd the optimal
solution. A total of 7,000 EVs are assumed to be integrated
into the IEEE 10-unit power system [30], and the generator
units’ data are given in Table 1.Te battery capacity of an EV
is set as 100 kWh, the charging power is 6–30 kW, and the
V2G power is 6–15 kW.We assumed that the basic load does
not respond to electricity price changes. Te exchange rate
between USD and RMB in this paper is 1 : 7.

Considering that V2G has not yet been implemented, the
following Study A and Study B are included: Study A only
considers the charging load of EVs, and the scheduling
efects are analyzed. To demonstrate the advantages of the
proposed classifcation-based scheduling method, two cases
are designed, Case 1 uses the nonclassifcation method, and
Case 2 uses the proposed classifcation method to schedule

the charging load of EV owners. Study B considers the
charging load and V2G load of EVs, the scheduling efects
are simulated after the implementation of V2G, two cases are
designed, Case 3 uses the nonclassifcation method to
schedule the charging load and V2G load of EV owners, and
Case 4 uses the proposed classifcation method to schedule
the charging load and V2G load of EV owners.

4.1. Classifcation of EV Owners. Figure 2 shows the clus-
tering efects of EV owners’ charging under diferent numbers
of clusters, as illustrated in Figures 2(a)–2(d). Regardless of
the number of EV owner clusters created, the charging pe-
riods for cluster centers are consistently distributed in the
morning, noon, or night, fulflling the classifcation criteria. In
terms of charging demand, according to the NHTS2009
statistics, the amount of EV owners with light and medium
charging demand is more signifcant, so the classifcation of
these EV owners should be more detailed. When the number
of clusters is 4 or 6, the classifcation of charging demand is
not detailed enough. However, when the number of clusters is
8 or 9, the classifcation of EV owners’ charging demand is
more accurate. To further compare the two, we can examine
their respective silhouette coefcients. Te silhouette co-
efcient is used to evaluate the efectiveness of clustering. Its
values range from − 1 to 1, where positive values indicate that
data points within a cluster are more similar to each other
than to data points in other clusters, and negative values
suggest that data points might be better assigned to other
clusters. A higher silhouette coefcient indicates a tighter and
more efective clustering result. By comparing the silhouette
coefcients at diferent numbers of clusters, we can determine
the optimal number of clusters and select the best clustering
result. Te vertical coordinate indicates the number of cat-
egories, and the horizontal coordinate indicates the size of the
silhouette value. When number of clusters is 9, the silhouette
coefcient has a lot of negative values, which indicates that
many data points do not ft the cluster very well.

After comparison, it can achieve the best classifcation
efect when the number of clusters is 8. According to
Figure 2(c), clusters 3-th and 5-th are lightly charging EV
owners, clusters 4-th, 6-th, 7-th, and 8-th are medium
charging EV owners, and clusters 1-th and 2-th are heavy
charging EV owners. In terms of charging time, clusters 3-th
and 7-th EV owners charge in the morning, clusters 4-th and
8-th EV owners charge at the noon, and 5-th and 6-th EV
owners charge at all periods.

Figure 3 shows the clustering efects of EV owners’ V2G
under diferent numbers of clusters, as illustrated in
Figures 3(a)–3(d). In terms of V2G time, when the number
of clusters is 9, the distribution of cluster centers becomes
confused, and when the numbers of clusters are 8 and 6, the
cluster centers are distributed in the morning, noon, or
night. When the number of clusters is 4, the cluster centers
are distributed in the morning and night. In terms of V2G
demand, when the cluster is 6, the classifcation efect is best.
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When the number of clusters is 8 or 6, the classifcation
efect is better. Te silhouette coefcient has a lot of negative
values when the number of clusters is 8, so this paper selects
the number of clusters to be 6. In the 6 clusters, clusters 2-th,
3-th, and 5-th are light V2G EV owners, and clusters 1-th, 4-

th, and 6-th are heavily V2G EV owners. In terms of V2G
time, clusters 3-th and 4-th are EV owners V2G in the
morning, clusters 2-th and 6-th are EV owners V2G at the
noon, and clusters 1-th and 5-th are EV owners V2G at
the night.
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Figure 2: EV owners’ charging classifcation efects under diferent numbers of clusters. (a) 4 clusters. (b) 6 clusters. (c) 8 clusters. (d) 9 clusters.

Table 1: IEEE 10-unit parameter.

Unit 1 2 3 4 5 6 7 8 9 10
Pmax

i (MW) 455 455 130 130 162 80 85 55 55 55
Pmin

i (MW) 150 150 20 20 25 20 25 10 10 10
ai 1000 970 700 680 450 370 480 660 665 670
bi 16.19 17.26 16.6 16.5 19.7 22.26 27.74 25.92 27.27 27.79
ci 0.00048 0.00031 0.002 0.00211 0.00398 0.00712 0.0079 0.00413 0.00222 0.00173
Ton

i,min (h) 8 8 5 5 6 3 3 1 1 1
Toff

i,min (h) 8 8 5 5 6 3 3 1 1 1
Initial 8 8 − 5 − 5 − 6 − 3 − 3 − 1 − 1 − 1
Si(t)($) 4500 5000 550 560 900 170 260 30 30 30
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4.2. Study A: EV Charging Schedule. Study A only considers
EV charging, and it is divided into case 1 and case 2. (1) Case
1: unclassifed scheduling for EV charging; (2) case 2:
classifed scheduling for EV charging.

Tis paper uses Monte Carlo simulation to simulate the
charging load of 7000 EVs, accounting for about 2% of the
base load. Te basic load and EV charging load are shown in
Figure 4. According to Figure 4, the base load has two load
peak periods at 10:00–14:00 and 18:00–20:00 and two load
valley periods at 1:00–4:00 and 21:00–24:00. So, a day can be
divided into the six periods: the frst valley period (1:00–4:
00); the frst transition section (5:00–9:00); the frst peak
period (10:00–14:00); the second transition section (15:
00–17:00); the second peak period (18:00–20:00); and the
second valley period (21:00–24:00).

In terms of EV load, comparing the EV load before
scheduling and after scheduling, the scheduling efect for EV
owners is signifcant. In the frst valley period, the initial EV
charging load is about 8300 kW, and the load increases to
nearly 9000 kW after unclassifed scheduling and increases
to nearly 10500 kW after classifed scheduling, respectively.
From the frst transition period to the frst peak period, the
initial EV charging load increases signifcantly from
8200 kW to 9200 kW and then stabilizes at 9000 kW,
expanding the load gap of the peak between valleys. Te
efect of unclassifed charge scheduling is small during this
period, and the EV charging load slightly decreases at the
end of the frst peak period, while the EV charging load
signifcantly reduces after the classifed scheduling at the frst
peak period, and the lowest point is only 7600 kW.

4 Clusters

24

Silhouette Value

0

10

20

30

40

50

V
2G

 D
em

an
d 

(k
W

h)

5 10 15 200

V2G Time (h)

4

3

2

1

Cl
us

te
r

0.2 0.4 0.6 0.8 10

(a)

6 Clusters

4
3

6
2

1
5

24

Silhouette Value

0

10

20

30

40

50

V
2G

 D
em

an
d 

(k
W

h)

5 10 15 200

V2G Time (h)

6
5
4
3
2
1

Cl
us

te
r

0.2 0.4 0.6 0.80 1

(b)

8 Clusters

24

Silhouette Value

0

10

20

30

40

50

V
2G

 D
em

an
d 

(k
W

h)

5 10 15 200

V2G Time (h)

8
7
6
5
4
3
2
1

Cl
us

te
r

0.2 0.4 0.6 0.80 1

(c)

Silhouette Value

24

9 Clusters

0

10

20

30

40

50
V

2G
 D

em
an

d 
(k

W
h)

5 10 15 200

V2G Time (h)

9
8
7
6
5
4
3
2
1

Cl
us

te
r

0 0.2 0.4 0.6 0.8 1-0.2

(d)

Figure 3: EV owners’ V2G classifcation efects under diferent numbers of clusters. (a) 4 clusters. (b) 6 clusters. (c) 8 clusters. (d) 9 clusters.
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Te initial EV charging load has a fuctuation in the
second transition period, second peak period, and second
valley period, decreasing to 8100 kW at 18:00, and stabilizing
around 8700 kW at other periods. Te EV charging load
increases to 9200 kW in the second transition section, then
decreases to 7600 kW in the second peak period, and rapidly
increases to 9000 kW in the second valley period after
classifed scheduling. Te EV charging load gap between the
peaks with valley efectively decreases after scheduling.
Moreover, classifed scheduling is superior to unclassifed
scheduling in all periods.

Te payof and load data of Study A are presented in
Table 2. Te “revenue” column represents the revenue
generated from selling electricity in the smart grid. Te
“output cost” column represents the cost of power gener-
ation from the generator units. Te “charging load” column
indicates the total load from EV charging. Te “load vari-
ance” column represents the variance of the total load in the
smart grid.Te revenue of case 2 increases ¥1× 105 than case
1. In terms of output cost, the output costs of the case 1 and
the case 2 are close, and the output cost of case 2 is slightly
lower than case 1 about ¥1× 104. Te charging load of case 1
decreases 5000 kWh compared to before scheduling. Te
output costs of case 1 and case 2 are close, but the charging
load of case 2 is larger, and it can be seen that the load
distribution of case 2 has better economic benefts. Variance
can refect the dispersion of data. Load variance refects the
fuctuation of load, and the variance of case 2 is 7×107
smaller than that of case 1. When EV charging load only
accounts for 2% of the base load, it shows that the classifed

scheduling achieves good results in reducing the gap of the
peak between valleys.

Te charging price of EV owners is shown in Figure 5,
and the initial charging price is set as 0.3 ¥/kWh. According
to Figure 5, case 1’s range of price change is small. Te price
slightly drops in the frst and second valleys and slightly rises
in the frst and second peaks. In terms of case 2, the charging
prices of clusters 1-th, 2-th, 3-th, and 7-th have signifcant
fuctuation in a day, while the charging prices of clusters 4-
th, 5-th, 6-th, and 8-th fuctuate slightly. Te charging prices
of clusters 1-th and 2-th EV owners sharply rise before 13:00,
especially at 11:00 and 12:00, the charging price of cluster 2-
th EV owners closes to the upper limit of 0.6 ¥/kWh, and the
charging price of cluster 1-th EV owners drops sharply to the
lower limit of 0.2 ¥/kWh after 15:00. Te charging price of
cluster 2-th EV owners drops sharply at 13:00 and drops
sharply to the lower limit of 0.2 ¥/kWh after 14:00. Te
charging prices of the clusters 3-th and 7-th EV owners drop
sharply almost to the lower limit before 12:00. After 14:00,
the charging price of these two clusters rises signifcantly,
especially the charging price of the cluster 3-th EV owners
rises to 0.58 ¥/kWh at 17:00, and the charging price of the
cluster 7-th EV owners rises to 0.51 ¥/kWh at 20:00. Te
charging price of cluster 4-th EV owners rises to 0.35 ¥/kWh
from 10:00 to 14:00 and drops to 0.23 ¥/kWh. Te charging
price of cluster 5-th EV owners drops slightly from 05:00 to
09:00 and rises after 12:00, and the price peak is at 20:00.Te
charging price of cluster 6-th EV owners rises from 5:00 to 9:
00 and gets the highest point 0.36 ¥/kWh at 12:00. Te
charging price of cluster 8-th EV owners drops all the time.
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Figure 4: Base load and EV load. Te bar plot represents the basic load, and the point plot represents the EV charging load.
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Two trends can be seen from the charging prices of various
EV owners: (1) the price increases during the period that the
load of these EV owners is concentrated, and the price
reduces during the period that the load of these EV owners is
less; (2) the price will increase in peak periods and will
reduce in valley periods.

Figure 6 shows the load changes of various EV owners
after scheduling where Figure 6(a) is the EV charging load
stack diagram after unclassifed scheduling and Figure 6(b)
is the EV charging load stack diagram of case 2. It can be seen
in Figure 6(a) that the loads of clusters 1-th, 2-th, 3-th, 4-th,
and 7-th EV owners are concentrated in a certain period,
while the loads of clusters 5-th, 6-th, and 8-th EV owners are
widely distributed in all periods.Te loads of clusters 1-th, 2-
th, and 4-th EV owners are mainly concentrated in the frst
valley period, the frst transition period, and the frst peak
period. It can be observed that the load periods of diferent
types of EV owners remain almost unchanged, indicating the
insufcient scheduling capability of unclassifed scheduling.
After classifed scheduling, the loads of clusters 1-th, 2-th,
and 4-th EV owners have more than 10% increase in the frst
valley and about 10% decrease in the frst peak. Te loads of
clusters 3-th and 7-th EV owners transfer some loads to the
frst valley period, frst transition section, and frst peak
period. Cluster 3-th EV owners transfer 1000 kW load to the
frst valley period and 1200 kW load to the frst peak period.

Cluster 4-th EV owners transfer 1200 kW load to the frst
valley period and 400 kW load to the frst peak period. Te
loads of clusters 5-th, 6-th, and 8-th EV owners transfer from
two peak periods to two valley periods.

By considering the price and load variations of diferent
types of EV owners, it can be observed that unclassifed
scheduling has a limited range of price changes due to the
need for the responses of various types of EV owners. On the
other hand, classifed scheduling only needs to consider the
response of a specifc type of EV owner, allowing for larger
price variations. As a result, unclassifed scheduling exhibits
weaker scheduling capability because it lacks the ability to
efectively guide diferent types of EV owners in shifting
their loads to other time periods.

4.3. Study B: EV Charging and V2G Scheduling. Study B
considers EV charging and V2G, and it is divided into case 3
and case 4: case 3: unclassifed scheduling for EV charge and
V2G; case 4: classifed scheduling for EV charge and V2G.

Electric energy fows from the electric grid to EVs during
EV charging. Terefore, guiding EV owners to increase
charging during valley periods and decrease charging during
peak periods is very useful for reducing the gap between
peak and valley periods.

As shown in Figure 7, the charging scheduling efect of
case 3 is poor, and the charging load decreases to 7700 kW in
the frst valley period and increases to 10000 kW in the frst
peak period. Te gap between peak and valley periods will
aggravate after unclassifed scheduling while case 4 has
a good scheduling efect on the charging load. Te load
increases during the frst valley period, reaching a peak of
around 10500 kW, and then decreases to 7500 kWduring the
frst and second peak periods. It then increases again to
9500 kW during the second valley period.

Electric energy fows from the EVs to the electric grid
during EV V2G, so guiding EV owners to decrease V2G in
the valley periods and increase V2G in the peak periods is
very useful to reduce the gap between peaks with valley
periods. In the frst valley period, the V2G decreases to
3600 kW after classifed scheduling. In terms of case 3, the
V2G increases to 7000 kW in the frst transition period and
decreases to 4500 kW in the second transition period. In
contrast, the V2G fuctuation of case 4 is smoother.

Table 3 displays the payof and load data from Study B,
wherein V2G load represents the total load of EVs V2G.Te
revenue for Case 4 has improved by about ¥1.1× 106
compared to Case 3. Meanwhile, the output cost of Case 4 is
¥1× 105 less than Case 3. From Study B, it can be deduced
that the disparities in both revenue and output cost between
Case 3 and Case 4 are more pronounced than those in Study
A. While the charging and V2G load for Case 3 are lower
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Figure 5: Charging price of EV owners.Te initial charging price is
set as 0.3 ¥/kWh. Te curves in diferent colors are the charging
prices of diferent EV owners.

Table 2: Payof and load data of Study A.

Revenue (¥) Output cost (¥) Charging load (kWh) Load variance
Before scheduling 4.202×107 3.989×106 208740 5.25×1010

Case 1 4.296×107 3.893×106 206652 5.218×1010

Case 2 4.307×107 3.892×106 211036 5.211× 1010
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than those of Case 4, the output cost of Case 3 is higher than
that of Case 4. Tis underscores the advantage of classifed
scheduling in economic benefts. Additionally, the load

variance in Case 4 is approximately 1% less than that in Case
3, indicating that classifed scheduling has advantages in
narrowing the gap between peak and valley periods. From
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Figure 6: Stacking diagram of charging loads of EV owners. (a) Te charging load stack diagram after unclassifed scheduling. (b) Te
charging load stack diagram after classifed scheduling.
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Figure 7: Base load, EV charge, and V2G load. Te bar plot represents the base load, and the point plot represents the EV charging and
V2G load.
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the above observations, it can be concluded that after
classifed scheduling, the distribution of EV charging load
and V2G load becomes more reasonable, leading to a re-
duction of generation costs and an increase in the smart grid
revenue.

As shown in Figure 8(a), the charging price of case 3 in
valley periods rises by 0.02–0.05 ¥/kWh, and it leads to
anincrease in the peak valley diference of EV charging load.

As shown in Figure 8(b), the V2G price of case 3 drops by
0.04 to 0.07 ¥/kWh in the frst and second valley periods and
rises by 0.01 to 0.03 ¥/kWh in the frst and second peak
periods. After unclassifed scheduling, the distribution of
V2G is close to the basic load.TeV2G price change range of
case 4 is − 0.1–0.16 ¥/kWh. Te V2G price of clusters 1-th
and 4-th EV owners decreases to the lower limit of 0.3¥/kWh
during the frst valley period, and the V2G price of clusters 5-
th and 6-th EV owners decreases to the lower limit too in the
second peak period. By comparing case 3 and case 4, it can be
seen that classifed scheduling has more signifcant potential
in scheduling.

Figure 9 shows the charging and V2G load changes of
various EV owners after scheduling where Figure 9(a) is the
charging and V2G load stack diagram after unclassifed
scheduling and Figure 9(b) is the EV charging and V2G load
stack diagrams after the classifed schedule, respectively. It

can be seen from Figure 9(a) that the clusters 1-th and 3-th
EV owners’ V2G are mainly distributed in the frst and
second peak periods, the V2G of clusters 2-th and 6-th EV
owners is mainly distributed in the frst and second valley
periods, the V2G of cluster 4-th EV owners is mainly dis-
tributed in the frst valley period and the frst peak period,
and the V2G of cluster 5-th EV owners is mainly distributed
in the frst and second valley periods and the second peak
period. As shown in Figure 9(b), after the classifed schedule,
during the frst valley period, the V2G of cluster 2-th EV
owners decreases to 1390 kW, accounting for about 20% of
the initial V2G. During the frst peak period, the V2G of
cluster 2-th EV owners increased by 2479 kW, the V2G of
cluster 4-th EV owners increased by 565 kW, the V2G of
cluster 5-th EV owners increased by 993 kW, and the V2G of
cluster 6-th EV owners increases by 3394 kW. During the
second peak period, the V2G of the clusters 2-th and 4-th EV
owners increased, including 2155 kW of cluster 2-th EV
owners and 957 kW of cluster 4-th EV owners. During the
second valley period, the V2G of clusters 5-th and 6-th EV
owners decreased, including 925 kW of clusters 5-th EV
owners and 3157 kW of clusters 6-th EV owners.

From the above data, it can be seen that classifed
scheduling allows for more targeted pricing strategies based
on the characteristics of diferent EV owners, thereby

Table 3: Payof and load data of Study B.

Revenue (¥) Output cost (¥) Charging load
(kWh) V2G load (kWh) Load variance

Case 3 4.17×107 3.97×106 206652 135469 5.21× 1010

Case 4 4.28×107 3.87×106 208740 139534 5.17×1010
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Figure 8: Charging and V2G price of EV owners. Te initial charging price is set as 0.3 ¥/kWh, and the initial V2G price is set as 0.4 ¥/kWh.
(a) Te charging price of EV owners. (b) Te V2G price of EV owners.
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improving its ability to schedule EV loads. As a result, the
distribution of EV charging load and V2G load becomes
more reasonable. Tis more rational distribution of EV
charging load and V2G load helps to reduce generation costs
and increase the revenue of the smart grid.Te advantages of
classifed scheduling are evident in various aspects, show-
casing its benefts in multiple aspects.

5. Conclusion

Tis paper addresses the issue of insufcient scheduling ca-
pability of existing unclassifed EV load scheduling methods
by proposing a method for classifying EV load scheduling
based on the characteristics of EV owners. To better refect the
response of diferent types of EV owners to scheduling, this
paper expands upon the traditional price elasticity model by
incorporating time preference time elasticity and time gap
elasticity, comprehensively capturing the diverse responses of
diferent EV owners to scheduling. Trough comparative
analysis of relevant data, this paper achieves the following
improvements compared to previous studies:

(1) Expanded the boundaries of the traditional model:
Tis paper extends the traditional EV owner DR
model by considering the diferent responses of EV
owners to time and price.

(2) Proposed an improved scheduling method tailored
for EV loads: Te proposed classifed scheduling
method in this paper demonstrates stronger
scheduling capability for EV loads compared to
traditional unclassifed scheduling methods (dem-
onstrated in Section 4.2). With EV load accounting
for only 2%, there was an increase of 0.25% in

revenue of the smart grid. Te classifed scheduling
method formulates more targeted prices based on
the characteristics of diferent types of EV owners,
signifcantly improving the scheduling capability
during preferred time periods and expanding the
range of adjustable time.

(3) By comparing Study A & Study B in Section 4, this
paper showcases the stronger potential application of
classifed scheduling after the implementation of
V2G. With the increasing interaction between EVs
and the smart grid, the advantages of classifed
scheduling over unclassifed scheduling are also
enhanced.

In addition, future work could further explore the fol-
lowing two aspects:

(1) Te load characteristics of some EV owners may
change, and it is necessary to further consider the
transitions between diferent types of EV owners.

(2) Since V2G is still in the theoretical research stage and
lacks real-world data on EV charging and V2G load
after V2G implementation, future research based on
real data can further explore the usage characteristics
of EV owners.
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Figure 9: Stacking diagram of charging and V2G loads of EV owners. (a) Te charging and V2G load stack diagram after unclassifed
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