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Te increasing integration of renewable energy sources into modern electric grids has led to a rise in uncertain factors that must be
managed to maintain voltage security during reactive power optimization (RPO). Traditional deterministic RPO methods fail to
account for these uncertainties, which can result in power grid security issues such as voltage violations. To address these
challenges, this paper proposes a data-driven interval-based reactive power optimization method (IRPOM). Te IRPOM rep-
resents the uncertainties associated with renewable power generation and load demands as intervals within the RPO problem
formulation. Te proposed method uses an improved particle swarm optimization algorithm to solve the RPO problem. In each
iteration, the uncertain power fow is solved using the optimizing-scenarios method- (OSM-) based interval power fow (IPF)
algorithm. Tis approach calculates the real power losses and checks whether state quantities, including voltage, power fow, and
generator output, exceed their limits. Furthermore, a data-driven modeling approach is introduced to reduce the conservativeness
of the IRPOM solutions. Te efectiveness of the proposed method is demonstrated through detailed computational analysis on
a modifed IEEE 30-bus system.Te results show that the proposed approach ensures economic efciency while maintaining a low
bus voltage threshold crossing probability close to zero.

1. Introduction

Te increasing integration of large-scale renewable power
generation into electric power networks has a signifcant
impact on their operational security, owing to the inherent
uncertainties in renewable power outputs [1–3].Te reactive
power optimization (RPO) is crucial for the safe integration
of large-scale renewable energy generation into the power
grid. Te primary goal of RPO is to optimize the placement
of reactive compensators and transformer tap ratios, en-
suring voltage stability and minimizing real power losses
while considering the inherent variability and intermittency
of renewable power sources. Tis proactive approach is
essential for maintaining grid reliability, improving opera-
tional safety, and achieving seamless integration of renew-
able energy sources into the power grid.

Despite extensive research and application in both ac-
ademia and industry, reactive power optimization (RPO)

under high levels of renewable energy source integration
into the power grid faces signifcant challenges [4, 5].
Dealing with various large-scale uncertain data in the RPO
process poses formidable challenges for decision-makers.
Ensuring robust and accurate decision-making processes
becomes crucial, as underestimating or overestimating the
impact of uncertainties can severely jeopardize the stability
and reliability of the power grid. Consequently, traditional
deterministic RPO methods are inadequate in guaranteeing
the safe and stable operation of the power system.

In recent years, several optimization methods have
been developed to address the uncertainties arising from
the high levels of renewable energy integration and ensure
the reliability of reactive power optimization (RPO) de-
cisions [6, 7], such as the probabilistic approach method
(PAM) [8, 9], the scenario analysis method (SAM)
[10, 11], the robust optimization method (ROM) [12, 13],
and the interval optimization methods (IOM). Te main
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diference among these methods lies in their approaches
in describing the uncertainty of input parameters.

PAM utilizes probability density functions (PDF) to
describe the uncertainty of input parameters, with a strong
reliance on historical data. For example, in the case of solar
irradiance, the PDF is obtained through non-Gaussian ft-
ting and kernel density estimation. Te generated PDF is
then used in conjunction with backward/forward scan
methods to address each scenario generated by the Monte
Carlo simulation (MCS) method [14]. However, the MCS
method is known for its time-consuming nature. To over-
come this challenge in power systems with high levels of
renewable energy integration, a stochastic optimal RPO
method has been developed. Tis method uses cumulative
quantities to generate PDF as linear combinations of un-
certain variables. By doing so, complex convolution oper-
ations are avoided, leading to a reduction in computational
time [15]. Similarly, a PAMmethod called probabilistic load
fow (PLF) has been proposed, which utilizes Gaussian
quadrature and takes into account voltage variations under
uncertain loads [16]. However, in practical engineering
problems, modeling uncertain parameters using PDF is
often challenging due to economic and technical consid-
erations [17, 18]. Te SAM (scenario analysis method)
tackles this issue by converting the continuous space of
uncertain environments into a discrete fnite set of scenarios
with assigned probabilities [19]. For example, in long-term
RPO, a multistage stochastic nonlinear model was in-
troduced, where the uncertainty of loads demand was
handled during the planning stage using efcient methods
for scenario tree generation and scenario tree reduction [20].
However, one drawback of the SAM is that the computa-
tional time increases signifcantly as the number of scenarios
to be considered grows, making it impractical for application
in large-scale power systems. In contrast to the use of
historical data in PAM, RO represents uncertain input
parameters using parameter bounds [6]. For example, the
uncertainty associated with wind turbine output and system
loads is captured by defning a bounded interval within
a polyhedral uncertainty set. Tis ensures that the optimal
power fow remains unafected by prediction errors in these
two parameters [21]. Likewise, a two-stage linear ROM-
based method has been developed to evaluate the range of
reactive power and ensure the operational safety of wind
farms in the presence of uncertain factors [22]. However, the
design of ROM is not suited for nonconvex problems [23].
IOM takes a diferent approach by assuming that known
intervals can be used to represent uncertain parameters.
Tese intervals are then used to defne the range of output
variables without the need for explicit distribution functions,
highlighting the signifcant engineering application value of
IOM [24, 25]. Furthermore, IOM demonstrates efectiveness
in addressing nonconvex problems. However, one drawback
of the solutions provided by IOM is that they naturally
include the worst-case scenarios within the uncertainty set.
While this guarantees optimal results, it can also lead to
overly conservative solutions [26].

Tis paper addresses the aforementioned challenges by
proposing a data-driven interval reactive power optimiza-
tion method (IRPM). Te main work of this paper is
summarized as follows:

(i) IRPM utilizes the interval optimization method
(IOM) to handle uncertain variables, specifcally
addressing the voltage security issue caused by the
uncertainty of power generation and load in the
power grid.

(ii) To solve the uncertain power fow (UPF) and obtain
real power losses, IRPM employs the optimizing-
scenarios method (OSM)-based interval power fow
(IPF) algorithm, signifcantly reducing computa-
tional complexity [27].

(iii) To reduce conservatism in the IPF algorithm based
on OSM, a data-driven approach is adopted. His-
torical data and prior knowledge are utilized to
correct the output range of wind turbines. More-
over, this approach ensures that the models de-
veloped for uncertain input variables are not limited
to fxed-type and fxed-parameter models.

(iv) To handle discrete variables in reactive power op-
timization (RPO) that are not easily optimized, an
improved particle swarm optimization (PSO) al-
gorithm is applied. Tis addresses the premature
convergence issue of the standard PSO algorithm
and enhances convergence speed and accuracy
through the implementation of various improve-
ment strategies.

(v) Te efectiveness of the proposed IRPM is dem-
onstrated and thoroughly analyzed using compu-
tational results obtained from themodifed IEEE 30-
bus system. Te results illustrate that IRPM is ca-
pable of fnding optimal generator voltages, reactive
power device inputs, and transformer tap ratios in
the test system.

Te organization of the remainder of this paper is as
follows. Section 2 presents a detailed establishment of the
model of RPO incorporation interval uncertainties
(MRPOIU). Section 3 introduces the methodology applied
to solve IRPM. Section 4 starts by introducing the param-
eters of the modifed IEEE 30-bus system and then presents
the simulation results and comparative verifcation results.
Finally, Section 5 concludes the paper.

2. Establishment of the MRPOIU

Te MRPOIU applies an objective function based on the
combined cost of reactive power compensation devices,
including the sum of the average annual investment costs
and the annual costs of energy losses.Terefore, the model is
expressed as follows:

min f � E PLoss( 􏼁 · ρ1 +
Cδ

Tδ
· ρ2􏼢 􏼣, (1)
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where E(PLoss) is the annual energy losses, Cδ is the total
reactive power compensation capacity, Tδ is the service life
of reactive power compensation devices, ρ1 is power grid
price in ¥/KWh, and ρ2 is the unit capacity investment cost
in ¥/KVar.

Te objective function is subject to the following
constraints:

−Pi � PLi , PLi􏽨 􏽩,

QCi − Qi � QLi , QLi􏽨 􏽩,

PLi + Pi � PGi , PGi􏽨 􏽩,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

QGi,min ≤QGi ≤QGi,max,

Qli,min ≤Qli ≤Qli,max,

Qci,min ≤Qci ≤Qci,max,

Tl,min ≤Tl ≤Tl,max,

Vi,min ≤Vi ≤Vi,max,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where formula (2) represents the active power and reactive
power balance equations at the load bus and the balance
equation at the generator bus and formula (3) represents
the output limitations of reactive power generation, the
capacity limits of the static VAR compensators (capacitive
and inductive), the constraints on the tap positions of
transformers, and the acceptable operating ranges of the
voltage magnitudes (except for the slack bus). Pi is the
nodal active power, Qi is the nodal reactive power, QCi is
the reactive compensation at bus i, PLi is the active load
demand at bus i, QLi is the reactive load demand at bus i, the
intervals [PGi, PGi], [PLi, PLi], and [QLi, QLi] are associated
with active power generation, active power load demand,
and reactive power load demand, respectively. QGi is the
reactive power generation of generator bus i, Qli andQci are
the compensation capacity of the reactor and capacitor at
bus i, respectively, Tl is the tap positions of transformers at
branch l, Vi is the voltage magnitudes of bus i.
QGi,min andQGi,max are lower and upper bounds of the re-
active power generation of generator bus i, respectively,
Qli,min andQli,max are lower and upper bounds of the
compensation capacity of the reactor at bus i, respectively,
Qci,min andQci,max are lower and upper bounds of the
compensation capacity of the capacitor at bus i, re-
spectively, Tl,min andTl,max are lower and upper bounds of
the tap positions of transformers at branch l, respectively,
and Vi,min andVi,max are lower and upper bounds of the
voltage magnitudes of system bus i, respectively. In ad-
dition, the following equality conditions are applied:

Cδ � 􏽘
n

i�1
Qli + Qci( 􏼁,

E PLoss( 􏼁 �
ploss + ploss

2
· 8760,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Qli � QCi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, Qci � 0QCi ≤ 0,

Qci � QCi, Qli � 0QCi ≥ 0,

⎧⎨

⎩

Pi � Vi 􏽘
j∈S

Vj Gij cos θij + Bij sin θij􏼐 􏼑,

Qi � Vj 􏽘
j∈S

Vj Gij sin θij − Bij cos θij􏼐 􏼑,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(4)

where θij � θi − θj, θi and θj represent the bus angles of
system bus i and j, respectively, and S is the set of the whole
system buses.

For convenience, we rewrite equations (1)–(3) as a brief
form of expression as follows:

min f(X, u),

s.t.
h(X, u) � h, h􏼔 􏼕,

gmin ≤ g(X, u)≤ gmax
,

⎧⎪⎨

⎪⎩

(5)

where X is the state variables vector, which consists of
voltage magnitude of load buses, bus angle of nonslack bus,
and reactive power generation. u represents control variables
vector, including the VAR compensation of capacitors,
voltage magnitude of generators, ratios of transformers.
h(X, u) � [h,h] stands for the power balance equations, and
h and h are lower and upper bounds of input data.
gmin ≤ g(X, u)≤ gmax represents the inequation constraints.
Obviously, equation (5) belongs to amixed integer nonlinear
programming model with interval variables, and the im-
proved PSO is adopted to solve it.

Here, we frst construct a penalty for addressing the
inequation constraints of interval variables, because it is
quite time-consuming if we deal with the constraints of state
variables directly during the PSO optimization process. In
detail, we defne the following quadratic penalty function of
the interval variable � [X, X], where X and X are the present
minimum and maximum values of X, respectively.

p(X) �

1000∗ x
min

− X􏼐 􏼑
2
, if X < x

min
,

0, if X > x
min andX< x

max
,

1000∗ X − x
max

( 􏼁
2
, if X>x

max
.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(6)
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Here, xmin and xmax are the lower and upper limit
constraints of X, respectively.

Terefore, in the PSO process, we will replace the
original objective function f by a new objective function F,
which is expressed by the following equation:

minF � f(X, u) + p(X). (7)

3. Solution Method for the MRPOIU

In this section we frst introduce an IPF algorithm based on
the OSM. Secondly, the data-driven method is used to
correct the interval of uncertain variables, and then several
strategies are used to improve PSO. Finally, we introduce the
algorithm framework for solving the RPOIU.

3.1. OSM-Based IPF Algorithm. Te OSM-based IPF algo-
rithm applied herein is a kind of direct optimization class of
the IPF algorithm, which can avoid the expansion of the
interval solution, and thereby obtain an IPF solution di-
rectly. Te OSM-based IPF algorithm considers all possible
states. Terefore, the interval range of the solution is closer
to the actual state than the solutions obtained via interval
iteration arithmetic and interval afne arithmetic [17].

Te OSM follows extreme value theory, which re-
quires deterministic power fow solutions corresponding
to interval solutions for any uncertain input variables. In
other words, when the control variables of the power
systems are determined, the power fow solution changes
with the uncertainty of the input variables. Terefore, the
upper and lower boundaries of the IPF solution will be
obtained on a closed interval of the input variable un-
certainties. Te OSM-based IPF algorithm applied herein
is formulated in polar coordinates, and the solution
method is transformed into an extreme value problem as
follows:

max xi

s.t.
h(x) � ξ,

h ≤ ξ≤ h,
􏼨

min xi

s.t.
h(x) � ξ,

h ≤ ξ≤ h,
􏼨

(8)

where xi is the state variable of the power grid, h(x) � ξ is
the power fow constraint equation, and h and h are the
respective upper and lower bounds of the input variable
uncertainties. Te extreme value problem in equation (8) is
a continuous linear equation that can be solved using the
interior point method (IPM), which is conducted as follows.

Step 1: First set the values of all parameters required by
the IPM, and input these parameters to the IPM along
with the required data.
Step 2: Construct a series of optimization models with
the state variable xi and line power fow Pij of the IPF as
the objective function through equation (10).

Step 3: Solve equation (10) using the IPM to obtain the
corresponding value of each state variable xi and line
power fow Pij, and then obtain the interval range of
each xi and Pij. Finally, output the results.

3.2. A Data-Driven Method for Reducing Conservatism of
Interval Uncertainties. Te historical data applied herein is
the active power outputs of wind farms in Belgium sampled
over one year in 2021 at one-hour intervals, which resulted
in a set of 8760 data points. A cumulative probability dis-
tribution curve is ftted to the above sample data, and then
the Monte Carlo direct sampling (MCDS) method is used to
obtain the active power output intervals of the wind farm
within a particular confdence level. Te specifc process is
illustrated by the fowchart shown in Figure 1.

3.3. Improved PSO Algorithm. Te improvement strategies
applied herein to the PSO algorithm included the use of tent-
based adaptive chaotic mapping to ensure that the initial
particle population is truly scattered uniformly throughout
the solution space [28], and an adaptive inertia weight
adjustment strategy to balance the global exploration and
local exploitation abilities of the PSO algorithm rationally,
thereby avoiding premature convergence of the algorithm
[29]. Te fowchart and pseudocode of the proposed im-
proved PSO algorithm are shown in Figures 2 and 3,
respectively.

3.3.1. Tent-Based Adaptive Chaotic Mapping. In this strat-
egy, a chaotic variable x is mapped in the kth iteration (k� 1,
2, . . ., Tmax) to the interval [0, 1]. Te initial population of
PSO is calculated as follows:

x
k

�
2x

k− 1
,

2 1 − x
k− 1

􏼐 􏼑,

⎧⎪⎨

⎪⎩

0< x
k ≤ 0.5,

0.5<x
k ≤ 1,

(9)

x
1
j �

z
1
j − zmin ,j

zmax,j − zmin,j

, (10)

z
k
j � zmin,j + x

k
j zmax,j − zmin,j􏼐 􏼑, (11)

where j is the dimension of the particle (j � 1, 2, . . . , N), z is
the original spatial variable, and zmax,j and zmin,j are the
limiting values of z in the j th dimension of the kth iteration.

Te specifc steps of this strategy are as follows:

Step 1: An initial vector z1 � [z1
1 z1

2 . . . z1
N]T is ran-

domly generated in accordance with the constraints.
Ten, z1 is mapped to the chaotic space through
equation (10)
Step 2: Calculate the chaotic variable xk+1 based on
equation (9) and obtain the new original space variable
zk+1 based on equation (11)
Step 3: If k<Tmax, return to Step 2; otherwise, terminate
the mapping process and output the initial population
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3.3.2. Adaptive InertiaWeight Adjustment. At the beginning
of each iteration of PSO, G populations (f1, f2, . . . , fG) are
arranged in ascending order according to their ftness to
form a new population sequence (g1, g2, . . . , gG). Te

population with the greatest ftness, which is the population
ranked frst in the new population sequence (i.e., g1), is
denoted as the optimal particle, and the distance between the
ith population gi and g1 is denoted as the optimal particle
distance di. Ten, the inertia weight ω of a particle is defned
as follows:

ω � u ·
ωs + ωe − ωs( 􏼁 · t

Tmax
􏼠 􏼡,

ui �

1 + α,

1,

1 − β,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

di ≥ S2G,

S1G≤ di ≤ S2G,

di ≤ S1G,

(12)

where ui is the control factor of the value of ω for the i th
particle, where ui ∈ u, ωs, and ωe are the respective initial
and fnal values of ω, t is the current iteration number
(t � 1, 2, . . . , Tmax), α and β are adjustment parameters,
where α> 0 and β> 0, and S1 and S2 are the control pa-
rameters, where S1 < S2 < 1. Tese parameters play a critical
role in determining the search behavior and convergence
speed of the algorithm. Specifcally, α and β control the
global and local search speed of the algorithm, while S1 and
S2 determine the proportion of particles that focus on local
and global search, respectively. By choosing the appropriate
values for these parameters, we can balance the trade-of
between exploration and exploitation of the PSO, prevent
premature convergence, and achieve better
convergence rates.

3.4. Overall Framework of Solving the IRPOMby the Improved
PSO. Te overall framework of the solution process is il-
lustrated by the fowchart shown in Figure 4. As shown in
the fowchart, the uncertain input variable intervals are frst
obtained and then adjusted according to the proposed data-
driven method. Ten, the MRPOIU is solved using the
improved PSO. At each iteration, the UPF is solved using the
OSM-based IPF algorithm, which obtains the real power
losses and determines whether each state quantity, such as
voltage, power fow, and generator output, exceeds its limit.
Finally, when the objective function (1) of MRPOIU con-
verges to a certain precision, output results.

4. Simulation Results

Te efectiveness and applicability of the proposed IRPOM
are evaluated based on computational results obtained for
a modifed IEEE 30-bus system that includes wind power
generators with rated power outputs of 10MW or 20MW
according to two test cases. In case 1, we compare the RPO
results obtained by the IRPOM with and without applying
the data-driven interval modifcation approach, along with
rated wind power generator outputs of 10MW. Te same
conditions are applied in case 2, except that two extreme
scenarios (scenario 1 and scenario 2) are added to verify the
security and stability of the IRPOM. In scenario 1, the load
and active generator output fuctuation ranges are assumed

Begin

Sample Belgium’s wind farm output at
an interval of one hour 

Use MCDS simulate 5000 times
of wind farm output

Output the interval of wind farm output with
a certain degree of confidence

End

Fit the cumulative probability distribution
function of the wind farm output 

Figure 1: Historical data-driven process applied for modifying the
intervals of uncertain input variables obtained by the IPF
algorithm.

Begin

iter≤MaxIter

End

iter=iter+1

Initializing particle swarm using Tent-based Adaptive Chaotic Mapping by
using Eq. (11)-(13)

Calculate ftness f (x (i)) , record global best position g and individual 
best positions p (i)

Update inertia weights ω by using
Eq. (14)-(15)

Update the particle speed v (i) and position x (i)

Calculate ftness f (x (i))

Update g and p (i)

Yes

No

Figure 2: Te fowchart of the improved PSO algorithm.
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to be 25%. In scenario 2, the load and generator active output
fuctuation ranges are 20%, and the rated wind power
generator outputs are 20MW. Because the MCS method is
generally regarded as an efective probabilistic method to
solve uncertain problems, we applied this method
10,000 times to obtain realistic upper and lower limits for
state variables in both cases 1 and 2, which then serve as basic
references for comparison with the corresponding intervals
obtained by the IRPOM. All numerical results are obtained
using MATLAB 2019b operating on a computer with an
Intel Core i5-8265U-1.6 GHz CPU with 16GB of RAM.

4.1. Simulation Results under Modifed IEEE 30-Bus System.
As shown in Figure 5, the modifed IEEE 30-bus system
contains fve conventional generators, three wind genera-
tors, four capacitors, and four transformers. As can be seen,

buses 10, 16, and 24 are all connected to wind power
generator units with constant power factors of cosφ � 0.95.
For ease of description, the order of bus numbers in the test
system has been rearranged, with the slack bus frst, followed
by conventional generator buses and load buses. Te
component specifcations applied herein, including the
positions in the network, limits, and step sizes, are listed in
Table 1. Unless otherwise specifed, this article assumes that
the fuctuation range of the load power and the active power
of conventional generators is ±20%, that is, they are uni-
formly distributed within the range of [0.8, 1.2]∗ a, with
a standard deviation of

�
3

√
a/15, and a is the data of the

standard IEEE 30-bus system. Te correlation between
variables is not considered. In addition, the service life of the
reactive power compensation devices is assumed to be
Tδ � 15, the unit capacity investment cost ρc, ρl is 70 ¥/KVar
(including postmaintenance management costs), and the
grid electricity price is 0.5 ¥/KWh. All parameters are valued
according to a per unit (p.u.) basis, and the basic power is set
to 100 MVA.

4.1.1. Correction of Wind Farms Output through Data-
Driven. Te probability cumulative curve obtained by ftting
the 8760 active power output data points is presented in
Figure 6(a). Figure 6(b) shows the probability density curve
of this set of data. As can be seen, the output of the wind
farms never reaches a full load state. Subsequently, the active
power output interval is modifed with a 94% confdence
level by applying the MCDS method, which reduces the
active power output interval from its most conservative
range of [0, 1] down to [0.006, 0.961]. Accordingly, the
conservatism of the interval optimization calculation is
reduced.

4.1.2. Optimization Results of the IRPOM. Te control
variables obtained through the IRPOM are presented in
Table 2. No reactive power compensation devices are con-
nected within the system before optimization, and the real
power losses are 13.68MW. After optimization, the system is

Algorithm: The improved PSO
Input: MaxIter, Number of Population (N), Dimension (D)
Output: The global optimum

1: Begin
2: Initializing particle swarm: using Tent based Adaptive Chaotic Mapping by using Eq. (11)-(13).
3: Determine individual best position p (i) and global best position g.
4: While iter <= MaxIter
5: For i=l to N
6: Update inertia weights by using Eq. (14)-(15).
7: Update particle speed v (i) and position x (i).
8: Calculate fitness value f (x (i)).
9: If f (x (i)) < f (p (i)) , update the individual best position: p (i) = x (i).

10: If f (x (i)) < f (g) , update the global best position: g = x (i).
11: End for
12: End While
13: Return to the global best position g.
14: End

Figure 3: Te pseudocode of the improved PSO algorithm.

No

Begin

Set PSO parameters and chaotically initialize the
population according to control variables

Solve UPF to obtain state variables

Update control
variables, k=k+1

Print results

End

Yes

Obtain and correct the wind turbines’ output interval
according to historical data by data-driven

Calculate the objective function Fk , including the real
power losses and the penalty function

k≤ MaxIter

Figure 4: Te overall framework of the applied improved PSO for
solving the IRPOM.

6 International Transactions on Electrical Energy Systems



1 2

7 8

3

9

10

11

12

5

13

6

14
15

16 17

18 19 20

21
22

24
25

26

27

28

29

30

23

4

Transformer

Wind farm

Thermal generator

Load demand

SVG

Figure 5: Network topology of the modifed IEEE 30-bus system.

Table 1: Component specifcations applied in the modifed IEEE 30-bus system.

Control variable type Position Lower limit (p.u.) Upper limit (p.u.) Step size (p.u.)

Static VAR compensator outputs

Bus 14 0 0.25 0.01
Bus 26 0 0.25 0.01
Bus 29 0 0.25 0.01
Bus 30 0 0.25 0.01

Ratios of transformers

Branch 6–9 0.9 1.1 0.05
Branch 6–10 0.9 1.1 0.05
Branch 4–12 0.9 1.1 0.05
Branch 27-28 0.9 1.1 0.05

Voltages of generators

VG1 0.9 1.1 —
VG2 0.9 1.1 —
VG3 0.9 1.1 —
VG4 0.9 1.1 —
VG5 0.9 1.1 —
VG6 0.9 1.1 —

The probability cumulative curve
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Figure 6: Probability cumulative curve (a) and probability density curve (b) obtained for the active power output of wind farms.
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connected to 61 sets of compensation devices, and the real
power losses are 6.28MW. Terefore, the real power losses
are reduced by 7.4MW. According to function (1), the
average annual cost of the energy losses before optimization
is 59.9184 million yuan, and the average annual investment
cost of reactive power compensation devices is 0 million
yuan. After optimization, the annual average cost of the
energy losses is 27.5064million yuan, and the annual average
investment cost of reactive power compensation devices is
0.2846 million yuan. Tis total cost of 27.7910 million yuan
obtained after optimization represents a total cost that has
been reduced by 32.7274 million yuan compared to the
preoptimization cost. As can be seen, the proposed IRPOM
signifcantly reduces the energy losses of the electricity grid
and greatly improves its overall economy.

4.2. Comparison between Improved PSO, I-GWO, and GA.
To evaluate the performance of the proposed improved PSO
algorithm, we conducted a comparative validation with the
genetic algorithm (GA) and the improved grey wolf opti-
mizer (I-GWO) [30]. In this experiment, the parameters of
the comparison algorithm are shown in Table 3. Figure 7
presents the midpoint of the objective function values for
each iteration of the three algorithms. It is worth noting that
the objective function value F considered here include the
midpoint of the real power losses f(X, μ) and the penalty
function values (X). Figure 7(a) shows that the improved
PSO algorithm exhibits a more stable convergence behavior
compared to the I-GWO algorithm. After around 70 iter-
ations, the objective function value stabilizes and reaches
a relatively low level with the improved PSO algorithm.
However, the I-GWO algorithm shows slower convergence
and fails to reach a satisfactory solution within the same
number of iterations. Figure 7(b) shows that although the
genetic algorithm can converge quickly, it also experiences
premature convergence and gets trapped in local optima.
Tese fndings demonstrate the superior convergence and
quality of the optimal solution achieved by the proposed
improved PSO algorithm.

4.3.Case1:Check theConservatismof the IRPOM. Te ranges
of load voltage magnitudes and reactive power outputs
obtained at each corresponding bus of themodifed IEEE 30-
bus system by the proposed IRPOM with and without ap-
plying the data-driven modifcation to the intervals are

presented in Figures 8 and 9, respectively.Te realistic upper
and lower limits obtained by MCS for comparison are in-
cluded here. Meanwhile, we present the diferences between
the upper and lower limits of the load voltage (i.e., the load
voltage intervals) obtained at each system bus with and
without applying the data-driven modifcation in Figure 10.
Te results in Figures 8 and 9 demonstrate that the voltage
and reactive power output of each bus of the system never
exceed their limits when applying the data-driven modif-
cation to the intervals. Hence, the proposed data-driven
modifcation in the IRPOM ensures the safe operation of the
power grid. Nonetheless, the results in Figure 8 demonstrate
that the load voltage interval obtained for each bus by the
data-driven methodology is nearly always narrower than
that obtained without the modifcation. Accordingly, these
results further demonstrate that the data-driven modifca-
tion can reduce the conservativeness of the uncertain var-
iable intervals.

4.4.Case 2:Check the Security of the IRPOM. Te load voltage
magnitudes and reactive power outputs obtained at each
corresponding bus of the modifed IEEE 30-bus system by
the proposed IRPOM under scenario 1 are presented in
Figure 11, along with the realistic upper and lower limits
obtained by MCS for comparison. As can be seen, each
reactive power output and load voltage lie within safe ranges,
and none exceed the established limits.

Te load voltage magnitudes and reactive power outputs
obtained at each corresponding bus of the modifed IEEE 30-
bus system by the proposed IRPOM under scenario 2 are
presented in Figure 12, along with the realistic upper and
lower limits obtained by MCS. As can be seen, bus 11 has
a voltage magnitude that exceeds the upper limit. Tis
phenomenon can be assessed according to the simulated
voltage magnitudes presented for bus 11 in Figure 13.
According to these results, only 87 violations occurred in
10,000 Monte Carlo simulations, which represents a 99.13%
confdence level. Terefore, the results obtained for scenario
2 are acceptable. Figure 14 demonstrates that the real power
losses in both extreme scenarios can converge, thus further
verifying that our algorithm can converge to satisfactory
results in extreme cases.

Te results of case 2 demonstrate that the IRPOM
employing data-driven interval values can adapt to the
uncertainty of wind power generators even under high re-
newable energy penetration and high fuctuation conditions.

Table 2: Control variables used in solving the interval-based model.

Control variable
type Position Results of

IRPOM (p.u.)
Control variable

type Position Results of
IRPOM (p.u.)

Static VAR compensator outputs

Bus 14 0.24

Voltages of generators

VG1 1.0719
Bus 26 0.13 VG2 1.0511
Bus 29 0.14 VG3 1.0140
Bus 30 0.10 VG4 1.0260

Ratios of transformers

Branches 6–9 0.90 VG5 1.0567
Branches 6–10 1.05 VG6 1.0882
Branches 4–12 1.00 — —
Branches 27–28 1.10 — —
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Table 3: Parameters settings.

Algorithms Settings

GA Population size� 50, iterations� 200, crossover probability� 0.6, mutation
probability� 0.01, and selection method: tournament selection

I-GWO Population Size� 50, iterations� 200, and a was linearly decreased from 2 to 0

Improved PSO Population Size� 50, iterations� 200, inertia weight� [0.4, 0.9], α � 0.5, β � 0.3,
S1 � 0.2, S2 � 0.8, and c1 � c2 � 2
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Figure 7: Midpoint of the objective function value of the IEEE30 system in each iteration of the algorithm. (a) Comparison between
improved PSO and I_GWO. (b) Comparison between improved PSO and GA.
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Terefore, the obtained optimization solutions can ensure
the safe and stable operation of electric power systems and
reduce the accident rate and real power losses.

5. Conclusion and Future Research

Te present work proposed a data-driven-based IRPOM to
address the voltage security problem caused by uncertainties
associated with wind power generator outputs. Te IRPOM
seeks to fnd a reactive power compensation scheme with the
lowest power losses and the lowest cost while ensuring that
state variables remain within their operating limit con-
straints. Te IRPOM is solved with an improved PSO as the

main framework. At each iteration, an OSM-based IPF al-
gorithm is applied to calculate the uncertain power fow
intervals, and a data-driven methodology is applied to re-
duce the conservatism of the optimized intervals. Te
performance of the proposed IRPOM is validated by nu-
merical computations involving a modifed IEEE 30-bus
system. An analysis of the obtained results demonstrated
that the proposed data-driven modifcation in the IRPOM
ensures the safe operation of the power grid, while clearly
reducing the conservativeness of the uncertain variable
intervals. Moreover, the IRPOM can adapt to the uncertainty
of wind power generators even under high renewable energy
penetration and high fuctuation conditions, such that the
obtained optimization solutions can ensure the safe and
stable operation of electric power systems and reduce the
accident rate and real power losses.

Similar to existing interval algorithms, the proposed
algorithm in this paper only requires the upper and lower
bounds of uncertain quantities, making the modeling rel-
atively straightforward. However, it disregards the proba-
bilistic information of the uncertain quantities and does not
consider the interval correlation among diferent input
uncertainties. Terefore, simultaneously exploring the
available probability information while preserving the ad-
vantages and characteristics of interval power fow analysis
will become a research focus in future uncertainty power
fow analysis to address the situations where the input
uncertainties have sufcient or insufcient statistical in-
formation. Additionally, accurately calculating interval al-
gorithms that account for interval correlation is a pressing
issue that needs to be thoroughly investigated and addressed.

Nomenclature

E(PLoss): Annual energy losses
PLoss: Real power losses
Cδ: Total reactive power compensation

capacity
Tδ: Service life of reactive power compensation

devices
ρ1: Power grid price in ¥/KWh
ρ2: Te unit capacity investment cost in

¥/KVar
Pi: Te nodal active power
Qi: Te nodal reactive power
QCi: Reactive compensation at bus i

PLi: Active load demand at bus i

QLi: Reactive load demand at bus i

PLi, PLi: Lower and upper bounds of active load
demand at bus i

QLi, QLi: Lower and upper bounds of reactive load
demand at bus i

PGi, PGi: Lower and upper bounds of active power
generation at generator bus i

QGi: Reactive power generation of generator
bus i

Qli, Qci: Compensation capacity of the reactor and
capacitor at bus i

Tl: Tap positions of transformers at branch l
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Figure 13: Results of Monte Carlo simulations for the voltage
magnitude obtained at bus 11 under scenario 2.
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Vi, Vj: Voltage magnitudes of system bus i and j

QGi,min, QGi,max: Lower and upper bounds of the reactive
power generation of generator bus i

Qli,min, Qli,max: Lower and upper bounds of the
compensation capacity of the reactor at
bus i

Qci,min, Qci,max: Lower and upper bounds of the
compensation capacity of the capacitor at
bus i

Tl,min, Tl,max: Lower and upper bounds of the tap
positions of transformers at branch l

Vi,min, Vi,max: Lower and upper bounds of the voltage
magnitudes of system bus i

n: Number of buses in power grid
θij: θi − θj, where θi and θj represent the bus

angles of system bus i and j

X: Te state variables vector
u: Te control variables vector.
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