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Nowadays, microgrids (MGs) are receiving a lot of attention. In an economical MG, the battery energy storage system (BESS)
plays an important role. One of the biggest challenges inMGs is the optimal choice of the BESS that can lead to better performance
of the MG, which will be more fexible, efcient, and efective than traditional power systems. In this paper, we present the
modeling and simulation of diferent energy storage systems including Li-ion, lead-acid, nickel cadmium (Ni-Cd), nickel-metal
hybrid (Ni-Mh), and supercapacitor (SC), for renewable energy applications, and more specifcally for MGs. Te results of
simulation show that Li-ion batteries have a better response time than lead-acid batteries, Ni-Cd batteries, and Ni-Mh batteries
and thus are more suitable for combination with supercapacitors. Li-ion batteries are the best option for fast-charging applications
in MGs.Te discharge phase ends with SOC ≤ ±94%, SOC ≤ ±95%, SOC� 95%, SOC < 95%, and SOC < 60%, respectively, for Li-
ion, lead-acid, Ni-Cd, Ni-Mh, and supercapacitor. Moreover, the use of the battery management system (BMS) can signifcantly
improve the performance of BESS, leading to higher levels of SOC and longer life span.Te obtained results have shown that with
an optimization algorithm for energy storage systems, more specifcally for the battery-charging mode, the response time of BESSs
can be further improved.Te efect of ambient temperature has also been investigated on the functional capacities of the batteries.
Te obtained results demonstrated that extreme temperatures (80°C to −80°C) have a signifcant impact on battery performance
and capacity, especially for Li-ion batteries, with a drop in capacity of up to 50% at −40°C. Tis highlights the importance of
considering the ambient temperature in the design and operation of MGs. Overall, our study provides valuable insights into the
optimal selection of BESS and the impact of ambient temperature on their performance, which can help in the development of
more efcient and reliable MGs.

1. Introduction

Energy storage systems (ESSs) stock electricity when there is
a surplus of electricity, or when electricity rates are low, and
provide the stocked electricity to the unit when electricity is
in high demand or prices are high. Terefore, for the suc-
cessful functioning of power facilities, the algorithm de-
velopment of an energy management system (EMS) is
mandatory. Battery specifcations and EMS design sizing

have been thoroughly studied, as the battery represents
a major part of the project cost when designing EMSs [1].
Such battery choice and control are important, as aging
problems caused by improper battery management account
for a large part of the total replacement budget. With the
development of new sources of renewable energy [2–5],
microgrids (MGs) and optimization techniques related to
these areas have appeared. AnMG [6–8] can be defned as an
isolated or connected network that can produce electrical
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energy from diferent hybrid sources and deliver or store it
in an electrical ESS [9–11]. Several studies have already been
carried out to develop the productivity of this type of net-
work through the development of maximum power point
tracking (MPPT) algorithms [12–14]. Te development of
these technologies requires a low ESS compatible with this
type of network in terms of lifetime costs, response time, and
the amount of energy produced [15–17]. Tere are several
studies that have worked on the behavior and mode of
operation of batteries, with electrical and physical modeling
citing or demonstrating models of equivalent circuits of Li-
ion batteries, while including mathematical equations
characterizing their operational behavior. Similar research
can be found with other types of batteries, such as lead-acid
and nickel-cadmium [18–21]. Other studies have highlighted
a comparative study between the diferent battery tech-
nologies applied in this feld and technical-commercial
studies [22]. Tese studies focused on investment costs,
life span, and price of units and neglected the specifc needs
of MGs in terms of response time, recharge time, and op-
erational safety. A comparison between the nature of bat-
teries, their chemical compositions, and their manufacturing
technology [23, 24] helps understand such a technology
using chemical equations, materials layers, energy density,
etc. However, each study focused only on one type of
batteries. With the appearance of new concepts such as
smart grids, MGs, battery ESSs (BESSs), and systems of
network management [25, 26], it is required to operate the
ESS in terms of density of energy compatibility with net-
works. In addition, some studies have compared the BEES
applied in MGs, showing the operating behavior of certain
types of batteries in MGs in terms of commercial technol-
ogies, chemical compositions, physical modeling, etc.
However, there is a lack of results in terms of comparison
between diferent charging technologies as regards climatic
conditions, fast charging, and storage. Te objective of this
work is to investigate the impact of ambient temperature on
the behavior of lithium-ion, lead-acid, and supercapacitor
batteries in terms of state of charge (SOC) and response time
as a function of power value. Tis work aims to fll this
research gap by studying the behavior of diferent types of
batteries under varying ambient temperature and power
levels.

2. Presentation of the Used Approach

Several research studies have been conducted on energy
storage systems on both technology and technical charac-
teristics or on energy management systems and algorithms,
such as MPPT or BMS for ESSs, without considering the
diferent batteries used in MGs and their conditions and
requirements.

Tis work presents the modeling of the diferent types of
ESSs for MGs (Li-ion, lead-acid, nickel-cadmium, nickel-
metal hybrid, and supercapacitor). Tis modeling starts by
physical-electrical modeling for the diferent batteries
studied. Ten, a study of the recharging behavior with
various levels of low/high current will make an analogy of
fast recharge systems. Tis technology has become

a scientifc research feld, where the recharging time became
a key factor for system reliability. On the other hand, we
validate the comparative study by applying a BMS system to
observe the charging behavior and its efect on the SOC for
each type. Moreover, the efects of the external conditions on
the mode of operation of BESSs, such as the ambient
conditions, the SOC, and the response time, have been
studied.

Figure 1 shows a comparative study of the charging and
discharging response time for fast-charging techniques and
the efect of elevated temperature on battery operations,
which is critical for understanding battery performance
under diferent conditions. Charge and discharge rates can
have a signifcant impact on battery performance. Rapid
charging and discharging can increase the internal resistance
of the battery, reduce its capacity, and shorten its life.
Terefore, it is critical to evaluate the response time of rapid-
charging techniques to determine their impact on battery
performance. In addition, a high temperature can have
a signifcant impact on battery performance. Heat can in-
crease the internal resistance of the battery, reduce its ca-
pacity, and increase the rate of chemical reactions, which
accelerates its aging. Terefore, it is essential to study the
efect of elevated temperature on battery operations to de-
termine the optimal operating temperature range. A com-
parative study of these factors can help to identify the most
efcient and reliable battery technologies for various ap-
plications. For example, batteries used in electric vehicles
require fast charge and discharge rates, but the efect of
a high temperature on battery operations can be a limiting
factor. Terefore, a comparative study can help to determine
the optimal battery technology for that application.

3. BESS Modeling

Tere are many available battery designs developed by
scientists with various intricacies to address battery per-
formance for particular goals, e.g., battery design, perfor-
mance estimation, and circuit simulation. Tree main
groups can be distinguished: electrochemical, mathematical,
and electric models [27]. In order to better understand the
operation mode of each type of ESSs, it is necessary to go
through the physical/electrical modeling stage, which de-
scribes all the variables and characteristic parameters of
diferent battery models. Te variation in these parameters
has an infuence on the operation mode. Tis part of the
work focuses on the physical modeling of the battery types
already mentioned in the previous section.

3.1. Lead-Acid Battery Model. Te modeling of lead-acid
batteries as a complete system is based on the electro-
chemical ESS. However, due to the nonlinearities, inter-
connected reaction, and relationships involved, this
approach requires signifcant computational power to
simulate the entire system in detail [28]. Tevenin’s model,
shown in Figure 2, provides a simplifed representation of
the lead-acid battery behavior in an electrical circuit. Tis
model represents the battery as a voltage source in series
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with an internal resistance.Te voltage source represents the
battery’s open-circuit voltage, which is the voltage measured
when the battery is not being discharged. Te internal re-
sistance represents the resistance that the electric current
encounters as it passes through the electrolyte and plates of
the battery. TeTevenin model is useful for simulating and
optimizing the battery performance under various condi-
tions. By using this model, engineers and researchers can
design BMS, predict battery life, and optimize battery
performance. In summary, Tevenin’s model is a simplifed
electrical model used to represent the behavior of a lead-acid
battery in an electrical circuit, representing the battery as
a voltage source in series with an internal resistance, which is
useful for simulating and optimizing the battery’s perfor-
mance under diferent conditions.

Tevenin’s model of a lead-acid battery can be repre-
sented by the following equation:

V � E − IRi, (1)

whereV is the battery voltage, E is the open-circuit voltage of
the battery, I is the current fowing through the battery, and
Ri is the internal resistance of the battery.

Te internal resistance of the battery can be expressed as

Ri � Ro + KC × SOC, (2)

where Ro is the resistance when the battery is fully charged,
Kc is the capacity coefcient, and SOC is the state of charge of
the battery.

Te capacity coefcient can be expressed as

KC � K1 + K2 × exp −K3 × SOC( , (3)

where K1, K2, and K3 are empirical constants that depend on
the battery chemistry and construction.

Te SOC of the battery is a critical factor in determining
the internal resistance and voltage of the battery. Te cal-
culation of the SOC should be as precise as possible. Te
SOC of the battery can be determined as the ratio of the
amp-hours left in the battery to the total amp-hours of the
battery, as shown in the following equation [30, 31]:

SOC � 1 −
AhD
Ahnom

. (4)

Te ampere hour discharged is given by equation (5),
while the main reaction current in the battery (Imr) and the
ampere hour discharged at the start of the process are,
respectively, given by equations (6) and (7):

AhD � − Imrdt + AhDo, (5)

Imr � Ibat − Igas, (6)

AhDo � Ahnom − AhnomSOC0. (7)

Te typical gravity of the battery is very important for the
internal or open-circuit voltage. It is calculated through

SG � SGfull −
AhD SGfull − SGempty 

DK
,

Voc � 0.84 + SG.

(8)

Te gassing efect causes a loss of energy in the battery.
Te gassing current under a load status is given by

Igas � Ig0 − exp Cu × Vbat− 2.23( ( . (9)

Te internal resistance during charging and discharging
operations is a result of the SOC, the type of the electrolyte,
and the electrodes. It is given by

Ri �
Vbat − Voc − Vdl − Vd

Imr
, (10)

where

Vbat � Voc + ImrRi + Vdl + Vd. (11)

Te Tevenin model of lead-acid has, however, some
disadvantages, such as not considering the battery’s non-
linear behavior and the dependency of its internal resistance
on SOC and temperature. In contrast, the RC model of the
lead-acid battery considers the battery’s nonlinear behavior
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Figure 1: Strategy of optimal storage system selection.
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and the efect of the temperature and SOC on its internal
resistance. Tis model includes a resistor and a capacitor in
series with a voltage source, representing the battery’s in-
ternal resistance and capacitance, respectively. Te voltage
across the capacitor represents the battery’s terminal voltage,
and the current fowing through the resistor represents the
internal current of the battery. Compared to Tevenin’s
model, the RC model is considered more trusted due to its
ability to accurately capture the battery behavior and dy-
namics under various operating conditions. Tis model is
widely used in BMS and simulation software, as it provides
a more accurate representation of the battery behavior and
as it can predict its performance more accurately. Terefore,
when considering the simulation and modeling of lead-acid
batteries, the RC model is often preferred over
Tevenin’s model.

Te RC model of a lead-acid battery is a widely used
electrical model to represent battery behavior in an electrical
circuit. It comprises a voltage source, internal resistance, and
a capacitor in series, which represent the open-circuit
voltage, the resistance to current fow and the charge
storage capacity of the battery, respectively. Te equations
governing the model describe the voltage across the battery
terminals as a function of the open-circuit voltage, current,
resistance and charge stored in the battery. Te open-circuit
voltage is dependent on the SOC and temperature of the
battery. Figure 3 shows the equivalent circuit of the RC
model, which includes two RC branches.

Te model is composed of a voltage source in series
with an internal resistance and a capacitor. In a more
advanced version of the model, there are two RC branches
[32–34]. Te voltage source represents the battery’s open-
circuit voltage, while the internal resistance represents
the resistance that the electric current encounters as it
passes through the electrolyte and plates of the battery.
Te two RC branches represent the charge transfer re-
sistance and difusion resistance within the battery,
respectively.

Te mathematical equations for the two-branch RC
model of a lead-acid battery are as follows.

Te voltage across the battery terminals at time t is given
by

V(t) � Voc(t) − I(t) ×
R0 + R1( 

C1
. (12)

Te charge stored in the frst RC branch at time t is given
by

Q(t) � C2 × V2(t). (13)

Te voltage across the second RC branch at time t is
given by the following equation:

V2(t) � I(t) × R1 + V1(t), (14)

V1 is the voltage across the frst RC branch given at time t by

V1(t) � I(t) × R0 + Vc(t), (15)

where:

Vc(t) �
1

C0
× 

t

0
I t′( dt′. (16)

Te charge Q stored in the frst RC branch is related to
voltage V1 by the following equation:

Q(t) � C1 × V1(t). (17)

3.2. Li-Ion Battery. Due to the increasing use and contin-
uous technological improvement in Li-ion batteries, the
battery design is a valuable tool for various research and
product development tasks. Studies such as battery designs
can be categorized into electrochemical and equivalent
circuit designs [35]. Te mathematical relation of the cells of
a lithium-ion battery to their V-I property, the SOC, the
internal resistance, the duty cycle, and the self-discharge is
represented in a lithium-ion battery model. Te equivalent
circuit design of a lithium-ion battery is a design perfor-
mance model that uses one or more parallel combinations of
resistance, capacitance, and other circuit components to
build an electrical circuit in order to reproduce the dynamic
characteristics of Li-ion batteries. Equation (18) states that
the terminal voltage v is instantaneously proportional to the
open-circuit voltage Voc [35, 36]:

v(t) � Voc. (18)

Te SOC of a cell is 100% when the cell is completely
charged, and the SOC is 0% when the cell is completely
discharged. Te quantity of charge dropping from 100% to
0% is the full capacity measured in Ah or mAh. Figure 4

Voc

Rd Rdl

Cd Cdl

Ri

Rg

V ba
t

Ibat

Ig

Figure 2: Electric model of the lead-acid battery [29].
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illustrates the common battery design used. It is an ideal
battery with an open-circuit voltage Voc, a constant
equivalent internal resistance Rint, and a terminal voltage
v(t). Once fully charged, the terminal voltage v(t) can be
measured by measuring the open-circuit voltage, and Rint
can be measured by attaching a load and sensing both the
terminal voltage and the current.

A fully charged battery has a much greater open-circuit
voltage than a discharged battery. Te design of Rint seems
quite straightforward, but it overlooks the variable character
of the internal resistance related to the temperature, the
SOC, and the electrolyte concentration. Figure 3 depicts the
circuit schematic of Tevenin’s resistive battery design. Tis
design has two kinds of internal resistances, R0 and R1, which
are, respectively, related to the charge and discharge char-
acteristics of the battery. Te electrical and nonelectrical
leakage losses are modeled by the internal resistance R0 and
R1.Te scattering voltages can also be precisely derived using
one or more parallel RC branches. Tis method gives better
results than the Rint method, but transient states such as the
efect of capacitance are not taken into consideration.
Terefore, this model is nondynamic and not suitable for
applications involving electrical vehicles and hybrid elec-
trical vehicles. In a relaxation mode, the voltage pro-
gressively decreases to zero, which is called the difusion
voltage that can be accurately approximated using parallel
RC branches:

v(t) � Voc(z(t)) − i(t)Rint − VC1(t). (19)

Figure 5 presents a precise design of an electric battery,
modeling of the battery capacity, the SOC, and the operating
time using a capacitor and a current-controlled source. Te
circuit considers battery life as well as its slow and fast
transient responses. A voltage-controlled source as a func-
tion of SOC is used to break the barrier between SOC
and Voc.

3.3. Supercapacitor. Supercapacitors, situated in the mid-
hierarchy of energy storage units, have some key advantages
that make them essential for applications that need high-
power delivery in a small amount of time. Determining the
suitability of strategies for the use of these devices involves
understanding the characteristics of the supercapacitor

under diferent loads and its control [37]. Te double-layer
capacitor is a physical device that has not only a required
capacitance but also an inevitable parasitic inductance
thanks to its physical geometry. It also has a series resistance
caused by the ohmic resistance of the electronic and ionic
conductors, as well as a parallel resistance caused by the
leakage current between the electrodes. On the other hand, it
can be modeled by an RC branch, where the capacitor is
represented by the capacitance C, the series resistance by RS,
and the parallel resistance by Rp. Te RC circuit equation
[38–40] is given by

V �
Q

C
+ RS ×

dQ
dt

+ RP × ILeak, (20)

where V is the voltage across the supercapacitor, Q is the
charge stored in the capacitor, and ILeak is the leakage
current. Te voltage response of the RC model for
a supercapacitor can be described by the following equation:

V(t) � V0 × exp
−t

Req × Ceq
 , (21)

where V(t) is the voltage across the supercapacitor at time t,
V0 is the initial voltage, Req is the equivalent resistance of the
supercapacitor (Rs +Rp), and Ceq is the equivalent capaci-
tance of the supercapacitor. Equation (21) shows that the
voltage across the supercapacitor exponentially decays with
time, with a time constant given by the product of Req and
Ceq. Te value of Req and Ceq can be determined experi-
mentally or through modeling and simulation.

However, in real cases, we cannot represent a super-
capacitor solely from an RC assembly. In certain situations,
it is not sufcient to simulate a real supercapacitor only by

C1 C2

R0

R1 R2

V (t)

Voc

Figure 3: Precise electrical model for lead-acid battery.

Voc

Rint

Vt

Figure 4: Tevenin’s equivalent circuit battery model.
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one of the RC models discussed above. Te designs listed
previously can be extended to a more generic model. Te
number of branches can be optimally extended to infnity. In
addition, the supercapacitor has an inductance efect that
must also be modeled, particularly at higher operating
frequencies. Finally, the leaking current efect has been ig-
nored in previous designs. Figure 6 shows a typical RC
circuit design with parallel shunting. In this fgure, resistor
Rp stands for the leakage current losses, and the series in-
ductance L gives the high-frequency inductance efect.

Te equivalent impedance (Zeq) of the RC model of
a supercapacitor can be calculated using the following
equation:

Zeq � R +
1

(jCω)
, (22)

where R is the series resistance, C is the capacitance of the
supercapacitor, ω is the angular frequency of the AC signal,
and j is the imaginary unit. Te frst term R represents the
ohmic resistance of the supercapacitor, whereas the second
term 1/(jCω) represents the capacitive reactance. Te im-
pedance of the supercapacitor is frequency-dependent, de-
creasing as the frequency increases due to the decrease in the
capacitive reactance.

To obtain high power, it is absolutely necessary to have
a low ESR. Te parallel resistance Rp only has a visible efect
at very low frequencies (below the millihertz range). It is
responsible for the self-discharge time of the capacitor. Its
value must be as high as possible to limit the leakage current.
Te self-discharge time constant t is equal to τ �C×Rp.

3.4. Nickel-Metal Hybrid and Ni-Cd Battery Models.
Ni-Mh and Ni-Cd are the type of reloadable batteries, whose
chemical reaction is the same [41]. Te only diference
between these two batteries is that the capacity of Ni-Mh is 2
or 3 times as big as that of Ni-Cd. Te electrical modeling of
Ni-Mh is like that of Ni-Cd, derived by Notten and based on
[42]. Figure 7 demonstrates the model of the battery, where
ENieq and EMeq, respectively, represent the balance voltages
of the nickel and metal electrodes, RNi and RM are, re-
spectively, the connection resistances of the nickel and metal
electrodes, Re is the resistance of the electrolyte, and Cdt-Ni
and Cdt-M are the double-layer capacitors. Te diodes rep-
resent the charge-transfer phenomenon.Te combination of
(Cdif-Ni//Rdif-Ni) and (Cdif-M//Rdif-M) is related to the dif-
fusion efect.

4. Results and Discussion

Tis part of the work highlights the efect of changing the
supply current of BESSs and their efect on the charging/
discharging behavior, where it focuses on the change of the
SOC of each type of energy storage system. Tis indicates by
analogy of the system response time, where the latter sets
a key factor in the design of the MG. Tis is because some
users require a very fast response time for the charging and
discharging phases. Furthermore, this kind of simulation
ofers the opportunity to observe two vital parameters for all
ESS types, which are depth of charge (DOC) and depth of
discharge (DOD).Tese two factors have a relation to the life
span of the batteries and their operational status.Te cycling
conditions, such as the number of frequent discharging/
charging events and the charging/discharging rates, have
a great impact on the battery lifetime [43]. In the second
part, the results of the use of BMS are presented and dis-
cussed. Te BMS is essential to ensure the safe and reliable
operation of the batteries [44] and for the implementation of
the ESS in the system. An in-depth review of the years 2006
to 2020 is performed in the area of BMSs. Several functions,
advantages, and disadvantages of the approaches used in the
BMS for cell equilibration, thermal control, battery over-
voltage and overcurrent protection, state-of-health estima-
tion, and battery SOC estimation are discussed. In addition,
some critical defciencies are identifed, and a framework for
the design of an efective BMS is suggested. Te imple-
mentation of smart technologies, such as a digital twin of
a battery, cyber-physical systems, battery swap technologies,
nondestructive testing, self-reconfgurable batteries, and
prudent recycling/reuse through automation are also
addressed. In summary, critical gaps, advanced technologies,
and the framework that researchers can use to build com-
plete systems including advanced BMSs, real-time battery
monitoring, and battery reuse and recycling as a complete

R series
R transient_S R transient_I

C transient_S C transient_I
Voc

+

-

CR-self discharge

I-b
at

Battery life time
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Figure 5: Precise electrical model of Li-ion battery.
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Figure 6: Electrical equivalent circuit of the basic supercapacitor.
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unit are presented [45]. In the last part of simulation, the
work is directed towards the efect of an external factor
which has a great infuence on the mode and working be-
havior of the BESS, which is the ambient temperature. Tis
factor has an impact on battery aging.

4.1. BESSCharging/Discharging Behavior. In this section, we
compare the response time of the studied BEESs with
identical dimensions.Tese systems have a capacity of 48Ah
and 12V for batteries and 500 Farad and 48V for the
supercapacitor and are subjected to a variable continuous
current. Te charge/discharge response time of each type of
BEES is simulated using MATLAB/Simulink software.

From Figures 8 and 9, it is shown that Li-ion batteries
and SCs have the fastest charging time compared to other
BEESs. For instance, at t� 90 s, the SOC of Li-ion batteries is
approximately 12%, and they have a steeper recharge slope
than the other BEESs. Te closest candidate is lead-acid
batteries, with an SOC of approximately 10% under the same
conditions and period. However, Ni-Mh and Ni-Cd have an
SOC of less than 10% at this instant. Terefore, for fast
charging, Li-ion batteries are the preferred choice. However,
if we consider the speed of recharging with energy density,
Li-ion victory is uncertain. Under the same simulation
conditions, at t� 90 s, the supercapacitor with a capacity of
500F reaches almost 80% of the SOC (see Figure 9), with
a signifcant slope. Terefore, to design an energy storage
system with a rapid response to recharging and high-energy
density, we must use a combination of Li-ion batteries
and SCs.

Figures 10 and 11 present the response time of the
diferent BESSs and the supercapacitor under variable loads.
At t� 70 s, the discharge phase ends as the SOC of Li-ion
reaches approximately ±94%, the SOC of lead-acid reaches
approximately ±95%, and the SOC of Ni-Cd reaches 95%.
Indeed, both the SOC of Ni-Mh and the SOC of the
supercapacitor are below 60%. Based on these results, the
combination of Li-ion batteries and SCs is validated as the
optimal choice, as previously discussed.

Te charging and discharging of an ESS can be repre-
sented by a charge/discharge curve, as shown in Figure 12.
Fast charging techniques may lead to variations in the
charge/discharge curve of diferent types of batteries, such as

Li-ion, lead-acid, Ni-Cd, Ni-Mh, and supercapacitors, due to
diferences in their chemistry, construction, and operating
conditions. Te depth of charge and discharge and the re-
sponse time are crucial factors that impact battery perfor-
mance. Te depth of charge refers to the amount of energy
that can be stored in the battery, while the depth of discharge
refers to the amount of energy that can be released. Te
response time is the duration required for the battery to
reach its complete SOC or state of discharge, infuenced by
factors such as the charging/discharging rate, temperature,
and battery health. Te ESS charging/discharging curve is an
essential tool for assessing the performance of diferent
batteries and supercapacitors. When utilizing fast-charging
techniques, it is vital to consider the depth of charge and
discharge, the response time, and the potential impacts on
the battery performance and life span.

4.2. Mathematical Modeling and Simulation of Battery Faults
in Energy Storage Systems. Te use of failure models in
battery simulation research ofers many advantages. By
incorporating realistic failure conditions, these models en-
able more accurate and representative simulations of battery
behavior. Researchers can assess battery performance under
various failure scenarios, such as capacity decay or increased
internal resistance, providing valuable information on the
impact of failures. Failure simulations help diagnose specifc
failure patterns and can be used to optimize battery design
for improved fault tolerance and safety. Running simula-
tions with failure models is cost-efective and accelerates
research progress by efectively exploring multiple failure
scenarios. In addition, robust failure models prepare re-
searchers to meet future challenges in battery technologies,
contributing to the development of reliable and efcient
energy storage solutions for a variety of applications.

In this section, we present mathematical models for
diferent battery types, including Li-ion, lead-acid, super-
capacitor, Ni-Cd, and Ni-Mh batteries. Tese models ac-
count for the behavior of faulty batteries under various
conditions, such as capacity decay and increased internal
resistance. Te mathematical equations describe the re-
sponse of battery voltage over time, taking into account the
specifc characteristics and parameters of each battery type.
By integrating these failure models into a simulation

RNi

Cdt-Ni Cdt-M

Rdiff -Ni
Rdiff -M

Cdiff -MCdiff -Ni

Re

ENieq
EMeq

RM

Figure 7: Battery model of Ni-MH based on the Notten model for Ni-Cd.
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framework, we can simulate and analyze the performance of
faulty batteries in energy storage systems. Te simulation
framework provides a powerful tool for assessing the impact
of battery failures on system performance, such as voltage
degradation, power output reduction, and energy efciency.
It enables us to evaluate the efectiveness of diferent fault
mitigation strategies and optimize the operation of energy
storage systems in the presence of faulty batteries. By per-
forming simulations under various operating conditions and
failure scenarios, we can better understand the behavior of

faulty batteries and make informed decisions regarding
battery management and system design.

Overall, this section presents a comprehensive approach
to the mathematical modeling and simulation of battery
faults in energy storage systems. It highlights the importance
of accurately representing battery faults in simulations in
order to assess their impact on system performance and
guide the development of robust and reliable energy storage
systems. Te results of these simulations can inform the
design and optimization of battery management strategies,
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Figure 8: Battery charging behavior.
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helping to improve the performance and longevity of energy
storage systems in a variety of applications.

(1) Capacity fade (Li-ion battery) [46, 47]:

(i) Te efective capacity Ceff of the battery can be
modeled as a decreasing function over time or
cycles, such as

Ceff(t) � Cmax × (−k × t), (23)

where C_max is the initial maximum capacity
and k is a degradation rate constant.

(2) Internal resistance increase (Li-ion battery) [48, 49]:

(i) Te internal resistance (Rint(t)) of the battery can
bemodeled as an increasing function over time or
cycles, such as

Rint(t) � Rinitial × (1 + k × t), (24)

where Rinitial is the initial internal resistance and k
is a degradation rate constant.

(3) Sulfation (lead-acid battery) [50–52]:

(i) Te efective capacity (Ceff ) of the battery can be
modeled as a decreasing function due to sulfation,
such as

Ceff(t) � Cmax × (−k × t), (25)

where C_max is the initial maximum capacity
and k is a degradation rate constant.

(4) Electrolyte stratifcation (lead-acid battery) [53, 54]:

(i) Te efective conductivity and difusion proper-
ties of the battery can be modeled as spatially
varying functions to represent electrolyte strati-
fcation efects.

(5) Capacitance loss (supercapacitor) [55, 56]:

(i) Te efective capacitance (Ceff ) of the super-
capacitor can be modeled as a decreasing func-
tion over time or cycles, such as

Ceff(t) � Cinitial × (−k × t), (26)

where C_initial is the initial capacitance and k is
a degradation rate constant.

(6) Increased equivalent series resistance (ESR)
(supercapacitor) [57, 58]:

(i) Te equivalent series resistance (ESR) of the
supercapacitor can be modeled as an increasing
function over time or cycles, such as

ESR(t) � ESRinitial × (−k × t), (27)

where ESR_initial is the initial ESR and k is
a degradation rate constant.

(7) Fault model for the Ni-Cd battery [59, 60]: the ca-
pacity fade fault for a Ni-Cd battery can be repre-
sented mathematically as follows:
Capacity fade fault model: Let C_max be the max-
imum capacity of the Ni-Cd battery (in Ah). Let
C_fade be the reduced capacity due to capacity fade
(e.g., C_fade� 0.8 for 80% capacity retention). Let
V_nominal be the nominal voltage of the Ni-Cd
battery (e.g., V_nominal� 1.2V per cell). Let t be
the time in seconds.
Te voltage across the Ni-Cd battery with capacity
fade can be expressed as

V capacity fade nicd �
(C fade× C max)

C max × V nominal
. (28)

(8) Fault model for the Ni-Mh battery [61–63]: the in-
creased internal resistance fault for a Ni-Mh battery
can be represented mathematically as follows:
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Figure 9: 500F supercapacitor charging curve.
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Increased internal resistance fault model: Let
V_nominal be the nominal voltage of the Ni-Mh
battery (e.g., V_nominal� 1.2V per cell). Let
R_int_nominal be the nominal internal resistance of
the Ni-Mh battery (e.g., R_int_nominal� 0.01
ohms). Let R_int_fault be the increased internal

resistance due to the fault (e.g., R_int_fault� 0.02
ohms). Let t be the time in seconds.

Te voltage across the Ni-Mh battery with increased
internal resistance can be expressed as

V internal resistance nimh � V nominal− R int fault × 0.1× t. (29)

TedevelopedMATLAB code provides a comprehensive
battery modeling framework for simulating the behavior of
diferent battery types, including Li-ion, lead-acid, super-
capacitor, Ni-Cd, and Ni-Mh. It allows for the character-
ization of normal battery operation as well as the
introduction of fault models, such as capacity fade and

increased internal resistance. By specifying the batterymodel
parameters and utilizing voltage equations, the code enables
the analysis of battery voltage variations over time. Te
resulting plots showcase the comparison between normal
and faulty battery scenarios, ofering valuable insights into
the impact of these faults on battery performance. Tis code
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Figure 10: Discharging behavior of batteries.
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serves as a valuable tool for understanding and evaluating
the behavior of various batteries, facilitating research and
development eforts in the feld of energy storage systems.
Figures 13–17 describe the behavior of fault batteries
compared to normal one in the same working conditions.

Simulation results demonstrated the efectiveness of the
proposed battery fault models for diferent battery types,
including Li-ion, lead-acid, supercapacitor, Ni-Cd, and Ni-
Mh. Te voltage-time curves of each battery type in normal
operation and under fault conditions were analyzed, high-
lighting the impact of capacity decay and increased internal
resistance on battery performance. Te simulation results
validated the importance of taking faulty battery behavior
into account in the design of energy storage systems, par-
ticularly in microgrid applications.

By incorporating failure models into our simulation
framework, we gain valuable insights into the behavior of
energy storage systems under various failure scenarios. Tese
failure models enable us to study the robustness and reliability
of proposed fast-charge strategies and to assess system response
under failure conditions. In addition, the simulation results
highlight the importance of selecting the right battery types and
strategies to optimize microgrid performance and ensure their
smooth operation in real-life environments.

4.3. Battery Simulator Test. Te process of simulating battery
behavior stands as a cornerstone in modern energy research
and development. Within our comprehensive battery simu-
lator test platform, we ofer a seamless solution for replicating
the performance of a wide array of battery cells housed in our
extensive database. By a simple selection from the dropdown
menu, researchers gain access to an array of prestored cells,
each ripe for simulation, as exemplifed in Figure 18. In
a practical demonstration, we harnessed the power of con-
trolled pulses, generating 50 ampere-hours (Ah) for charging
and an equal and opposite −50Ah for discharging, thus
emulating the dynamic charging and discharging phases of an

NCA lithium cell. Tis section ventures into the heart of
battery simulator testing, exploring how it empowers re-
searchers to scrutinize and fne-tune battery performance
under diverse conditions. Te ensuing fgures (Figure 19 for
discharging and Figure 20 for charging) present the simu-
lation outcomes, vividly capturing the essence of these critical
battery phases for existing cells.

4.4. Application of BMS on Behavior of ESS. Te integration
of an optimization of ESSs more specifcally improves the
battery-charging mode. An algorithm controls a converter
which applies a rapid-charging mode [62] of the batteries
and SC. Either it will play on the recharging frequency
parameter or the converter is controlled by a PWM gen-
erator which will modulate the signal coming from the DC
source. Tis technique can be also used in EV stations [63].
For the confguration of the systems, the initial SOC of the
diferent BESSs must be at 10%.Te systems go through four
phases (stand-by, recharge, discharge, and stand-by) for the
period ([0, 10 s], [10 s, 50 s], [50 s, 90 s], and [90 s, 100 s]),
which gives an overview of the operating mode of the BESS
managed by the BMS.

Figure 21 presents the algorithm for battery charge and
discharge management. Te BMS oversees monitoring and
controlling various battery parameters, such as the SOC,
current, voltage, and temperature, to optimize its perfor-
mance and extend its life. Te BMS can improve battery
performance by ensuring that the battery is charged and
discharged within safe limits and avoiding overcharging and
overdischarging. Tis allows the battery to achieve higher
SOC levels than without the BMS, as the BMS can accurately
measure the battery SOC and control the charge/discharge
process to optimize its performance. In addition, the BMS
can also help balance the cells in the battery, ensuring that
each cell is charged and discharged equally.Tis prevents cell
imbalance and extends the life of the battery. Overall, the
charge/discharge curve of a BESS managed by a BMS can
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demonstrate the benefts of using a BMS to monitor and
optimize battery performance.Te BMS can help the battery
achieve higher SOC levels, extend the life of the battery, and
ensure that it is operating securely and efectively.

In Figure 22, the response of the diferent BESSs to re-
charge/discharge is shown, but in a mode controlled by the
BMS. For the response to the load, the proposed algorithm
improves the response of Ni-Mh and Ni-Cd and on every-
thing for the lead-acid battery that can be seen over the period
between [10 s-90 s]. On the other hand, for the response to the
discharge, the Li-ion battery is the best solution, which is
demonstrated in the last phase (stand-by) for the period [90,
100 s] and the discharge phase between [60, 90 s].

4.5. Efect of Ambient Temperature on Charging and Dis-
charging Behavior of Batteries. Simulation takes another
path, where the work focuses on the efect of ambient
temperature on the mode and behavior of the BESS work,
more precisely on the SOC and the internal cell temperature
[64]. Figure 23 shows that the BMS algorithm considers
ambient temperature as a critical parameter and adjusts the
charge and discharge parameters accordingly. Te algorithm
continuously monitors the battery temperature and adjusts
the charge and discharge current limits to keep the tem-
perature within a safe range. When temperature is too high,
the algorithm reduces the charge current to prevent over-
charging and the discharge current to prevent over-
discharging, as these conditions can cause thermal runaway
and damage the battery. On the other hand, when

temperature is too low, the algorithm increases the charge
and discharge current to maintain battery performance and
avoid self-discharge.

Figure 24 presents the simulation results of the infuence
of the ambient temperature on the SOC of batteries. When
varying the ambient temperature of the function of the lead-
acid battery, it observes a slight increase in the DOC between
time t� 3000 s and t� 4000 s. It also observes a rise in the
sensitivity of response to recharge at T� 80°C (the recharge
slope) compared to T� 25°C. On the other hand, with the
increase in temperature, it observes a decrease in the DOD
and consequently a decrease in temperature less than 0°C (in
the present case, the simulation is performed at T� −25°C and
T� 80°C), which improves the sensitivity of battery discharge,
hence the low response time for the request of the load.

Another test highlights the efect of temperature on the
mode of operation of the Li-ion battery when compared with
another battery of the same type with a mode of operation at
stable temperature at T� 25°C. Tese tests are described
below for diferent cases.

4.5.1. Case 1 (T�±60°C). Te experiment demonstrates
the temperature-dependent performance of the Li-ion
battery model (battery A) when the surrounding tem-
perature goes from 60°C to −60°C and then to 0°C. Battery
B is the case where the impact of temperature is ignored.
Te results of the experiment are visualized in Figure 25,
which compares the variation in the SOC between the two
batteries at varying ambient temperature, and in
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Figure 26, which shows the efect of the ambient tem-
perature on the internal temperature of the battery cells.
Te results are shown as follows:

(i) At t� 0 s, batteries A and B discharge with 2 Amp at
an air temperature of 60C.

(ii) At t� 150 s, the core temperature climbs to its
steady-state value of 29.2°C due to heat dissipation
from the discharge operation. Tis results in a slight
increase in the output voltage of battery A, while the
output voltage of battery B continues to decline.

(iii) At t� 1000 s, the environmental temperature is
dropped to −60°C. Tis leads to a sharp fall in the
output voltage of battery A as the core temperature
declines fast. In addition, the SOC of the battery
decreases due to the capacity reduction. Te output
voltage of battery B keeps on going down gradually
until it reaches its equilibrium voltage.

(iv) At t� 2000 s, the room temperature goes from
−60°C to 0°C. As the internal temperature rises, the
output voltage of battery A goes up. Moreover, as
the capacity increases, the SOC of the battery grows.
Te output voltage of battery B remains constant up
to its steady-state value.

(v) At t� 2500 s, batteries A and B are charged with 3
Amp at an environmental temperature of 0°C. Tis
leads to an elevation of the internal temperature due
to heat dissipation during the charging procedure,
which raises the charging voltage of battery A.Ten,
batteries A and B continue to charge until they are
completely charged.

Te above experiment exhibits the impact of ambient
temperature on the performance of both battery A and battery
B. Te temperature-dependent battery A exhibits variations in
the output voltage and the SOC as a function of the ambient
temperature, while battery B demonstrates a consistent dis-
charge behavior.

4.5.2. Case 2 (T�±80°C). Te experiment illustrates the
response of the model temperature-dependent lithium-ion
battery (battery A) when the surrounding temperature
ranges between 80°C and −80°C and then at 0°C. Battery B is
the case where the efect temperature is neglected. Te re-
sults of the experiment are visualized in Figure 27, which
compares the variation in the SOC between the two batteries
at varying ambient temperature, and in Figure 28, which
shows the efect of the ambient temperature on the internal
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Figure 18: Simulator interface (GIU).
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temperature of the battery cells. Te results are described as
follows:

(i) At t� 0 s, batteries A and B are discharged with 2
Amp at 80°C room temperature.

(ii) At t� 150 s, the inner temperature climbs to its
steady-state value of 29.2°C due to the waste heat
from the discharge operation. Tis causes a small
rise in the output voltage of battery A, while the
output voltage of battery B keeps falling.

(iii) At t� 1000 s, the surrounding temperature is re-
duced to −80°C. Tis leads to a sharp drop in the

output voltage of battery A as the core temperature
drops quickly. In addition, the SOC of the battery
declines due to the reduction in its capacity. Te
output voltage of battery B continues to decrease at
a slow rate until it reaches its equilibrium voltage.

(iv) At t � 2000 s, the surrounding temperature goes
from −80°C to 0°C. As the core temperature
builds up, the output voltage of battery A goes up.
Similarly, as the capacity increases, the SOC of
the battery grows. Te output voltage of battery B
remains constant until it reaches its
equilibrium value.

Figure 19: Charging parameters of the Li-ion battery (LFP).

Figure 20: Li-ion battery discharging curve.
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(v) At t� 2500 s, batteries A and B are charged with 3
Amp at an air temperature of 0°C. Tis leads to an
increase in inner temperature due to the heat dis-
sipation during the charging operation, which raises
the charging voltage of battery A. Ten, batteries A
and B continue to charge until they are fully
charged.

With the high level of temperature variation, the Li-ion
battery loses its storage energy capacity, which can be seen
between t� 500 s and t� 1500 s, where the curve varies from
+60°C to −60°C. For the SOC of battery B (battery how
infuenced by temperature) in the discharge phase, battery B
loses power more quickly than battery A (normal T� 25°C).
When temperature increases from t� 2500 s to t� 4000 s
(charging phase), battery B returns to gain its SOC, with all

its performance. Even for SCs under the same test conditions
on Simulink (T� 25°C, T� 80°C, T� −25°C, and T� −80°C),
the ambient temperature has no efect whatsoever.

5. Conclusion

Diferent battery storage technologies for MGs have been
analyzed and compared in this study.Te development of an
energy storage system for MGs is essential to ensure their
successful functioning. Tis research has shown that the
choice of a suitable combination of batteries and super-
capacitors is highly dependent on the charging needs and the
feld of application of the MG. A combination of Li-ion
batteries and SC ofers high-energy density and a fast re-
sponse time using the instantaneous response of SGs.
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However, commercial factors and life span should also be
considered when selecting a suitable ESS. Moreover, our
research has highlighted the sensitivity of battery perfor-
mance to ambient temperature changes. We have observed
that most battery types, including Li-ion, lead-acid, and SCs,
are afected by temperature variations, with an increase or
decrease in storage capacity depending on the battery type.
Terefore, optimizing the charging strategies of ESSs under
diferent temperature conditions is an important research
area that needs further investigation. In our future research,
we will prioritize the integration of ESSs with renewable
energy sources and explore MG optimization techniques to
enhance the efciency and reliability of MG systems. In
addition, the development of new battery technologies with
improved energy density, longer life span, and fast response
time can enhance the performance of ESSs and MGs.

Nomenclature

Ibat: Battery current
Igas: Gassing current
Vbat: Battery terminal voltage
Vcc: Internal battery voltage
SOC: Battery state of charge
SOC0: Initial state of charge
Ahd: Ampere-hour discharged
Ri: Internal resistance
Cdl: Double-layer capacitance
Ahd0: Ampere-hour discharged at start of the

process
Ahnom: Nominal ampere-hour of battery
Imr: Main reaction current in battery
SG: Battery-specifc gravity
lSGfull: Specifc density at full load
SGempty: Full-load density
DKfit: Parameter corresponding to discharge

capacity of reference cell at an infnitesimal
discharge current

Rint: Internal resistance
Vt: Terminal voltage
Q: Total capacity
Z(t): State of charge at time t
ENieq and
EMeq:

Equilibrium voltages

RNi and EM: Connective resistances of nickel and metal
ENi and EM: Battery energy
CdlNi and
EdlM:

Double-layer capacitors

Re: Electrolyte resistance
V(t): Voltage across the battery terminals at time t
Voc: Open-circuit voltage of the battery at time t
I(t): Current fowing through the battery at time t
R0: Resistance of the charge-transfer reaction in

the battery
R1: Resistance of the difusion process in the

battery
C0: Double-layer capacitance of the battery
C1: Capacitance of the frst RC branch
C2: Capacitance of the second RC branch

Q(t): Charge stored in the frst RC branch at time t
V1(t): Voltage across the frst RC branch at time t
V2(t): Voltage across the second RC branch at time t
Vc(t): Voltage across the double-layer capacitance at

time t.
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