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As the proportion of renewable energy increases in power systems, the need for peak shaving is increasing.Te optimal operation of
the battery energy storage system (BESS) can provide a resilient and low-carbon peak-shaving approach for the system. Terefore,
a two-stage optimization model for grid-side BESS is proposed. First, the carbon emission model of thermal power units considering
BESS is proposed to describe the ability of the BESS in reducing the carbon emissions. Second, in order to deal with the uncertainty of
the photovoltaics and wind forecast errors, a certain capacity of BESS is reserved.Te model in the frst stage takes the lowest carbon
emission of the system as the goal, and the model in the second stage determines the BESS reserve capacity with the objective of
minimizing the risk cost of the system.Te simulation results show that the carbon emissionmodel of thermal power units with BESS
can measure the contribution of energy storage to emission reduction. By setting the reserve capacity of energy storage, the peak-
shaving resilience of the system is improved, and the risk of photovoltaics and wind forecast error is reduced.

1. Introduction

As the installed capacity of wind power continues to in-
crease, fexible adjustment resources are required to
maintain safe and stable operation and power balance in the
power system [1]. Te requirements of peak shaving con-
tinue to increase due to the randomness and volatility of
wind and solar power [2]. Coal-fred power plants are the
most popular resource for the peak-shaving service. How-
ever, thermal power unit fexibility transformation for peak-
shaving services is very expensive [3]. Besides, participating
in peak shaving through the operation of thermal power
units will increase its coal consumption, operation and
maintenance costs, and carbon emissions, which is in-
consistent with a national goal of peak carbon emissions by
2030 and carbon neutrality by 2060 in China [3]. Te
corresponding speed of peak shaving by hydropower units is

fast, but there is not enough hydropower for peak shaving in
many areas due to the limitations of water resources and
geography [4]. Te peak-shaving capacity of hydropower is
also limited by season, infow, reservoir regulation capacity,
etc. Terefore, in order to achieve low-carbon and fexible
peak shaving, new devices and operation strategy are
required.

Te growth of renewable energy and the need for peak
shaving have led to an exponential growth of grid support
and storage installations around the globe. Consequently, by
2040 (accounting for 9GW/17GWh deployed as of 2018),
the market will rise to 1095GW/2,850GWh, making a more
than 120 times increase, based on a recent study published
by Bloomberg New Energy Finance (BNEF) [5].Te fast and
convenient control, simple requirements for geographical
conditions, and high energy efciency of energy storage
devices can meet the need for a balance between supply and
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demand [6, 7]. Most existing studies on energy storage
analyze the economy of operation. For example, Hou et al.
[8] developed a coupling operation model to optimize
diferent energy storage devices for wind output power
fuctuation smoothing, power imbalances mitigating, and
peak load shaving with the maximum net earnings of the
whole system. Authors in [9] proposed a resilient and peak-
shaving trade-of scheme for battery energy storage systems
to reduce operational costs. Authors in [10] developed
a complex control algorithm in order to optimize the use of
energy storage devices for peak load shaving in fve diferent
load demand profles. Although reducing the operational
costs of battery energy storage is of great importance,
sometimes the revenue of energy storage should give way to
the interests of renewable energy or power users, such as the
centralized battery energy storage system (BESS) on the grid
side [5].

BESS can be used for stationary applications at every
level of the network such as generation, transmission, and
distribution as well as local industrial and commercial
customers [5]. At present, many countries and regions have
successively built grid-side BESS. In the United States,
Australia, and the Republic of Korea, grid-side BESS is
mainly used to participate in the frequency modulation
market and peak saving [11, 12]. Tere are also many grid-
side BESS projects in China. For example, the grid-side
distributed BESS project in Henan Province provides in-
struction tracking and output fuctuations smoothening
services for the local power grid [13]. Zhicheng energy
storage station, the frst grid-side lead-carbon BESS in
China, is mainly used in two typical application scenarios,
namely, peak shaving and frequency regulation [14]. Te
Langli BESS in Hunan province [15] adopts the operation
mode of “twice charging and twice discharging” in one day
to meet the peak-shaving demand of load peak at noon and
in the evening in that the load peak-valley diference is
relatively large.

Te research on centralized grid-side BESS is mainly about
the economy of planning and operation. Authors in [16] de-
veloped a bi-level optimal locating and sizing model for a grid-
side BESS, and the direct revenue of this system is from the
arbitrage of the peak-valley electricity price and auxiliary
service compensation. Authors in [6] proposed a probabilistic
approach for sizing large-scale battery storage with the aim of
mitigating the net load uncertainty and quantifed the required
BESS capacity for operating the wind plant without incurring
excessive battery installation costs. A two-stage scheduling
optimizationmodel and solution algorithm for BESSwithwind
power considering uncertainty and demand response were
proposed in [17]. For two-stage stochastic optimization
models, the optimal sizing and location of BESS considering
wind power integrationwere determined in [18].Wind forecast
errors will afect the operation of energy storage [19]. Te
existing research has not paid attention to the optimal oper-
ation of grid-side BESS, considering both the resilience issue of
wind power and system carbon emissions in peak-shaving
function [9, 20].

Te measurement of the carbon emission reduction
contribution of a certain device is conducive to the operation

of the carbon market and carbon trading. In order to de-
scribe the carbon emission reduction contribution of grid-
side BESS, the carbon emission measurement of the system
needs a more accurate description frst.

Terefore, in this paper, grid-side BESS is regarded as an
independent centralized storage system, and its charge and
discharge power are described and included in the carbon
emission measurement of thermal power units. Te value of
system carbon emission intensity reduced by energy storage
is related to the carbon emission intensity of thermal power
units. Moreover, if a certain reserve capacity is set during the
operation of energy storage, the system operation risk caused
by the uncertain resilience issue of wind power and pho-
tovoltaics can be reduced, and the resilience of the system
can be increased. When the economy of energy storage is
reduced, the reserve capacity of the energy storage system
will be increased, and the operation economy of the whole
power system can be improved.

2. Carbon Emission Model of Thermal Power
Units with BESS

China’s coal-based energy structure determines that coal
accounts for more than half of the primary energy. Terefore,
this paper sets thermal power units as coal-fred thermal
power units to simplify the description of the carbon emis-
sions of thermal power units. According to the law of energy
conservation, in an ideal situation, 122.8 g of standard coal is
consumed to produce 1 kWh of electric energy. However, in
fact, the coal consumption is far greater than 122.8 g/(kWh),
and there are additional carbon emissions. In order to
quantify the contribution of BESS to emission reduction in
the system, it is frst necessary to accurately describe the
carbon emissions of thermal power units.

Te carbon emission intensity or rate of coal-fred
thermal power units is the amount of carbon dioxide
emissions generated by 1 kWh of electricity supply for a unit
and is negatively related to the power load. Te higher the
power load, the lower the carbon emission intensity [21].
Trough linear ftting, the linear function relationship be-
tween the output of thermal power units and the carbon
emission intensity is as follows [21]:

Ig P
g

G(t)(  � −k ·
P

g

G(t)

PGg

  + b, (1)

where Ig(P
g

G(t)) is the carbon emission intensity of the unit
g at hourly time interval t, k≥ 0, b≥ 0 are linear coefcients,
P

g

G(t) is the output of the unit g at time interval t, and PGg is
the installed capacity of the unit g.

Ten, the carbon emissions of the thermal power unit g

can be calculated according to the following formula:

Eg P
g

G(t)(  � Ig · P
g

G(t) · ∆t, (2)

where ∆t is the time between two consecutive time steps, in
this paper, ∆t � 1.

Tere is power loss from energy storage in the process of
charging and discharging, which will cause additional car-
bon emissions. Terefore, when the renewable energy and
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thermal power units can meet the load demand, the carbon
emissions of the system are the lowest because the energy
storage is not required to participate in peak shaving and
there are no additional carbon emissions.

However, due to the forecast error of the power load and
wind power and the limitation of the ramping power of
thermal power units, it is necessary for BESS to meet the
power balance needs and reduce the operation of thermal
power units.

Te BESS can also increase the output of low-coal
consumption units and reduce the output of high-coal

consumption units through reasonable charging and dis-
charging. For example, low-coal consumption units can
generate more electricity to provide energy storage, and
when load increases, energy storage is frst used instead of
increasing the power of high coal consumption units.

Trough storing excess wind power and discharging to
reduce the output of thermal power units when wind power
is insufcient, the BESS can reduce the carbon emissions of
the system. Te carbon emission model of thermal power
units with BESS can be obtained as follows:
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 , (3)

where T is time intervals in one day, NG is the number of
thermal power units, ωt is called the carbon emission in-
tensity of BESS which is defned as carbon emission reduced
by 1 kWh of charging or discharging, ωt is related to the
carbon emission intensity of thermal power units, NB is the
number of BESS, and Pb

c(t) and Pb
d(t) are charge and dis-

charge power of the energy storage system b at time
interval t.

Te charging and discharging power changes the output
of the thermal power units, resulting in changes in the
carbon emission intensity of the thermal power units, thus
changing the carbon emission of the system.

2.1. Upper Limit of ωt. Since there is power loss in the
process of charging and discharging, the carbon emissions
reduced by the BESS in formula (3) shall be less than the
carbon emission of thermal power units. Terefore, the
carbon emission intensity of BESS in formula (3) shall be less
than the carbon emission intensity of thermal power units.
And it can be ensured that wind power and photovoltaics
instead of thermal power are used for energy storage
charging. If the charging power is from thermal power units,
the frst term and the second term in formula (3) will in-
crease at the same time, and the coefcient of the frst term is
greater than the second term, resulting in the increase of Ec.

ωt ≤min I1 P
1
G(t) , . . . , Ig P

g

G(t)( , . . . , ING
P

NG

G (t)  . (4)

2.2. Lower Limit of ωt. Te carbon emission of the system
will not increase during the charging and discharging of
energy storage. Te value of ωt should be greater than 0.

ωt ≥ 0. (5)

3. Risk-Cost Function with BESS

3.1. Risk-Cost Function of Wind Forecast Error with Reserve
Capacity of BESS. Due to the randomness and fuctuation
of wind power and photovoltaics, the operation of thermal
power units and BESS is needed to maintain the balance
between power generation and power consumption. In
this paper, the wind forecast error is mainly considered.
Te reserve capacity of fexible adjustment resources
determines the allowable wind forecast error range. When
the wind power exceeds the maximum allowable range, it
will bring operational risks to the system and cause
economic losses.

Te probability density function p(∆Pw
W(t)) of the wind

or photovoltaics forecast error ∆Pw
W(t) of wind farm w can

be modeled as a Gaussian distribution [22, 23]. As shown in
Figure 1, Pw

W+(t) and Pw
W−(t), respectively, represent the

upper and lower limits of the wind forecast error at time
interval t. Te upper and lower adjustable capacity of
thermal power units and BESS can be determined as
[0, Pw

W+(t)] and [Pw
W−(t), 0]. When the wind forecast error at

time t is less than Pw
W−(t), the adjustable resources are in-

sufcient and part of the load needs to be cut of. When the
wind forecast error at time interval t is higher than Pw

W+(t),
measures such as wind abandonment shall be taken.
Terefore, the probability-weighted average of the shaded
part in Figure 1 can be used to represent the risk of load
shedding and wind abandonment caused by wind forecast
error at time interval t.

Ten, the risk-cost of wind abandonment and load
shedding can be expressed as follows:
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(6)

whereNW is the number of wind farms,Pw
Wmax and Pw

Wmin are
the maximum and minimum power of wind farm w, μW and
μL are penalty coefcients of wind abandonment and load
shedding, and Pw

W(t) is the power of wind farm w at time
interval t.

Adding BESS to the system increases the system’s ad-
justable capacity and can reduce the risk of wind aban-
donment and load shedding [24, 25]. Te state of charge
(SOC) of the BESS is maintained within an expected range to
cope with the possible wind forecast error [26]. Te risk cost
function with reserve capacity of BESS is as follows:
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where Vb
c(t) and Vb

d(t) are charging and discharging reserve
capacity of BESS b at time interval t.

3.2. Operation Cost of Termal Power Units. Te power
imbalance caused by the wind forecast error often requires
the power of thermal power units to adjust, which will
produce a certain fuel cost and operation cost, that is, the
operation cost of thermal power units.
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where ∆P
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Gumax(t), ∆P
g

Gdmax(t), ∆P
g

Gu(t), and ∆P
g

Gd(t) are
the maximum ramp up limit, the maximum ramp
down limit, the ramp up power, and the ramp down
power of the thermal power unit g at time interval t. Cg is

the fuel cost function of thermal power unit g, ag,
bg, and cg are fuel cost coefcients of thermal power unit
g, dg is the ramping cost coefcient of thermal power
unit g.
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Figure 1: Probabilistic distribution of wind forecast error.
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4. Two-Stage Optimization Model of Grid-Side
BESS with Maximum Reserve Capacity and
Minimum Carbon Emission

4.1. Objective Function

4.1.1. Objective Function in the First Stage

minF1 P
g

G(t), P
b
c(t), P

b
d(t)  � k1ρ + k2CB + k3Ec, (9)

where k1, k2, and k3 are weight coefcients and ρ, CB, and Ec

are the load peak-valley ratio, BESS operation cost function,
and carbon emission function of thermal power units.

Te equivalent load of the system is the sum of load
power and BESS charging and discharging power.
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b
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where NK is number of nodes and Pk
K(t) is the load power

on node k at time t.

Ten, the load peak-valley ratio of the equivalent load is
as follows:

ρ �
max Pel(t)(  − min Pel(t)( 

max Pel(t)( 
× 100%. (11)

Te operation cost of BESS is as follows:
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where cB,b is the operation cost coefcient of BESS b.

4.1.2. Objective Function in the Second Stage. Te capacity of
adjustable resources of the system is optimized in the second
stage. Te reserve capacity of BESS and the ramping power
of thermal power units are adjusted to minimize risk cost
function with BESS, including the risk cost of wind power
and operation cost of thermal power units.
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4.2. Constraints

4.2.1. Constraints in the First Stage

(a) Power balance constraint is as follows:
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(b) Wind power constraint is as follows:

P
w
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w
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(c) Termal power constraint is as follows:

P
g
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g
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g
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where P
g

G,min and P
g

Gmax are minimum and maxi-
mum power of thermal unit g.

(d) Ramping constraint of thermal power units is as
follows:

r
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(e) Start-stop constraints of thermal power units are as
follows:
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(18)

where ug(j) represents the startup and shutdown
status of the thermal unit g at time j, ug(j) � 0
represents shutdown and ug(j) � 1 represents
startup, and Tg,on and Tg,off are the maximum
continuous start and maximum continuous stop
time of thermal unit g.

(f ) BESS charge and discharge power constraints are as
follows:

0≤P
b
c(t)≤P

b
cmax,

0≤P
b
d(t)≤P

b
dmax,

⎧⎨

⎩ (19)

where Pb
cmax and Pb

dmax are maximum charge and
discharge power of BESS b.

(g) State of charge constraints are as follows:

Sb(t + 1) � 1 − σb( Sb(t) −
1

Vb,max
ηb

cP
b
c(t) −

P
b
d(t)

ηb
d

⎛⎝ ⎞⎠∆t,

Sb,min ≤ Sb(t)≤ Sb,max,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(20)

where Sb(t) is state of charge of BESS b at time
interval t, Sb,max and Sb,min are upper and lower limits
of state of charge, σb is the self-discharge rate, and ηb

c

and ηb
d are the charge and discharge efciency.

4.2.2. Constraints in the Second Stage. After satisfying the
constraints in the frst stage, the variables to be solved in the
second stage shall meet the following constraints:
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(a) Adjustable power constraints of thermal power: Te
maximum adjustable power of the thermal power
unit g at time interval t shall not exceed its

maximum ramping power, and thermal power shall
not exceed its maximum and minimum power
limits.
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(b) BESS reserve capacity constraint is as follows:

0≤V
b
c(t) + V

b
d(t)≤Vb,max. (22)

(c) SOC constraint with BESS reserve capacity is as
follows:

In order to ensure that the BESS can provide backup to
cope with the risk of wind forecast error time t, the SOC
constraint including the BESS reserve capacity is proposed as
follows:
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(23)

4.3. Solution of the Two-Stage Optimization Model. Te so-
lution process of the two-stage optimization model is to frst
give initial values to the variables in the frst stage and then to
optimize the model in the second stage. Te obtained results
in the second stage are returned to the model of the frst
stage, and the two models iterate alternately to fnally obtain
the result. Te immune genetic algorithm [27] is used to
solve the frst stage problem, and the CPLEX solver in
MATLAB is used to solve the second stage problem.

In this paper, the reserve capacity of BESS is optimized
with the objective of minimizing the risk cost of wind power
and the operation cost of thermal power units after the
thermal power output and BESS charging and discharging
power are determined.Terefore, this paper uses a two-stage
optimization model to describe the BESS optimization
problem. Te convergence condition is as follows:
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b
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(24)

where Vb
c,i(t) and Vb

d,i(t) are charging and discharging re-
serve capacity of BESS b at iteration i, respectively, and ε is
a positive number small enough. Te algorithm fowchart is
shown in Figure 2.

5. Results and Discussion

5.1. SimulationSetup. IEEE30 node 6-machine systems are
used to verify the model built in this paper. Te system
includes six coal-fred thermal power units with the same
capacity of 100MW, a wind farm with a capacity of
200MW, and an energy storage system with the capacity
of 200MW. Te maximum and minimum output power
of the wind farm is 200MW and 0, respectively. Pa-
rameters of thermal power units and BESS are given in
Tables 1 and 2, and predicted data of load and wind power
are given in Figure 3. According to the carbon emission
intensity curves of actual coal-fred units under diferent
load rates, the linear function between thermal power and
carbon emission intensity is obtained through linear
regression.

Ig P
g

G(t)(  � −120 ·
P

g

G(t)

P
g

Gmax
  + 1091.8. (25)

Other parameters are as follows: wind power risk cost
coefcients are μW � μL � 100. Start-stop coefcients of
thermal power are Tg,on � Tg,off � 4h. BESS charge and
discharge efciency σb � 0.9, ηb

c � ηb
d � 0.85, initial

SOC � 0.5, and ∆t � 1. Carbon emission credit price is
10$/t.

5.2. Optimization Results Analysis

5.2.1. Comparison of Diferent Algorithms. Te multi-
objective algorithm for the two-stage model proposed in this
paper is the immune genetic algorithm (IGA) [27]. In order
to show the superiority of IGA in solving the model, the
calculation results of IGA and of the traditional genetic
algorithm (GA) were compared under the same setting of
relevant parameters.

Te simulation results of IGA, GA, and particle swarm
optimization (PSO) are compared.Te crossover probability
of GA is 0.9, and the mutation probability is 0.1. Te self-
learning factor and social learning factor of the PSO are 2,
with an initial inertia weight value of 0.9 and a maximum
inertia weight value of 0.4. Te other parameters of the
algorithm remain unchanged, and the simulation results are
shown in Table 3. Te convergence curves of the algorithm
are shown in Figure 4.
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Begin

Set the iteration number i=0, and
obtain the initial value of BESS

reserve capacity 

Obtain Predicted data of load and
wind power 

Solve the model in the first stage, and obtain the
output of thermal power units and the charging

and discharging power of BESS

Based on the optimization results, solve
the model in the second stage to obtain

the reserve capacity of BESS
i=i+1

End

Yes

Noxi ≤ ε

Figure 2: Te algorithm fowchart of the two-stage operation model iteration process.

Table 1: Parameters of thermal power (MW).

Categories P
g

G,min P
g

Gmax r
g
uP

g

Gmax r
g

dP
g

Gmax

Power 0 100 20 20

Table 2: Parameters of BESS.

Categories Sb,max (MWh) Sb,min (MWh) Pb
cmax (MW) Pb

dmax (MW)

Power 180 20 100 100
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)
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Figure 3: Predicted data of load and wind power.
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It can be seen from the simulation results that in solving
accuracy, the IGA can efectively overcome population
precocity, enabling the algorithm to jump out of the local
optimal solution and fnd a better solution. However, the
IGA has limited ability to explore new spaces and is prone to
convergence to the local optimal solution. Moreover, the
algorithm belongs to the random algorithm, resulting in
poor reliability and instability in obtaining the optimal
solution. Terefore, the selection of algorithm parameters
needs to refer to examples from existing references.

5.2.2. Comparison of Optimization Results. In this paper,
three cases are set for comparative analysis. Under the same
system settings, the optimization results are shown in Table 4.
Case 1 is the model in this paper; Case 2: the BESS does not
participate in the optimization of reserve capacity in the second
stage; and Case 3 is that the BESS participates in the optimi-
zation of reserve capacity, but the carbon emission measure-
ment in the frst stage does not include the power of the BESS.

It can be seen from Table 4 that the system carbon
emissions of cases 1 and case 2 are slightly lower than those
of case 3. Te diference between the carbon emissions of
case 1 and case 3 is the contribution of the BESS charging
and discharging power to the system’s carbon emissions.Te
power of BESS is added to the carbon emissionmeasurement
model in case 1 to describe the real carbon emissions of the
system. Diferent from case 3, the model proposed in this
paper takes into account the contribution of the BESS, so
that the BESS power needs to be as large as possible, thus

reducing the reserve capacity and increasing the risk cost of
wind power and load shedding risk cost. However, the large
power of BESS can reduce the operation of thermal power
units, that is, reducing the operation risk and cost of thermal
power units. Terefore, case 1 still has the lowest total cost.

In Table 4, the carbon emission of case 2 is lower than
that of case 1. Due to the uncertainty of wind power, the
BESS reserve capacity may lead to the BESS not fully utilized,
resulting in reserved redundancy. In case 2, because there is
no BESS reserve capacity, the power of BESS is the largest,
the BESS operation cost is the highest, the peak-valley
diference rate is the smallest, and the risk of load shed-
ding and wind abandonment and operation cost of thermal
power units are the largest.

Figure 5 shows the SOC curves for three cases. Te
optimization results of the BESS reserve capacity in case 1
and case 3 are shown in Figures 6 and 7. In cases 1 and 3, the
BESS system needs to reserve a certain capacity, which leads
to its conservative operation. At 1:00–7:00, the SOC of case 1
is smaller than that of case 2. Tis is because the wind power
output is large, and case 1 reserves a certain amount of upper
capacity, thus reducing the charging power in this period.
During 12:00–20:00, the wind power output is small and the
load power is large, so a certain lower capacity is reserved for
BESS, which reduces the discharge power during this period.
Case 3 is more extreme than case 2, with sufcient reserve
capacity in all periods. Tis is because case 3 does not
calculate the carbon emission benefts brought by BESS, so
that BESS is almost used as a backup device.

Table 3: Performance comparison of diferent algorithms.

Algorithms Optimal values (×103) Time (s)
IGA 24.11 19.64
PSO 28.72 36.24
GA 30.71 20.33
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Figure 4: Convergence curves of diferent algorithms.
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Te power of thermal units and BESS in 3 cases is shown
in Figure 8. Case 1 is similar to case 2. In case 2, since the
BESS does not participate in the backup, the charging and
discharging power of the BESS is larger at all times. In case 3,
since the carbon emission benefts brought by the BESS are
not calculated, the BESS is almost used as a backup, and the
output of thermal power units needs to be adjusted to
maintain power balance, resulting in the highest operation
cost of thermal power units and the largest system carbon
emissions. However, in case 3, since BESS is used as backup
equipment, the risk cost of wind power is the lowest.

5.2.3. Comparison of Carbon EmissionModels. In this paper,
the carbon emission intensity of thermal power units is
negatively related to the load, that is, the higher the load, the

lower the carbon emission intensity, as shown in Figure 9. It
can be seen from Table 5 that the model with a fxed carbon
emission intensity overestimates the carbon emissions of
thermal power units.

In this carbon emission model, when the value of ωt �

r × min(Ig(P
g

G(t))) in the model increases from
0.1 × min(Ig(P

g

G(t))) to 1 × min(Ig(P
g

G(t))), the BESS
charging and discharging power will be slightly increased,
and the power of thermal units will be slightly reduced,
which will reduce the total carbon emissions of the system.
When ωt > min(Ig(P

g

G(t))), the model will have no solu-
tion. Te case 3 in this paper is when ωt � 0.

Figures 10 and 11 show the power of the BESS and
thermal units when t � 13 under diferent values of ωt, and
the BESS is in the discharge state at this time interval. With

0

100

200
Ca

pa
ci

ty
 (M

W
·h

)

4 8 12 16 20 240
Time (h)

 Case 1
 Case 2
 Case 3

Figure 5: Te optimization results of the SOC in diferent cases.
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Figure 6: Case 1: BESS optimization results at all time intervals.
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the increase of the value of ωt, the BESS discharge power
increases linearly, and the power of the thermal units de-
creases linearly, so the increase of the BESS discharge power
is equal to the decrease of the power of the thermal units.
Tis is because the larger the value of ωt is, the greater the
carbon emission intensity of the BESS is. In order to
minimize the objective function Ec, when the load is a fxed
value, the BESS discharge power will increase and the power
of thermal units will be reduced accordingly.

Similarly, when the BESS is charging, the greater the ωt

is, the greater the BESS charging power is, and the power of

thermal units will also increase accordingly. However, the
increase in the power of thermal units will reduce its carbon
emission intensity, so the objective function Ec can still be
optimal. By increasing the value of ωt, the carbon emission
intensity of the BESS can be increased, making the BESS
operation strategy more radical.

6. Conclusion

Tis paper includes the negative correlation between the
carbon emission intensity of thermal power units and the
load into the carbon emission measurement model,
which improves the accuracy of carbon emission mea-
surement of thermal power units. Te system carbon
emissions reduced by BESS are included in the carbon
emission measurement, and it is proposed that the carbon
emission intensity of BESS is related to the carbon
emission intensity of thermal power units. Setting dif-
ferent values of ωt can change the power of BESS and
thermal units. Te larger the ωt, the greater the power of
BESS, the lower the power of the thermal units, and the
lower the carbon emissions of the system.

Te risk cost of wind power is described by the distri-
bution of wind forecast error, and the risk cost function of
wind power with BESS reserve capacity is proposed in this
paper. When the grid-side BESS has maximum reserve
capacity, the risk cost of wind power can be signifcantly
reduced, that is, the risk of load shedding and wind aban-
donment, and the operation cost of thermal power units can
be reduced.

In the two-stage optimization model, the objective
function in the frst stage model is to minimize carbon
emissions and load peak-valley diference by the operation of
BESS, and the objective function in the second stage model is
to minimize the system operation cost with the maximum
reserve capacity of BESS. Te frst stage decision variables
and the second stage decision variables restrict each other,
providing an operation strategy of low carbon and fexible
peak shaving for BESS.

900
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1100
t (

M
W

)

4 8 12 16 20 240
Time (h)

Fixed value
Linear function

Figure 9: Carbon emission intensity of thermal power units.

Table 5: Comparison of system carbon emissions.

Carbon emissions (t)
Fixed value 9971.8
Linear function 9950.3
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Figure 10: Variation curve of the power of BESS at diferent ωt
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Nomenclature

Ig: Carbon emission intensity of thermal
power units

ωt: Carbon emission intensity of BESS
k, b: Linear coefcients of carbon emission intensity
μW: Penalty coefcient of wind abandonment
μL: Penalty coefcient of load shedding
ag, bg, cg: Fuel cost coefcients of thermal power units
dg: Ramping cost coefcient of thermal power units
k1, k2, k3: Weight coefcients of objective functions
cB,b: Operation cost coefcient of BESS
ε: A positive number small enough
σb: Self-discharge rate
ηb

c : Charge efciency
ηb

d: Discharge efciency
Vb

c,i: Charging reserve capacity of BESS
Vb

d,i: Discharging reserve capacity of BESS
P

g

G: Power of thermal power units
Pb

c : Charge power of BESS
Pb

d: Discharge power of BESS
Pw

W: Power of wind farm
Pk

K: Load power on node k

∆P
g

Gu: Ramp up power of thermal power units
∆P

g

Gd: Ramp down power of thermal power units
Vb

c : Charging reserve capacity of BESS
Vb

d: Discharging reserve capacity of BESS
p: Probability density function of the wind

forecast error
∆Pw

W: Wind forecast error of wind farm
Sb: State of charge of BESS
ug: Startup and shutdown status of thermal

power units
ρ: Load peak-valley ratio
NG: Number of thermal power units
NB: Number of BESS
NW: Number of wind farms
NK: Number of nodes
PGg: Installed capacity of the thermal power units
CB: BESS operation cost function
Ec: Carbon emission function of thermal

power units
Cg: Fuel cost function of thermal power units
Pw

Wmax: Maximum power of wind farm
Pw

Wmin: Minimum power of wind farm
Pb

cmax: Maximum charge power of BESS
Pb

dmax: Maximum discharge power of BESS
Pw

W+: Upper limits of the wind forecast error
Pw

W−: Lower limits of the wind forecast error
∆P

g

Gumax: Maximum ramp up limit of thermal power units
∆P

g

Gdmax: Maximum ramp down limit of thermal
power units

P
g

Gmax: Maximum power of thermal power units
P

g

G,min: Minimum power of thermal power units
Sb,max: Upper limits of state of charge
Sb,min: Lower limits of state of charge

Tg,on: Maximum continuous start time of thermal
power units

Tg,off : Maximum continuous stop time of thermal
power units

∆t: Time between two consecutive time steps, in this
paper, ∆t � 1 hour

T: Number of time intervals in one day, T � 24.
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