
Research Article
An Effective Method for Sensing Power Safety Distance Based on
Monocular Vision Depth Estimation

LeixiongWang,1 BoWang ,1 ShulongWang,1 Fuqi Ma,1 Xuzhu Dong,1 Liangzhong Yao,1

Hengrui Ma,1 and Mohamed A. Mohamed 2

1School of Electrical and Automation, Wuhan University, Wuhan, Hubei 430072, China
2Electrical Engineering Department, Faculty of Engineering, Minia University, Minia 61519, Egypt

Correspondence should be addressed to Bo Wang; whwdwb@whu.edu.cn

Received 13 November 2022; Revised 5 January 2023; Accepted 19 April 2023; Published 18 May 2023

Academic Editor: Martin Calasan

Copyright © 2023 LeixiongWang et al.Tis is an open access article distributed under theCreative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

As an important index of risk protection, the safety distance is crucial to ensure the safe and stable operation of the power system
and the safety of personnel’s life. Traditional monitoring methods are difcult to balance recognition accuracy and convenience.
Terefore, this paper presents a power safety distance sensing method based on monocular visual images to achieve the rec-
ognition of the safety distance of external damage in complex scenes of transmission corridors, and proposed a power density
depth distance model. In this model, a codec network with skip-connection to extract features and aggregate shallow and deep
features for input power system images. Ten, the regularization method, migration learning strategy, cosine annealing learning
strategy, and data enhancement strategy are used to further optimize the model, so as to obtain a model with good accuracy and
generalization in complex conditions. Te efectiveness and superiority of the proposed method are verifed in comparison to
other external damage monitoring methods.Te experimental results showed that the proposed method has high accuracy for the
distance of external damage in the actual scenario. Moreover, the method has good generalizability, which can be easily deployed
in video monitoring systems on diferent transmission corridors.

1. Introduction

Because the power system has the characteristics of high
voltage, strong current, and outward discharge, the power
system has strict safety distance standards, operational
management measures, and other means to prevent various
short-circuit, fre, explosion, and personal injury accidents
caused by human body and construction appliance touching
or being too close to the charged object [1]. According to the
causes of diferent safety accidents, it can be learned that the
control efect of means such as restricting personnel and
apparatus from entering the charged areas by means of fve
preventions and other safety regulations is limited [2]. When
power enterprises are under severe pressure of overhaul and
maintenance, there are problems such as the poor imple-
mentation of safety production responsibilities and lax
control of operating sites. For example, during the equip-
ment reconstruction of 500 kV shipping substation of

Chongqing Electric Power Company in 2021, due to the
insufcient distance between crane lifting equipment and
electrifed equipment, a bus trip accident was caused. It
shows the power system lacked an efective safe distance
sensing method [3]. It can be seen that the research on the
method of measuring the power safety distance is of great
importance to ensure the safe operation of power equipment
and the safety of personnel [4].

Currently, safety distance sensing methods for power
systems primarily include manual measurement, LiDAR [5],
and video monitoring methods [6]. Electric power workers
often rely on experience or use theodolite to determine
whether there is insufcient safety distance in the inspection
section. However, because of the subjective factors of electric
power workers, interference from trees and buildings, and
visual bias, it is difcult for workers to efectively and ac-
curately determine whether the safety distance is below the
standard. Te LiDAR method mainly obtains the spatial

Hindawi
International Transactions on Electrical Energy Systems
Volume 2023, Article ID 8480342, 16 pages
https://doi.org/10.1155/2023/8480342

https://orcid.org/0000-0003-2694-8345
https://orcid.org/0000-0001-8700-0270
mailto:whwdwb@whu.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/8480342


geometric structure of the inspected object through in-
spection by drones equipped with LiDAR, which has the
advantages of high-ranging accuracy, strong directionality,
and no ground clutter interference [7]. However, the cost is
high and requires drones, which cannot be inspected in real-
time and is not conducive to the real-time identifcation of
safety hazards. In addition, the processing of laser point
cloud data has a high degree of difculty [8]. Te intelligent
video surveillance method mainly uses binocular images for
depth estimation and safety distance discrimination through
the similar triangle principle [9]. Due to the limitation of the
early depth estimation principle, this method has a high false
alarm and missed alarm rate [10]. Terefore, in order to
prevent the occurrence of major accidents afecting the
national production life, the power industry needs a power
safety distance awareness method that can balance detection
accuracy and ease of deployment [11].

Over the past few years, with the rapid development of
deep learning, deep neural networks with strong adaptive
functionality have been widely accepted by academics [12].
Depth estimation based on deep learning can construct
models that correlate image information and depth in-
formation to obtain the depth information of the scene
[13, 14]. Te depth estimation technique based on deep
learning gives better results [15]. Currently, they can be
categorized as supervised, unsupervised, and semisupervised
according to the degree of use of true depth distance [16]. As
a supervised approach, the literature [17] achieved good
depth estimation performance based on adaptive interval
segmentation through deep residual networks for depth-
valued classifcation. Te literature [18] uses an un-
supervised approach to train the network to obtain depth
information of images using the geometric constraint in-
formation of neighboring frames of a monocular video
stream with multiple frames, reducing the data usage lim-
itation and obtaining promising results. As a semisupervised
approach, the literature [19] introduces real depth maps as
supervised information in an unsupervised framework, and
achieves a blend of supervised and unsupervised by using
a more powerful supervised signal for training. Depth es-
timation techniques based on deep learning have shown
great progress in performance [20], and their application in
the feld of power safety distance perception has become
possible.

Summarizing the previous literature on transmission
corridor monitoring methods, it can be seen that these
methods are difcult to combine both detection accuracy
and ease of deployment and are difcult to apply on large-
scale transmission corridors. However, in practical appli-
cations, transmission line monitoring usually faces problems
such as large monitoring area scope, the coexistence of near
and distant objects, random operation area, and complex
image background [21]. Under the cost limitation, the
current method has many problems such as low detection
accuracy and low monitoring efciency. In order to improve
the recognition accuracy and efciency of transmission line
safety distance and enhance the generalization capability of
transmission line safety distance monitoring, this paper
constructs a monocular image-based power safety distance

sensing method and proposes a power density depth model
based on supervised depth estimation for existing trans-
mission corridor video monitoring systems. Te main
contributions of this paper are summarized as follows:

(1) A power safety distance sensing method of external
damage based on deep learning is constructed to
achieve the real-time recognition of the safety dis-
tance of external damage, which adapts to most
transmission corridor scenarios and improves the
monitoring efciency of the safety distance of ex-
ternal damage

(2) A power density depth model is proposed, which is
based on a supervised depth estimation approach
using a coder-decoder network architecture with
jump connections for image feature extraction ag-
gregation, direct output of spatial distance in-
formation in complex scenes of transmission
corridors through the network, and multiple opti-
mization strategies to achieve high generalization
and recognition accuracy

(3) Te efectiveness and superiority of the proposed
power safety distance sensing method for safety
distance of external damage identifcation are veri-
fed in comparison to traditional manual measure-
ment, LiDAR, and video monitoring methods

Te rest of the paper is organized as follows: Section 2
introduces the power safety distance sensing method net-
work structure. Section 3 presents the structure parameter
optimization and data enhancement of the power density
depth model. In Section 4, experiment results are presented
to verify the proposed method, followed by conclusions.
Section 5 is the conclusion.

2. Power Safety Distance Sensing Method
Based on Power Density Depth
Distance Model

Tis paper proposes a power security distance sensing
method based on the power density depth distance
sensing model according to the dense depth model [22].
Te specifc process of this method is shown in Figure 1.
Tis paper adopts the method of “ofine training + online
application” to build the power safety distance sensing
method, the model is constructed and trained ofine, and
then the trained model is deployed in the transmission
corridor video monitoring system for online application.
Under the optimization of the regularization method,
migration learning strategy, cosine annealing learning
strategy, and data enhancement strategy, the ofine
training phase is mainly to learn the mapping relationship
between image pixel information and the corresponding
depth distance information by power density depth
distance model.

Te online application is mainly to input the current
moment’s images into the trained power density depth
distance model to quickly obtain spatial distance in-
formation in complex scenes of transmission corridors.
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Ten, the spatial distance information based on the pixel
coordinate system is transformed into the depth estimation
structure based on the real coordinate system. At last, the
coordinate points are manually selected to calculate the
distance and judge whether the distance is lower than the
safety distance standard.

2.1. Depth Feature Extraction Codec Network Based on
DenseNet. Te network model is shown in Figure 2; the
network extracts the features of the input power system
image, aggregates the shallow features and deep features, and
extracts the fne structure features to ensure that the network
can efectively use the context information provided by the

deep features to help the depth estimation of a single point.
Te shallow features including object contour and position
information are efectively used to improve the overall ac-
curacy of the depth estimation algorithm.

Te core network of the method is a skip-connected
coder-decoder network which is based on the convolu-
tional neural network. In this paper, DenseNet-169 [23] is
used for feature extraction of power monocular images as
an encoder. Te last layer of each convolutional block of
the encoder is two bilinear sampling blocks and ReLU
activation function with parameters for downsampling,
which can obtain more spatial features while reducing the
difculty of calculation.
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Figure 1: Flowchart of power safety distance sensing method.
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Input a color monocular image. If the number of con-
volutional layers is the output eigenvector of the current
layer, which is expressed as follows:

x
l
j � f 􏽘

i∈Mj

x
l−1
i ∗ k

l
ij + b

l
j

⎛⎜⎝ ⎞⎟⎠, (1)

where the ReLU function is (·), the output of the current
layer is xl

j, and the convolutional operation is ∗, when the
single convolutional kernel of the current convolutional
layer is kl

ij and the table convolutional layer ofset is bl
j.

If the number of convolutional layers is m, Formula (2) is
the output eigenvector of the pool layer.

x
m
j � f βm

j down x
m−1
j􏼐 􏼑 + b

m
j􏼐 􏼑, (2)

where the softmax activation function is f(·), the connec-
tion weight is βm

j , the input of the current pool layer is xm−1
j ,

the input matrix summation operation is expressed as
down(·), and the current ofset is bm

j .
In this paper, the decoder is composed of convolutional

operation and bilinear upsampling operation. Te con-
volutional block of the corresponding encoder is jump
connected to the upsampling block of the corresponding
decoder. While expanding the feature map, the fne edge
structure feature map is obtained to reduce the feature loss.
Te feature map is the depth map directly output after the
convolutional operation. Te resolution of the output depth
map of the algorithm is 1/2 of the input image.

2.2. Model Loss Function. Te main meaning of the loss
function of the algorithm is to minimize the depth diference
between the predicted depth image 􏽢D and the original depth
imageD, and the image detail distortion of the reconstructed
depth image 􏽢D.

Te composition of the loss function of this algorithm is
shown in Formula (3).
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(3)

In this loss function algorithm, D is the original depth
image, 􏽢D is the reconstructed depth image, p is the pixel
point, n is the total number of pixels, and λ � 0.1 is the
weight parameter of depth loss.

Te frst line on the right side of the equation is depth
loss, which means that the pixel diference of the pixel
corresponding to the same position p of the reconstructed
depth image 􏽢D and the original depth image D is calculated.

Te second line on the right of the equation is the loss of
depth smoothness, which represents the minimum second
gradient L1 criterion defned on the depth image gradient g,
where gx and gy calculate the diference between the x and y

components of the depth image gradient, respectively.
Te third line on the right side of the equation is

the appearance matching loss structure similarity item, SSIM
[24]. SSIM is a commonly used measure in image re-
construction task and expressed as shown in formula (4).

SSIM(D, 􏽢D) �
2μDμ􏽢D

+ c1􏼐 􏼑 2σ
D􏽢D

+ c2􏼐 􏼑

μ2D + μ2􏽢D + c1􏼒 􏼓 σ2D + σ2􏽢D + c2􏼒 􏼓

. (4)

In SSIM algorithm, μD is the average value of the original
depth image D, μ􏽢D

is the average value of the reconstructed
depth image 􏽢D, σ2D is the variance of D, σ2

􏽢D
is the variance

of 􏽢D, σ
D􏽢D

is the covariance of D and 􏽢D, and c1 � (k1K)2 and
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Figure 2: Power density depth distance sensing model.
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c2 � (k2K)2 are the constants used to maintain stability. K is
the dynamic range of the pixel values, K � 255, k1 � 0.01,
and k2 � 0.03.

Te reciprocal of depth is used in the actual training
prediction of this algorithm. Dorigin is the original depth map
and D � M/Dorigin is the target depth map; M is the
maximum depth in the scene.

2.3. Coordinate System Transformation. Camera imaging is
to change the object to the photosensitive element of the
camera through multiple coordinate systems, in which the
coordinate systems involved are as follows: world coordinate
system (Ow − XwYwZw), which describes the real position of
the camera, inM; camera coordinate system (Oc − XcYcZc),
the origin is the optical center and the unit is m; image
coordinate system(o − xy), the origin is the midpoint of the
imaging plane and the unit is mm; pixel coordinate system
(uv), the origin is the upper left corner of the image and the
unit is pixel. As shown in Figure 3, p is a point in the world
coordinate system; point p with coordinate (x, y) is the
imaging point of point p in the image. (u, v) is the co-
ordinate of the pixel coordinate system corresponding to the
point. f is the focal length of the camera, representing the
distance from o to Oc.

Trough the abovementioned coordinate system con-
version, a conversion Formula (4) from the pixel to the
world coordinate system can be obtained:
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(5)

where the coordinate value of the coordinate point in the
camera coordinate system is Zc, which is obtained by the
power density depth distance sensing model. Te internal
parameters of the camera are the length and width of a single
pixel, represented by fx and fy. Te central coordinate of
the imaging surface is (u0 and v0). Te external parameters
of the camera are the rotation matrix R and ofset matrix T.
In this paper, the internal and external parameters of the
camera are obtained through Zhang Zhengyou calibration.

2.4. Safe Distance Calculation. After the conversion of the
pixel coordinate system and the real coordinate system, and
the manual selection of the coordinate points, it can be
determined whether the three-dimensional coordinates

enter the charged area. Te distance between coordinate
points is calculated as follows:

Te Euclidean distance between two points is directly
obtained from the three-dimensional coordinates
(Xk, Yk, and Zk) and (X, Y, andZ) of the two points in the
electrically selected monocular image of the power system:

d �

����������������������������

Xk − X( 􏼁
2

+ Yk − Y( 􏼁
2

+ Zk − Z( 􏼁
2

􏽱

. (6)

After the coordinate system conversion of two points of
a manually selected power system monocular image, the
distance between two points can be quickly calculated.

3. Structure Parameter Optimization and Data
Enhancement of Power Density DepthModel

To meet the need for high accuracy perception of power
safety distance, a regularization strategy is used to optimize
the power density depth model structure. Te model pa-
rameters are optimized by the migration learning strategy
and cosine annealing learning strategy in order to improve
generalization and detection speed. Finally, the sample data
are enhanced to improve the stability and accuracy of the
network. Figure 4 shows an example of actual sample data.

Temonocular image of the power system usually has far
and near scenes, and the texture and optical fow charac-
teristics in the image are not obvious. Secondly, the back-
ground of the image is more complex, and the image
background changes with the change of the four seasons.

3.1. Model Structure Optimization Based on Regularization.
In order to reduce the infuence of model overftting, this
paper uses a regularization strategy to optimize the model
structure, reduce the infuence of some parameters on the
model, and ensure that the model has a good training efect
on the actual data set.

Te specifc optimization step is to add regularization
terms to the loss functions of the convolutional and pooling
layers to reduce the sum of values of the parameters, and to
improve the accuracy and generalization of the model.
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Figure 3: Te coordinate system involved in camera imaging.
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3.1.1. Convolutional Layer Optimization. Te loss function
Lconv can reduce the diference between output and input
and simplify the feature expression. Te following is the
convolutional loss function Formula (6) after L2
regularization:

Lconv W, x
(l)

􏼐 􏼑 �
1
2m

􏽘

m

i�1
yl − W∗ xil( 􏼁

2
+ λRL2(w)⎡⎣ ⎤⎦,

(7)

where the convolutional kernel parameter with quantity n is
W � [w1, w2, · · · , wn]T. Te frst item is the expression
ability of the model. Te convolutional operation is repre-
sented by ∗, and the input of sample l with dimension m is
xl � [x1l, x2l, · · · , xml]

T. Te actual depth label of the sample
l is yl.

Te second item is the regularization term representing
the complexity of the parameters. Tis paper uses L2 reg-
ularization λRL2(w) to reduce the sum of parameter squares
and prevent overftting; λ is the regularization factor and
RL2(w) � 􏽐

n
j�1w

2
j .

3.1.2. Pooling Layer Optimization. Te following is the loss
function Formula (7) of the pooling layer after L2
regularization:

Lfc U, x
(k)

􏼐 􏼑 �
1
2m

􏽘

m

i�1
yk − Uxik( 􏼁

2
+ λRL2(u)⎡⎣ ⎤⎦, (8)

where the frst item is the expression ability of the model,
and the pooling factor with the number of t is
U � [u1, u2, · · · , ut]

T. Te second item is the regularization
term representing the complexity of the parameters, λ is the
regularization factor, and RL2(u) � 􏽐

t
j�1u

2
j .

When the regularization factor is too small, the re-
duction of model parameters is small, the model is still easy
to overft, and the model generalization is limited; when the
regularization factor is too large, the number of model
parameters is sharply reduced, and the whole network be-
comes a simple approximately linear network, the model
features ftting ability is seriously reduced, and the model
accuracy is decreased in detail. In order to balance the re-
lationship between the feature-ftting ability of the model
and the parametric size of the model, this paper repeatedly
verifes the setting of the regularization factor size based on
the sample data set to improve the accuracy and general-
ization of the model.

3.2. Migration Learning Shared Parameter Strategy.
Migration learning, which is widely used in image recog-
nition of power systems, will be used to train the target data
using network parameters learned from source datasets
[25, 26]. Migration learning can be divided into four basic
methods: based on sample migration, based on feature
migration, based on model migration and based on re-
lationship migration [27]. Tis paper uses a model-based
migration learning method by sharing the parameter in-
formation of the pretraining mode to realize the migration

Figure 4: Example of actual sample data.
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from large source domain datasets to specifc learning tasks
in the target domain.

For real images of power systems with complex back-
grounds, the convolutional neural network is difcult to
extract image features efectively and accurately, and it is
difcult to obtain enough samples to train the model in
practice. Tese factors will reduce the accuracy and gen-
eralization of model distance sensing. Terefore, this paper
uses the training strategies of transfer learning, deleting the
top-level DenseNet-169 network pretrained on ImageNet
[28] related to the original network classifcation task to
extract features from the actual sample data as an encoder,
efectively improving the accuracy and generalization of
the model.

3.3. CosineAnnealing Learning Strategy. Te learning rate of
a model is an important factor that afects its accuracy. Te
loss value of the network decreases too slowly at a lower
learning rate. Networks may be trapped in local optimum or
divergent when learning rates are high. During algorithm
training, network parameters are set by random initializa-
tion, so in order to reduce the loss quickly, the network
needs to set a larger learning rate. After several iterations, the
learning rate should be reduced to avoid local optimum or
divergence caused by too fast updating of network pa-
rameters. In this paper, we use the learning strategy of cosine
annealing, and the formula is as follows:

ηt � ηi
min +

1
2

ηi
max − ηi

min􏼐 􏼑 1 + cos
Tcur

Ti

π􏼠 􏼡􏼠 􏼡. (9)

In (9), i is the current index value, ni
max and ni

min rep-
resent the maximum and minimum learning rates, re-
spectively, they defne the range of learning rates. Tcur
denotes the number of epochs currently being trained, and
Ti represents the total number of epochs in the i-th training.
Te initial learning rate was set to 0.0001, the minimum
learning rate to 0.00001, the maximum learning rate set to
0.001, and the training epoch to 200.

3.4. Data Enhancement. Referring to the methods of Eigen
[29], this paper expands the sample data to make the model
have better generalization ability. Specifc data enhancement
operations include the following:

(1) Sample data are fipped horizontally, rotated 90
degrees and 180 degrees; the probability is 50%

(2) Sample data gamma values are randomly chosen
from the (0.5, 1.5) range; the probability is 50%

(3) Sample data color channels are randomly multiplied
by random numbers in the (0.5, 1.5) range for color
adjustment; the probability is 50%

(4) Randomly add 30% noise to the sample with a 50%
probability

(5) Te sample data are randomly multiplied by random
numbers in the (0.5, 1.5) range for brightness ad-
justment with a probability of 50%

As shown in Figure 5, the sample data are fipped, ro-
tated, gamma adjusted, color channels adjusted, random
noise added, and brightness adjusted.

4. Performance Test of Power Safety Distance
Sensing Method Based on Power Density
Depth Distance Sensing Model

In order to test the efectiveness of the power safety distance
sensing method based on the power density depth model,
this paper tests and compares the binocular camera [30],
SFMlearner unsupervised depth estimation [31], Mono-
Depth semisupervised depth estimation [32], DenseDepth
supervised depth estimation, and the power security distance
sensing methods based on power density depth-sensing
model to verify the validity of the methods presented in
this paper.

4.1. Experimentation Environment and Dataset Description.
Tis algorithm is based on Keras deep learning framework.
Te computer is confgured as Windows 10 operating sys-
tem, 8-core Core i7 processor, GTX2060 graphics card, 16G
memory.

As shown in Figure 6, the datasets for the experiment
are obtained from the transmission corridor monitoring
data from a province in China in recent years. Te dataset
is mainly based on the transmission channel scene with
fat ground and three-dimensional buildings. Tere are
2025 pairs of RGB image pairs taken by binocular cameras
and corresponding depth maps, ranging from 5 to 250m,
which are almost based on the point cloud data of the
transmission corridor and flled in the corresponding
pixel depth defcit under the guidance of the literature
[33]. Based on the average depth of each pair of data, the
dataset can be divided into 4 distance scenarios, re-
spectively. Te average depth and image quantity of each
scenario are shown in Table 1.

4.2. Evaluating Indicator. To evaluate and compare the
performance of various depth estimation techniques, this
paper adopts a common method of performance evalu-
ation for depth estimation techniques. Te method has
fve evaluation indices: AbsRel (absolute relative error),
RMSE (root mean square error), RMSE-log (logarithmic
root mean square error), SqRel (relative square error), and
% correct (threshold accuracy). Tis accuracy measure is
used as the accuracy [34] by calculating the ratio of pixels
whose maximum value is less than the threshold T to the
total pixels. Te formulas for these indicators are as
follows:
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(c) (d)

(e) (f)

(g) (h)
Figure 5: Continued.
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(10)

In the equation, Dp is the true depth value of the pixel
point p in the initial depth image, 􏽢Dp stands for the esti-
mated depth value of the pixel point p in the prediction
depth image, n is the total number of pixels, and T represents
the threshold value. In this paper, T � 1.25.

4.3.DepthMapDisplay. Scene depth is the distance from the
scene to the camera imaging center, which is usually visu-
alized by depth maps. Te color depth map uses color values
to represent the depth of image pixels [35], as shown in
Figure 7. In particular, in order to avoid the problem of too
large loss function value caused by too large original depth
value of transmission line scene, which afects network
training, the DenseDepth depth estimation method uses the
reciprocal of depth in actual training prediction, so its depth
map performance result is opposite to other methods except
for the binocular camera [36, 37].

4.4. Setting of Regularization Factor. For selecting the ap-
propriate regularization factor, this paper repeats the test
verifcation based on the power density depthmodel, and the
results are shown in Table 2. Table 2 shows that when
λ � 100, % correct is the highest and the detection speed is
relatively fast. Terefore, λ � 100 is selected for the regu-
larization factor.

(i) (j)

Figure 5: Example of actual sample data enhancement: (a) sample image, (b) rotation, (c) sample image, (d) gamma value adjustment,
(e) sample image, (f ) color adjustment, (g) sample image, (h) random noise, (i) sample image, and (j) brightness adjustment.

Figure 6: Examples of the dataset.

Table 1: Te detail of depth images datasets.

Resolution Average depth Training Testing Total

1920 ∗ 1080

50 213 46 259
100 275 87 362
150 410 157 567
200 621 216 837

Total 150 1519 506 2025
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4.5. Performance Evaluation of Depth and Distance Sensing
Method. In order to test the performance of the power-
intensive depth model proposed in this paper, this section
makes a qualitative and quantitative comparative analysis of
fve methods: binocular camera, unsupervised depth esti-
mation, semisupervised depth estimation, supervised depth
estimation, and the power-intensive depth model proposed
in this paper. Te test results are shown in Tables 2 and 3.

4.5.1. Qualitative Analysis. Table 2 shows the comparison
results between the depth estimation method and other
methods on the data set in this paper. Absolute relative error,
root mean square error, logarithm root mean square error,
relative square error, detection speed, and accurate threshold
are used in Table 3. Te model proposed in this paper has
signifcantly improved in error, detection speed, and
threshold accuracy. According to Table 4, the comprehen-
sive analysis is as follows:

(1) Due to the characteristics of transmission corridor
scene image texture, inconspicuous optical fow
features, and large scene range, the traditional bin-
ocular camera technology and the unsupervised
depth estimation SFMlearner algorithm have
a threshold accuracy δ < 1.5 of no more than 70%,
and the processing speed is greater than 1 sec/each,
making it difcult to achieve the transmission cor-
ridor scene ranging performance requirements.

(2) Semisupervised depth estimation MonoDepth ach-
ieves more accurate depth estimation by introducing

the binocular right view into the model as an ad-
ditional supervised signal on the basis of reducing
the difculty of data set acquisition. However,
matching corresponding pixels between binocular
images of transmission corridors is difcult, and the
reconstruction process of this method is vulnerable
in interference. Its root mean square error RMSE is
5.9764, and the percentage of pixels with large errors
in the prediction results is large. Terefore, the
method is less stable in the transmission corridor
scenario.

(3) Te supervised depth estimation DenseDepth and
the model proposed in this paper directly predict the
corresponding pixel depth values for the input
monocular images based on real point cloud data,
and their threshold accuracy reaches about 80%. By
optimizing the structure of the original DenseDepth
model through regularization and reasonably re-
ducing the model parameters, the detection speed of
the proposed model is improved by 31% compared
with that of DenseDepth, and thanks to the opti-
mized model training process by data augmentation
strategy, migration learning strategy, and cosine
annealing learning strategy; the network features are
extracted and ftted well. Te RMSE of the proposed
model is 5.4645 and the threshold accuracy is
85.36%. In summary, the generalization and accu-
racy of the power density depth model are improved
compared with the initial DenseDepth, which meets
the requirements of the transmission corridor sce-
nario for ranging performance.

4.5.2. Quantitative Analysis. Te qualitative comparison is
shown in Table 4. Te power density depth model proposed
in this paper has a good depth estimation efect, more local
details can be obtained, and ensure that the boundary of the
object is obvious. Meanwhile, it has good scene general-
ization and adaptability. According to Table 3, the com-
prehensive analysis is as follows:

(1) Te model proposed in this paper can obtain more
local details. As shown in the detection results of the
tower crane in the third row of the image, the power
line in the fourth row of the image, and power line
and distant trees in the ffth row of the detection

D
epth

Big
Sm

all

Figure 7: Color depth map representation.

Table 2: Infuence of λ value on the detection precision.

λ value Number of iterations % correct (%) Speed
(ms per sheet)

0 5000 83.12 102
84.46 79

50 5000 84.45 77
84.98 63

100 5000 84.93 71
85.81 59

200 5000 84.77 71
84.23 66

1000 5000 83.23 61
83.41 55
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image in Table 4, by optimizing the model param-
eters through transfer learning and cosine annealing
learning strategies, the feature extraction network of
the proposed method can extract more deep feature
information, so as to restore more scene details. It
can not only estimate the depth information of
smaller tower cranes, power lines, excavators, and
other objects, but also better restore the scene level.
However, as shown in the upper right area of the
image in row 6 of Table 4, the method proposed in
this paper may also cause the problem of depth
estimation error.

(2) Te model proposed in this paper has good depth
estimation continuity. As shown in Table 4, the
boundaries of the buildings in the upper left area of
the detection image in row 3 and the power lines in
the image in row 4 are clear and well correspond to
the RGB image. Tis method can efectively use the
shallow and deep features, reduce the loss of spatial
context features and scale context features, and
obtain good depth estimation performance at the
object boundary.

(3) Te model proposed in this paper has good scene
generalization and adaptability. As shown in the
image detection results in rows 1 and 2 in Table 4, the
scene test image with uneven ground and no three-
dimensional building is quite diferent from the data
set in this paper. However, it is obvious that by
optimizing the model structure through the regu-
larization method, the proposed method has a good
depth estimation efect. It is suitable for the depth
information estimation of distant details and can
better estimate the boundary depth information of
objects in the scene.

In summary, the power density depth model proposed
in this paper optimizes the model structure by regulari-
zation method and optimizes the model training process
by migration learning and cosine annealing learning
strategies, and fnally the model has a more reasonable
parameter training efect and quantity and has a better
depth estimation efect. Meanwhile, the method can ef-
fectively utilize shallow and deep features through a skip-
connected coder-decoder network, reduce the loss of
spatial context features and scale context features, and
estimate the depth information of distant details appro-
priately, which can better estimate the boundary depth

information of objects in the scene, with higher accuracy
and better scene generalization and adaptability to the
transmission corridor scenes.

4.6.ResultAnalysis of Power SecurityDistance SensingMethod
BasedonPowerDensityDepthModel. In this paper, the point
cloud data are used to calculate the two-point distance as the
real distance data to realize the comparative quantitative
analysis of the detection results of the power security dis-
tance sensing method based on the power density depth
model. Te experimental comparison results are shown in
Figures 8 and 9 and Table 5.

Comprehensive analysis shows that as shown in Figure 8,
when the method proposed in this paper detects the
transmission channel image of fat ground and three-
dimensional buildings similar to the model training data
set, the relative error between the calculated safety distance
and the point cloud data is the smallest, which is 11.067%. As
shown in Figure 8, when the proposed method detects the
transmission channel image with a large diference from the
model training data set, the error is the largest, which is
24.295%. Overall, the total average relative error of the
proposed method is 18.329%. While reducing the cost, the
relative error diference between the proposed method and
point cloud data is less than 20%. Tis method adopts
monocular depth estimation technology based on deep
learning. On the basis of reducing the cost of safe distance
perception, it can perceive the distance between far and near,
and improve the accuracy of monocular depth estimation
through image, so as to combine detection accuracy and ease
of deployment.

At the same time, there are many sources of error in the
comparison of results, including the error of training data
acquisition, the error caused by the calibration of internal
and external parameters of the camera, the error caused by
obtaining the coordinates of diferent objects and wire pixels
in the image, and so on.

Meanwhile, this paper compares the proposed method
with several commonly used transmission corridor moni-
toring methods, including traditional manual measurement
methods, video monitoring methods, and laser point cloud
diagnosis methods. Te performance indicators include
whether to support ranging, the relative error of ranging,
false alarm rate, processing time of each image, and whether
to support multiple scenes, and the comparison results are
shown in Table 6.

Table 3: Comparison between six kinds of computer vision methods on accuracy and speed.

Method
Lower is better Higher is

better

AbsRel RMSE RMSE-log SqRel Speed (per
picture) Correct (%)

Binocular camera 0.3398 7.9764 0.4283 1.8364 2.0 s 64.46
SFMlearner 0.3081 7.6983 0.4887 2.8249 1.0 s 68.42
MonoDepth 0.1898 5.9764 0.2283 0.8364 89ms 77.88
DenseDepth 0.1550 5.8630 0.2150 0.9051 1.0 s 79.98
Power density depth model 0.1378 5.4645 0.1932 0.8363 69ms 85.36
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Results show that in the transmission corridor scenario,
the monitoring performance of the traditional manual
measurement method is fair, but the method cannot achieve
real-time monitoring of the transmission corridor and
cannot meet the growing demand for external breakage risk
control in the transmission corridor. Although the common

monitoring methods based on video monitoring have now
been used on a large scale in the transmission corridor due to
their low cost, real-time monitoring, and good adaptability
to multiple scenes, the method is only through image rec-
ognition technology to detect the external broken object,
missing distance information; resulting in an alarm once the
monitoring perspective inside the external broken object, the
false alarm rate is extremely high, monitoring efciency is
low. Although the laser point cloud diagnosis method [7] has
the lowest relative error in distance measurement as well as
false alarm rate, the method requires a 3D point cloud model
for a single transmission corridor and is based on this model
for subsequent safety distance measurement of external
damage. Due to the large coverage of power system
transmission corridors, the method does not support
multiple scenarios and real-time detection, and the ap-
plication cost is extremely high, making it difcult to
promote its application. In contrast, by supervised depth
estimation, the proposed method can be based on the
existing transmission corridor video monitoring system
to achieve real-time measurement of the safety distance of
external damage at a low cost. By learning the existing
transmission corridor images and point cloud data, the
applicability of this method can cover most transmission
corridors and support multiple scenarios, while the false
alarm rate of the distance measurement error of this
method is relatively low, which can meet the demand of
transmission corridor monitoring.

Overall, the power security distance sensing method
based on the power density depth model in this paper is
a general method for power security distance sensing; simply
use the data corresponding to the scenarios of power security
distance perception for training. In this paper, based on the

Tis paper method distance: 205.783 m
point cloud distance: 168.741 m

Tis paper method distance: 14.978 m
point cloud distance: 16.843 m

Tis paper method distance: 143.574 m
point cloud distance: 116.251 m

Figure 8: Image 1 of the safety distance sensing result of this method.

Tis paper method distance: 35.662 m
point cloud distance: 40.502 m

Figure 9: Image 2 of the safety distance sensing result of this
method.
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examination of power system single objective images to
reduce the cost of the perception of the safe distance, the
method can efectively discover the safe distance between
manually selected monitoring points. At the same time, it
can have high accuracy and speed of the measurement of the
safe distance.

5. Conclusion

To tackle the problem of the recognition of the safety dis-
tance of external damage, a power safety distance sensing
method based on monocular visual images is proposed to
achieve the recognition of safety distance of external damage
in a complex scene of transmission corridors. Te specifc
conclusions are as follows:

(1) A power safety distance sensing method based on
supervised depth estimation is constructed, which
can be used to obtain spatial distance information at
low cost by inputting monocular images and realize
the safety distance of detecting external damage
based on the existing monitoring system, which can
efectively improve the monitoring efciency

(2) A power density depth distance model based on the
convolutional neural network is proposed and op-
timized by the regularization method, migration
learning strategy, cosine annealing learning strategy,
and data enhancement strategy, which can obtain
spatial distance information in complex scenes of
transmission corridors while maintaining good ac-
curacy and generalizability.

However, when the proposed method is used for feature
extraction, it is easy to ignore the features of the prospective
part, resulting in feature loss. Tis problem will be improved
in the follow-up work.
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