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Photovoltaic (PV) reconfguration is an efective solution for reducing the hot spot efect caused by partial shadows on PV arrays.
Tis paper proposed an efcient atom search optimization- (ASO-) based PV reconfguration method. Te analysis and
comparison with the other four reconfgurationmethods were performed by three evaluation criteria, which are mismatch loss, fll
factor, and standard deviation, respectively. Te conclusion can be drawn that the efciency, rapidity, and reliability of ASO are
superior to those of other methods. Besides, a moving cloud shadowmode of 9× 9-scaled PV array is designed in this paper, which
can be widely recommended to thoroughly study a PV reconfguration approach.

1. Introduction

With the continuous expansion of the scale of power
construction, the problem of excessive energy consumption
has reached an unprecedented level [1, 2]. As a nonrenew-
able resource, although fossil fuel has the advantages of
strong fammability and high calorifc values, its reserves are
quite limited [3, 4]. Te resulting deterioration of the eco-
logical environment and global warming has brought a very
serious threat to people’s survival and safety [5]. Due to the
increasing demand for energy and the decreasing reserves of
fossil energy [6], renewable energy sources are gaining more
and more attention and are gradually replacing most fossil
fuels [7], and one of the most promising energy sources is
solar energy [8].

Te solar cell is the core of the photovoltaic (PV) power
generation system, and its conversion efciency determines
the practical application capability of the entire system
[9, 10]. Te application of PV power generation systems is
complicated, and the single solar cell element cannot meet
the conversion requirements of photovoltaic panels for
power signal conversion [11].Tus, it is necessary to connect
multiple solar cell structures in series to form a solar cell

array to ensure the smooth application of PV systems [12]. In
the PV power generation system, the PV array can be un-
derstood as a combined connection form of solar cell ele-
ments [13]. Under the condition that the light intensity does
not change, the more the number of solar cell elements
connected in series, the more power the solar cell array has
and the stronger the conversion ability [14].

PV arrays, as the most commonly used device to obtain
solar energy, are widely used. PV cells are nonlinear devices
at the core of PV power generation, and their output
characteristics cause the PV array to work at a certain op-
erating voltage to generate maximum output power [15].
However, some unavoidable destructive factors greatly re-
duce the efciency of photovoltaic arrays. Partial shading
condition (PSC) occlusion is one of them, which not only
makes the output power curve appear multipeaks but also
causes damage to a PV panel and may reduce its service life
[16, 17]. In centralized PV systems, the series-parallel (SP)
structure and total-cross-tied (TCT) structure are two
commonly used structures in PV arrays [15]. Te advantages
of the SP structure are that the structure is relatively simple
and that installation is convenient. In the TCT structure,
modules are frst connected in parallel to achieve the
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required output voltage, and then, these strings are con-
nected in series to ensure that the output voltage reaches the
voltage range required under normal operating conditions
[18]. TCT is more stable and has higher efciency than SP in
most cases; thus, it is used in this paper to achieve better
reconfguration performance.

In recent years, some researchers have put forward a new
idea to reduce the hot spot efect caused by partial shadows
on PV arrays, which is called PV reconfguration [19].
Specifcally, reconfguration means that the PV array
changes the position or connection method of the corre-
sponding components according to the type of shadow so as
to balance the irradiance of each row or column and improve
the output power of the array [20]. PV reconfguration does
not require manual intervention, and the whole process
automatically achieves preset goals, which is more fexible
and easier to implement [21]. Some researchers have de-
veloped a static PV reconfguration technique to change the
physical structure of PV panels. In this technique, PV
modules that are shaded will be replaced by unshaded
modules according to some established rules so as to keep
the output current in diferent rows consistent, such as in the
Sudokumethod [22], zig-zag method [23], skyscraper puzzle
[24], and Lo Shu method [25].

However, complex PSC will cause worse accuracy, ef-
fciency, and performance of PV reconfguration. Terefore,
using the dynamic reconfguration to dynamically balance
each row of the photovoltaic array can facilitate the tracking
of the maximum power point and lay a foundation for
further improving the efciency of PV systems [26]. Existing
dynamic reconfguration usually uses heuristic algorithms to
gain the best reconfguration solution, thus achieving fast
and accurate optimization [27]. Te switch matrix changes
the electrical connection between modules according to the
optimal confguration of the algorithm output, thus realizing
photovoltaic reconfguration. Figure 1 shows a schematic
diagram of a switch matrix consisting of a single-pole
multiple-throw switch. Some researchers proposed difer-
ent matrix switches for photovoltaic arrays of diferent
scales, which can reconfgure the array quickly and fexibly
and efectively improve the average output power and
conversion efciency of the array [28]. Te immediate
purpose of PV array reconfguration is to evenly distribute
uneven shadows across the whole array. Te premise of
reconfguration is to obtain the key parameters and data of
PV arrays. In the static reconfguration technique, irradiance
and temperature as well as voltage and current through PV
cells are collected and then transmitted to the computational
model of PV arrays. Afterward, the control unit deduces the
optimal confguration following certain strategies and then
shifts the modules using mechanical devices. Similar to the
static reconfguration technique, the frst step of a dynamic
reconfguration technique is to acquire the data by using
various sensors. Subsequently, these data are imported into
the computational model of PV arrays that can simulate the
operation characteristics of the array. Ten, the central
control unit deduces the optimal confguration with the help
of the reconfguration algorithm. After that, the optimal
confguration is transmitted to the switch matrix. As the

execution unit, the switch matrix alters the electrical con-
nection among panels or modules according to the new
confguration. Trough such a set of actions, the target of
mitigating the impact of PSC and improving the power
output is realized. Te general structure of the reconfgu-
ration technique is exhibited in Figure 2.

In [29, 30], detailed discussions of reconfguration
techniques that have been developed are given. In [31], the
engineering practicability of the PV reconfguration tech-
nique is illustrated. Tis paper proposed an atom search
optimization-based PV reconfguration method, which has
better performance than other PV reconfguration methods
in this paper.

2. ModellingofPVSystemsunder the Shadowof
Moving Clouds

2.1. Total-Cross-Tied PV System Modelling. A 9× 9 TCT-
interconnected PV array is used in this work, which is
shown in Figure 3. TCT confguration is the most widely
used connection and has been proved to be the most stable
topology of PV arrays. It is worth noticing that this con-
fguration technology does not change the original position
of the PV array but changes its electrical connection. Te
total output voltage of the PV array can be written as follows:

Vout � 
9

a�1
Vmaxa, (1)

Iout � 
9

a�1
Iab − I(a+1)b 

� 0, a, b

� 1, 2, 3, . . . , 9,

(2)

where Vout is the output voltage of the PV array, Iout is the
output current of the PV array, Vmax a is the maximum
voltage of ath row, and Iab is the node current at the ath row
and bth column.

In particular, Figure 4 shows the fowchart of PV
reconfguration based on ASO.

2.2. Shadow ofMoving CloudModelling. In real projects, the
shielding of large-scale PV arrays is mostly caused by clouds
and the shape and position of clouds change continuously
with time [32].Te output characteristics of the PV array are
seriously afected by cloud covering situations. On this basis,
the PV system needs to research and design the reconf-
guration method, maximum power point tracking (MPPT),
inverter, grid connection, and other measures to promote

ę ę

Figure 1: Structure of the switching matrix.
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the efciency of the PV array. Terefore, it is necessary to
establish the output characteristics model of the PV array in
the case of moving cloud shading. By describing the moving
cloud shadow itself and its motion factors, the target shadow
of the object to be studied can be modelled [33]. Shadows
blocking the PV array can be seen as projections on the
horizontal plane of the PV array; hence, the movement of
shadows can be regarded as the movement of particles.

Tis paper considered the shape of cloud and moving
cloud shadows in 9minutes with diferent irradiation values
from 300W/m2 to 1000W/m2, which can ofer reference for
researchers in related felds.

2.3. Evaluation Criteria. Tere are three evaluation criteria
to measure the simulation results of proposed ASO and

other comparison methods. Tey are, respectively, (a)
mismatch loss [20], (b) fll factor [20], and (c) standard
deviation [34].

(i) Mismatch loss
Te mismatch loss is defned as

Pmi � PG(unshaded) − PG(shaded), (3)

where PG(unshaded) is the global maximum power of
the unshaded PV system and PG(shaded) is the global
maximum power of the partially shaded PV system.

(ii) Fill factor
Te fll factor (f) is a critical criterion to denote the
power loss of PV systems under PSC, which is given
in the equation:

ff �
Vp × Ip

Vo × Is
, (4)
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Figure 2: Structure of the reconfguration technique.
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Figure 4: Flowchart of PV reconfguration based on ASO.
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where Vp and Ip are the voltage and current of PV
systems at the local maximum power point, re-
spectively, and Vo and Is are the open-circuit
voltage and short-circuit current of the PV array,
which are usually given by manufacturers.

(iii) Standard deviation
In this paper, standard deviation (STD) is used to
evaluate the reconfguration stability of heuristic
algorithms.

2.4. Problem Formulation. When series-connected PV
panels are all working properly under PS conditions, they
will operate at points which are deviated from their maxi-
mum power point, respectively, resulting in a decrease in the
obtained power. In order to impair the infuence of mis-
match loss caused by the occurrence of PSC, reconfguration
technologies are used to equalize the irradiation of each
column and thus realize the maximization of output power,
which can be written as

Pmax � max 
9

a�1
Ia∙Va

⎛⎝ ⎞⎠, (5)

where Ia and Va represent the output current and output
voltage of each row.

3. Atom Search Optimization-Based
Reconfiguration Method

3.1. Mathematical Formulation of ASO. Atom search opti-
mization is an efcient heuristic algorithm that was pro-
posed by Zhao in 2019 [35]. It simulates the interatomic
displacement caused by atomic attractive and repulsive
forces in molecules.Temechanism of optimization is based
on the specifc mass and acceleration of diferent atoms,
including update acceleration of atoms, update velocity of
atoms and update position of atoms.

In the ASO algorithm, in order to strengthen the global
exploration ability at the initial stage of iteration, each atom
needs to interact with more neighboring atoms with better
ftness. In the later stage of iteration, in order to enhance
local development and promote algorithm convergence,
each atom needs to interact with fewer neighboring atoms
with better ftness.

It is assumed that an atom represents a PV module. Te
entire population consists of several atoms. It is worth
noting that PV array reconfguration changes the modules’
electrical connection with diferent rows in the same column
and hence balances the current of each line of modules.
Atomic motion follows Newton’s second law: the acceler-
ation of the atom is related to its mass and is generated by the
interaction between atoms and the geometric constraint of
the optimal atom on it. Terefore, the acceleration of the ith
atom at iteration t is as follows:

ai(k) �
Fi(k) + Gi(k)

Mi(k)
, (6)

where ai is the acceleration of the ith PVmodule, Gi(k) is the
constraint force between atoms determined by positions and
fxed bond length at kth iteration, Mi(k) is the mass of the
ith atom at kth iteration, and Fi(k) is the total force acting on
the ith atom at kth iteration, which can be expressed as
follows:

Gi(k) � −2δ(k) pi(k) − pbest(k)( ,

Fi(k) � 
j∈Nbest

r n(k) h
7
ij(k) − 2h

3
ij(k)  ,

Mi(k) �
e

fi(k)− fbest(k)/fbest(k)− fworst(k)( )

 fi(k) − fbest(k)/fbest(k) − fworst(k)( 
,

(7)

where δ(k) is the Lagrangian multiplier, which changes with
the number of iterations, expressed by δ(k) � βe− 20k/kmax , β is
the multiplier weight, pi and pbest are the position of the ith
atom and the best position among all atoms, respectively, r is
a random number between [0, 1], n (k) determines whether
an atom is attracted or repulsed, which can be expressed by
n(k) � α(1 − k − 1/kmax)

3e− 20k/kmax , α is a weight factor, hij is
the distance between two atoms, and fi(k), fbest(k), and
fworst(k) are the ith ftness value, best ftness value, and
worst ftness value at kth iteration, respectively.

Te velocity of the ith atom at kth iteration will be
updated by the following equation:

vi(k + 1) � rivi(k) + ai(k). (8)

Te position of the ith atom at kth iteration will be
updated by the following equation:

pi(k + 1) � pi(k) + vi(k + 1). (9)

3.2. Overall Process of ASO-Based PV Reconfguration.
Te algorithm pseudocode of ASO-based PV reconfgura-
tion is as follows (Table 1).

4. Case Studies

4.1.Classical 9× 9PVArray. To verify the efectiveness of the
reconfguration algorithm, various sizes of PV arrays and
diferent shading modes are often simulated. In this section,
the most frequently used 9× 9 PV array is used to verify the
efect of ASO, and the shadow of moving cloud in 9minutes
has been carried out to cooperate with the simulation ex-
periment in this paper.Te simulation tool used is MATLAB
2020a. Besides, the PV model and its parameters are pro-
vided in Table 2, and several reconfguration methods, e.g.,
Sudoku [22], ant colony optimization (ACO) [36], genetic
algorithm (GA) [37], and particle swarm optimization (PSO)
[38], are also constructed for performance comparison. Run
times, iteration, and the population number of each algo-
rithm are set to be 20, 100, and 10, respectively. α and β of
ASO are set to be 50 and 0.2, respectively. Figure 5 shows the
shading mode of moving clouds in 9minutes before
reconfguration. Figure 6 shows the best reconfguration
results of ASO in 9minutes under the shadow of moving
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clouds. It can be seen that the shadow is spread evenly
compared to before reconfguration.

When the PV array is optimized by ASO, the inner
connection of the PV array is changed according to the best
optimization result gained by the algorithm. Te maximum
optimized output power and the minimum output power of
each heuristic algorithm in 20 run times and the mismatch
loss and the fll factor of each method are presented in
Table 3. It is apparent that heuristic algorithms get the best
optimistic efect and that Sudoku takes second place. Among
all algorithms, Pmax and Pmin gained by ASO are both higher
than those obtained by other algorithms, and the STD of
ASO is smaller than that of other algorithms, which illus-
trates the high stability of ASO. It is obvious that the
mismatch loss and f of ASO behave better in performance
among all algorithms. Te optimal mismatch loss gained by
ASO is 38.13%, 20.93%, 2.49%, 3.75%, and 0.51% lower than
that of before optimization, Sudoku method, ACO, GA, and
PSO, respectively, and optimal f gained by ASO is 20.70%,
7.95%, 0.71%, 1.15%, and 0.13% higher than that of before
optimization, Sudoku method, ACO, GA, and PSO,
respectively.

Figure 7 shows the output I-U curves and P-U curves of
before optimization, Sudoku method, GA, and ASO in
9minutes. It is observed that, when there are more shadows,
output characteristic curves get less smooth. Te output I-U

curves usually have a lot of infection points, and the output
P-U curves have a lot of peaks. Taking the 4th minute as an
example, there are 6 power peaks before reconfguration.
After optimization, power peaks have, respectively, de-
creased to 3 and 2 by the Sudoku method and GA. ASO has
reduced the number of power peaks to one, which com-
pletely clears the local peaks. Hence, ASO has achieved
a remarkable reconfguration efect compared to other
methods in this paper.

A timely provided PV array reconfguration scheme is
a signifcant evaluation criterion of the PV reconfguration
approach [39]. Table 4 provides the simulation time (s) of
diferent reconfguration methods compared with TCT
confguration including ASO and other algorithms. Te
provided time data are calculated by each algorithm’s av-
eraged running time in the presented three cases. To ensure
the fairness of each algorithm’s simulation time, the pop-
ulation size and the max iteration number are all set to be 25
and 200, respectively.Te provided data have shown that the
operating speed of ASO is the highest, while GA ranks
second. So it is obvious that the proposed approach is
preferable to the other algorithms used in this paper.

4.2. Hardware-in-the-Loop Experiment. To ensure the real-
time response capability of the used PV array, this paper
proposed real-time hardware-in-the-loop experiment based

Table 1: Te detailed pseudocode of the ASO-based PV reconfguration method.

(1): TCT PV system modelling by equations (1) and (2)
(2): Initialize: algorithms parameters (population number, iteration number, etc.)
(3): Generate PV module shadow distribution randomly
(4): Calculate the output power of each PV array according to equation (5) and keep it as the current optimal output power and optimal
shadow distribution
(5): While k≤ kmax
(6): Update the acceleration of each atom by equation (6)
(7): Update the velocity of each atom by equation (8)
(8): Update the position of each atom by equation (9)
(9): Calculate the output power of each PV array again and update the optimal shadow distribution and optimal output power
(10): Set k� k+ 1
(11): End while
(12): Output: best shadow distribution of PV arrays and the maximum output power
(13): Calculate mismatch loss, f of the optimal solution, and STD of simulation results of ASO in 20 runs

Table 2: Te concrete parameter of PV modules.

Parameters Value
Module American Solar Wholesale ASW-280M
Number of parallel strings 1
Number of series-connected modules per string 1
Number of cells per module (Ncell) 72
Maximum power per module (W) 280.1567
Open-circuit voltage per module (V) 43.99
Short-circuit current per module (A) 8.14
Voltage at the maximum power point per module (V) 37.01
Current at the maximum power point per module (A) 7.57
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on the RTLAB platform to evaluate the output character-
istics under diferent temperatures and irradiance which is
shown in Figure 8. For comparison, a simulation based on
the MATLAB 2020a platform is introduced. Figures 9 and
10, respectively, show that the simulation results under
diferent temperatures and irradiation obtained by the

RTLAB platform and MATLAB platforms basically co-
incide. Tese results illustrated that the maximum output
power of the PV array is linearly rated to input irradiation.
By contrast, the input temperature has little infuence on the
maximum output power. Because the above two platforms
remain consistent through the simulation, all the case
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Figure 5: Te irradiation of each PV array in 9minutes under the shadow of moving clouds.
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Figure 6: Optimal irradiation scheme of PV arrays by ASO in 9minutes under the shadow of moving clouds.
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Figure 7: I-U and P-U curves of PV arrays with the PSC of moving clouds in 9minutes: (a) 1min; (b) 2min; (c) 3min; (d) 4min; (e) 5min;
(f ) 6min; (g) 7min; (h) 8min; (i) 9min.
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Table 4: Te simulation time (s) of diferent reconfguration methods.

Time
(s) 1min 2min 3min 4min 5min 6min 7min 8min 9min Average

ASO 0.456 0.513 0.529 0.507 0.504 0.48 0.528 0.511 0.514 0.505
ACO 5.408 5.438 5.385 5.448 5.407 5.47 5.386 5.404 5.389 5.47
GA 1.151 1.478 1.151 1.28 1.121 1.318 1.358 1.499 1.274 1.277
PSO 4.798 4.724 4.717 4.698 4.633 4.593 4.567 4.567 4.603 4.649
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Figure 8: Te RTLAB platform-based real-time hardware-in-the-loop experiment.
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Figure 9: Output characteristic of each PV array obtained by RTLAB and MATLAB platforms under diferent temperatures when
G� 1000W/m2: (a) I-U curves and (b) P-U curves.
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studies in this paper are undertaken in MATLAB R2020a by
using a desktop computer with Intel(R) Core TM i7-8650U
CPU at 2.11GHz with 8GB of RAM.

5. Conclusions

Tis paper proposed an ASO-based PV array reconfgura-
tion technique. Tis approach is realized by discretizing the
original ASO algorithm and combining it with a PV
reconfguration approach. ASO can provide the optimal
solution in real time; thus, the local optimal solution can be
avoided. By comparing the output power, mismatch loss, fll
factor, standard deviation, and output characteristic curves
of ASO, Sudoku, ACO, GA, and PSO quantitatively, the
superiority of ASO is proved. Moreover, the HIL experiment
has proved the hardware feasibility of the ASO-based PV
reconfguration method. Besides, a novel shading mode of
moving clouds is proposed, which can be applied in related
studies for researchers. Future research will address the
practical problems of ASO, the defects of ASO should be
improved to improve the efciency of algorithm optimi-
zation, and ASO should be applied to larger photovoltaic
arrays [40].
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