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With the fast growth of electronic technology today, the hybrid circuit of analog and digital circuits has become a trend in the
growth of electronic technology. To address fault diagnosis in analog circuits, Haar wavelet is applied for fault feature extraction.
Te K-means clustering method and pseudoinverse algorithm were used to optimize the center value and weight value of the
radial basis function neural network, respectively. Te adaptive step size was improved in the wolf pack algorithm, the parameters
of the radial basis function neural network were optimized based on the wolf pack algorithm, and a wolf pack algorithm optimized
radial basis function neural network model was constructed. Te test results show that this model converges after 40 times of
training, with an error value of 10− 3 and an average value of the mean squared error of 0.45. Comparing the fault diagnosis rates of
the original model, genetic algorithm optimized radial basis function neural network model, and wolf colony algorithm optimized
radial basis function neural network model, the last model has the best fault diagnosis rate, reaching 95.52%. Te wolf colony
algorithm is utilized to optimize the radial basis function neural network model to diagnose the faults in the standard flter circuit,
and the fault diagnosis rate reaches 96.17%.Te fndings express that the radial basis function neural network model optimized by
the wolf colony algorithm has a good diagnosis efect for diferent faults in the analog circuit.

1. Introduction

Analog circuits (ACs) are circuit systems composed of
various electronic components that can generate simple or
complex output signals for continuous input signals. ACs
have a crucial impact on modern electronic technology and
can be utilized in various felds [1]. In the design and
manufacturing of ACs, due to open or short circuits in
electronic components, the signal in the circuit is inter-
rupted or the current is too high, resulting in open or short
circuit faults. It is also possible that the capacitor may
malfunction, resulting in abnormal transmission or pro-
cessing of signals in the circuit [2]. Terefore, locating and
diagnosing faults in ACs while ensuring their integrity is an
indispensable part of AC design and manufacturing. To
solve fault diagnosis (FD) in ACs, this research uses Haar
wavelet to extract fault features, improves the adaptive step

size in the wolf colony algorithm, and optimizes the radial
basis function (RBF) based on the wolf colony algorithm
(WCA). Te neural network model of the wolf colony al-
gorithm is constructed to optimize the RBF.

Tis study contains four parts. Te frst part is the re-
search on the diagnosis methods of circuit faults and the
application of RBF neural network by scholars all over the
world. In the second part, fault features are extracted by
using the accurate characteristics of signal analysis of the
Haar wavelet.Te K-clustering algorithm and pseudoinverse
algorithm is introduced to optimize the center and weight
values of radial basis function neural networks. Based on
WCA, the RBF is further improved to build the AC diagnosis
model. Te third part is the performance test of wolf colony
optimization RBF and its utilization in an example. Te
fourth part summarizes the article and proposes
shortcomings.
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2. Related Works

FD of ACs is themonitoring and locating of possible faults in
ACs. FD plays a crucial role in AC design and
manufacturing, helping engineers to quickly and accurately
detect and repair faults. Some scholars have conducted
relevant research on FD methods applied to circuit faults.
Moezi and Karga [3] proposed a multiobjective optimization
fault classifcation method based on Hellinger distance,
which extracted fault features using intrinsic modulus
functions and preserved useful features using nondominated
sorting genetic algorithms. Moreover, support vector ma-
chines and neural networks were used for fault identifca-
tion.Te efectiveness of this method has been demonstrated
through experiments. Kou et al. [4] analyzed the problem of
open circuit FD and location in neutral point circuits and
proposed an FD method. It improved the robustness of FD
classifers by using knowledge-driven transformations and
data-driven techniques. It analyzed and extracted AC fault
feature data of inverters, transformed the data to process
fault samples, and validated that the slope of the current
trajectory was not infuenced by diferent loads. Trough
experiments, it has been proven that this method has strong
predictive ability when used in circuit FD. Huang et al. [5]
put forward a circuit FD method with model predictive
control, which mainly included fault detection and location.
Tis model could not only monitor the condition of the
driving system but also distinguish the types of faults.
Terefore, faults could be accurately monitored and located.
Te performance and robustness of FD were evidenced
through examples. Based on the converter circuit switch FD
method, Zhou et al. [6] selected the inductance current in the
main controller system as the diagnostic variable and in-
troduced an adaptive threshold to handle the uncertainty of
converter circuit parameters and the impact of changes in
converter operating points. Tis method avoided the use of
additional sensors and had good robustness against false
alarms. Trough simulation experiments and analysis, this
method had stability and efectiveness for FD in circuits.

RBF has better learning speed and generalization per-
formance than traditional feedforward neural network, so it
is often used in complex real-time applications. Some
scholars have studied the application of RBF. Sun et al. [7]
raised an amplitude saturation controller. Based on RBF, the
amplitude saturation controller was improved, and a su-
pervisory controller based on RBF was raised. Te proposed
control method’s efectiveness and robustness in time delay
were verifed through simulation experiments. Lu et al. [8]
proposed a teaching quality assessment method with genetic
algorithm optimized RBF (GA-RBF) to solve the low quality
of English interpretation teaching at present. Principal
component analysis was applied to choose teaching quality
assessment metrics, and GA was utilized to improve the
initial weights of the model. It was proved that this method
could well assess the quality of interpretation teaching, with
perfect accuracy and real-time efectiveness. Based on
multilayer perceptron and RBF, Hashem Fath et al. [9] raised
an intelligent reliable model to estimate the solution gasoline
ratio. Te model was tested using crude oil samples from

around the world, and the results showed that the predicted
values of the samples were consistent with the true values,
demonstrating strong consistency. Comparing the improved
model with the traditional model, the model exhibited
higher accuracy and efciency. Yao et al. [10] proposed an
adaptive control strategy. Te RBF was used to adaptively
adjust the virtual inertia value, improve the response of the
model, and reduce the frequency overshoot. Te damping
coefcient was adaptively adjusted with changes in inertia.
Te research outcomes indicated that this method had good
vibration reduction performance. Based on the research
status of gesture recognition of EMG signals, Yu et al. [11]
used the PSO (particle swarm optimization) algorithm to
optimize RBF’s center and width values and conducted noise
reduction processing and segmentation detection on the
basis of summation. Simulation experiments have shown
that the model achieved a high recognition rate in gesture
recognition. Sohrabi et al. [12] used two time series and the
RBF method to estimate the coal price. Te time series
method used Monte Carlo simulation and MATLAB soft-
ware to estimate coal prices. Collecting daily coal price data
from 2018 to 2020 and using this model for testing, the
experimental results achieved high accuracy in estimating
coal prices.

In summary, in circuit fault identifcation, there are
diferent diagnostic methods for diferent faults. Tis study
utilizes the Haar wavelet to extract fault features. Also, in-
troduce the K-clustering algorithm and pseudoinverse al-
gorithm to optimize the center value and weight value of the
radial basis function neural network. Based on the wolf pack
algorithm, further improve the radial basis function neural
network and construct an analog circuit diagnosis model.
Terefore, the fault identifcation method based on RBF
plays an important role in AC fault identifcation.

3. Fault Feature Extraction and FD
Model Construction

ACs are broadly utilized in production and daily life, and the
increasing complexity of circuit systems has led to im-
provements in circuit FDmethods.Tis section is composed
of three parts for research. Te frst part utilizes the accurate
characteristics of the Haar wavelet in signal analysis to
extract fault features. Te second part optimizes the RBF
from diferent angles. In the third part, based on the WCA,
the RBF is further improved to build an AC diagnosis model.

3.1. Fault Feature Extraction of Haar Wavelet. Before
extracting fault features, it is necessary to detect and rec-
ognize faults. Random resonance is a nonlinear signal
processing method that can efectively identify faults. Te
principle of stochastic resonance is to use a nonlinear os-
cillation system to process the input signal and adjust the
system parameters to match its frequency with the fault
component frequency of the signal. When the system fre-
quency is close to the frequency of the fault component, the
amplitude will signifcantly increase, making the fault
component prominent. Haar wavelet is the simplest wavelet
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function with the characteristics of fast computation and
high efciency. It can provide accurate local information in
time and frequency and is often used in the felds of signal
compression and edge detection. Haar wavelet belongs to
a type of wavelet transform and is widely used in FD re-
search. Based on iterative operation and fast Fourier
transform, the Haar wavelet can perform multiscale analysis
on signals, capture signal characteristics at diferent fre-
quencies and scales, and has strong multiscale analysis
ability [13]. When a circuit malfunctions, compared to other
wavelet functions, the Haar wavelet can extract high-
frequency and low-frequency information in analog cir-
cuits faster, reduce the input dimension of the neural net-
work, and simplify the structure of the neural network. In
the Haar wavelet transform, signals can be decomposed into
two parts: approximate functions and detail coefcients. By
decomposing the signal multiple times, approximate and
detailed information at diferent scales can be obtained until
the set scale is reached or no further decomposition can be
performed [14]. Te Haar wavelet satisfes the two scale
equation, as displayed in the following equation:

ω(x) � 􏽘
k∈Z

ckω(2x − k), (1)

where ck means the wavelet coefcient; ω(x) represents the
scaling function; k denotes the displacement parameter; x

indicates the independent variable of the wavelet function.
Te Haar wavelet equation is shown in the following
equation:

ϕ(x) �ω(2x) − ω(2x − 1), (2)

where ϕ(x) denotes wavelet, and when the wavelet co-
efcients ck are equal to − 1 and 1, the wavelet is expressed as
Haar wavelet. Te waveform and scaling equation of the
Haar wavelet are shown in Figure 1.

By using the Haar wavelet transform, the original signal
is decomposed into subsignals of diferent scales and fre-
quencies, which can efectively process some transient sig-
nals [15]. When processing the signal, a step function is
recommended to approximate the signal, and the original
signal expression is shown in the following equation:

fj(x) � 􏽘
k∈Z

c
j

kϕ 2j
x − k􏼐 􏼑 ∈ Vj, (3)

where c
j

k means the wavelet coefcient; k denotes the dis-
placement parameter; x expresses the independent variable
of the Haar wavelet function; Vj indicates the step function.
It decomposes fj using the decomposition expression
shown in the following equation:

fj � fj− 1 + wj− 1, (4)

where fj refers to the initial signal; wj− 1 stands for the
approximate signal; wj− 1 represents diferent components.

Te signal is discretized, and the approximate signal is
decomposed. Te expression for further decomposition is
shown in the following equation [16]:

fj � wj− 1 + wj− 2 + wj− 3 + · · · + w0 + f0, (5)

where wj− 1 + wj− 2 + wj− 3 + · · · + w0 denotes subsignals of
diferent frequencies and f0 expresses an accurate
approximation.

When processing the signal, removing the
wj− 1 + wj− 2 + wj− 3 + · · · + w0 in equation (5) can achieve
denoising of the signal. By removing the smaller values in
wj− 1 + wj− 2 + wj− 3 + · · · + w0 and retaining the larger ab-
solute values, data compression processing can be achieved.
When an AC malfunctions, the extracted signals may difer
between high- and low-frequency signals. Haar wavelet can
transform the coefcients of high- and low-frequency parts
to obtain new energy value combination features. Te Haar
wavelet decomposition diagram is shown in Figure 2.

When a circuit malfunctions, the high- and low-
frequency parts will be diferent. Te fault features
extracted by the Haar wavelet are composed of energy values
converted by coefcients at diferent frequencies. First, it
needs to sample and extract the fault signal and perform
wavelet decomposition to obtain high- and low-frequency
coefcient sequences. Ten, three-layer wavelet de-
composition is performed on the sampling sequence
number, as shown in Figure 2. When an AC malfunctions,
the extracted signals may difer between high- and low-
frequency signals. Haar wavelet can transform the co-
efcients of high- and low-frequency parts to obtain new
energy value combination features [7]. Te energy expres-
sion is shown in the following equation:

0.1+
(E − min(E))

(max(E) − min(E))∗ (0.9 − 0.1)
, (6)

where max(E) refers to the maximum energy value and
min(E) stands for the minimum energy value.

By decomposing the Haar wavelet, the algorithm can
achieve simple operations and is suitable for real-time
processing and embedded system scenarios, improving
the calculation speed of the algorithm. Moreover, wavelet
decomposition provides a special multiscale analysis
framework, enabling efcient feature signal extraction and
noise removal [17].

3.2. Construction of RBF Neural Network Optimization
Model. RBF is a feedforward neural network. It is applied in
function approximation, classifcation, and data mining by
using RBF as an activation function [7].Te structure of RBF
is composed of three layers. Te input layer receives the
feature vectors of the samples as the input values of the
model. Te hidden layer performs nonlinear processing on
the features of the input layer, and the output layer can
provide target values for output based on the output values
of the hidden layer [18]. Te structural diagram of the RBF is
shown in Figure 3.

In Figure 3, the input and output values can be repre-
sented by an input vector and an output vector, respectively.
Te expression of the k-th output value in the model is
shown in the following equation:
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yk � 􏽘
h

i�1
Wik ∗ ϕ x − ci

����
����, δi􏼐 􏼑, (7)

where ‖x − ci‖ stands for the norm of the vector value x − ci;
ci denotes the center vector; δi refers to the basis function
width; Wik expresses the hidden and output layers’ weights.
It selects the Gaussian function as the basis function of the
RBF, as expressed in the following equation:

ϕ x − ci

����
����, δi􏼐 􏼑 � exp −

x − ci

����
����

δ2i

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼨 􏼩. (8)

In equation (8), although RBF has many advantages, they
also have shortcomings. When using RBF networks, most of
the time, parameter values such as center, width, and weight
are randomly generated. However, the randomly generated
values are difcult to achieve the desired optimal value. Te
training speed of RBF is relatively slow, so in the early stage
of training, the K-means clustering method is introduced to
fnd the center vector. First, it initializes the RBF, determines
the amount of input nodes and hidden layer nodes, and
selects a vector with the same number of training samples as
the initial clustering center. Select K vectors with the same
number of training samples as the initial clustering center,
and the clustering center is c1, c2, · · · , cK. It calculates the
Euclidean distance between the input initial value and the
cluster center point and performs similarity matching on the
samples based on the minimum Euclidean distance [19].Te
sample clustering distance satisfes the following equation:

dj �min xi − cj

�����

����� (j � 1, 2, · · · , k), (9)

where dj indicates the minimum Euclidean distance;
min‖xi − cj‖ denotes the minimum norm value of the vector
value; cj stands for the center vector.
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Figure 1: Waveform diagram and scaling function diagram of Haar wavelet function. (a) Haar scaling function. (b) Haar wavelet.
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It integrates all clustering sets and then takes the mean of
the sample values. If the distribution of the sample keeps
changing, it repeats the Euclidean distance and means
calculations until the cluster distribution remains un-
changed, and the fnal output cluster center is the center
vector cj obtained. Te dispersion degree equation of each
cluster point is shown in the following equation:

djinner�

����������

􏽘 xi − cj

�����

�����
2

􏽲

, (10)

where
����������
􏽐 ‖xi − cj‖

2
􏽱

refers to the square of the sum of the
minimum norm values of the vector values. Te K-means
clustering method fowchart is shown in Figure 4.

In Figure 4, the frst is to initialize the data, input sample
information, and classify it. According to the K-means
method, the center of the clustering is selected and
whether the algorithm converges is determined. If it con-
verges, it needs to output; if not, it needs to repeat the
clustering steps. In RBF, the width is a very important
parameter, which can afect the ftting ability, generalization
ability, and calculation efciency of neural network [20].
According to equation (10), it calculates the width of the
basis function, as shown in the following equation:

δj � dj − djinner, (11)

where dj refers to the clustering distance of the sample and
δj means the degree of sample dispersion.

Tis study takes the width value of the function as 25 to
prevent the neural network from being too sensitive to data
and unable to generalize to other datasets due to the small
width value of the function and the small scope of the radial
basis function, which may lead to overftting in the neural
network. When the width of the function is too large, the
network cannot capture smaller scale features of the data,
resulting in underftting [21]. Te schematic diagram of the
RBF model is expressed in Figure 5.

In RBF, the input values are processed through the
Gaussian function, and the K-means clustering method is
introduced to fnd the center vector. After undergoing the
Haar wavelet transform, the output value of the RBF is
obtained. Weights can map input data into high-
dimensional feature spaces. In the hidden layer, the out-
put value is jointly decided by the weight matrix and the
RBF, and the characteristic value in the data can be
extracted. Terefore, the pseudoinverse algorithm is applied
to optimize the weight values, and the optimization ex-
pression is shown in the following equation:

W � ϕ+
d, (12)

where W expresses the weight; d denotes the expected re-
sponse vector; ϕ+ means the pseudomatrix of the matrix.

Te calculation method for pseudomatrices is shown in
the following equation:

ϕ+
� ϕTϕ􏼐 􏼑

− 1
ϕT

, (13)

where ϕT means the transposition of the matrix; (ϕTϕ) − 1

refers to the inverse of the matrix.

Te recursive orthogonal least-squares method is an
online learning algorithm used to solve linear regression
problems. Every time a new data value arrives, the prediction
model is gradually improved by merging the previous cal-
culation result with the new data value and updating the
weight value recursively. First, it needs to perform or-
thogonal decomposition on the output matrix of the second
hidden layer. Te expression is shown in the following
equation:

H � Q[R, 0]
T
, (14)

where Q denotes the orthogonal matrix of the matrix and R

means the upper triangular matrix.
By multiplying QT by Q to the left, the equation is

obtained as shown in the following equation:

Q
T
Q � D′, D″􏽨 􏽩, (15)

where QT denotes the transposition of the matrix; D′ ex-
presses the expected signal matrix; D″ stands for the error
matrix.

Te norm representation of a matrix is shown in
equation (16), based on the orthogonal invariance of norm F,
‖QA‖F � ‖A‖F.

J(w) � Q D′, D″􏽨 􏽩
T

− [R, O]
T
W􏼒 􏼓

������

������

2

F
, (16)

where ‖D″‖
2
F refers to the residual error value and W in-

dicates the weight matrix.
When the amount of samples is large, a recursive al-

gorithm is introduced to obtain the norm equation of the
matrix as shown in the following equation:

J(t) � D′(t) − R(t)W(t)
����

����
2
F

+ d
″
(t)

�����

�����
2

F
+ D″(t − 1)

����
����
2
F
,

(17)

where W(t) represents the weight matrix, and the expres-
sion is W(t) � R − 1(t)D′(t). e(t) � ‖d′(t)‖

2
F + ‖D″(t − 1)‖

2
F

represents the residual error value.
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Figure 4: Flowchart of K-means algorithm improved RBF.
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According to the above steps, the weights of the RBF
neural network can be optimized. First, initialize the upper
corner matrix R(t) � R(0) � aI and residual matrix
D″(t) � ‖D″‖

2
F � 0. Among them, a � 0.01. Ten, solve for

Q(t), R(t), ‖d′(t)‖
2
F, and ‖D″(t)‖

2
F. If t is less than the

maximum value, t� t+ 1. If the requirements are not met,
proceed to the next step. Calculate Q(N), R(N), W, and
‖D″(N)‖

2
F and fnally stop the process. Terefore, by opti-

mizing the weights in the RBF, the error between the net-
work output and the actual output is minimized, improving
the accuracy and robustness of the model.

3.3. Construction of RBF Model Optimized by WCA. Te
WCA optimizes the parameter problem in the model by
simulating the hunting behavior of wolf packs [22]. Com-
pared with other algorithms, the WCA has a strong global
search ability, and each wolf in the wolf pack is an in-
dependent entity that can accelerate the search process
through parallel computing. At the same time, it is difcult
to set parameters, and the rate of convergence is slow in the
WCA. To improve the searchability of the WCA, adaptive
step size optimization is carried out on the WCA. Te
hunting model of a wolf pack is shown in Figure 6.

Te algorithmmainly simulates the behavior of wolves in
a wolf pack, so that each wolf represents a parameter
problem and searches for the global optimal solution
through cooperation and competition among wolves [23].
First, the population of wolves is randomly set to N, and the
feasible domain search space is D. Te position and state of
any wolf in the space can be represented by the following
equation:

Xi � xi1, xi2, xi3, · · ·xil( 􏼁, 1≤ i≤N, 1≤d≤D, (18)

where i represents any wolf and d denotes the distance
between wolves.

Te concentration function of wolf perception of prey
odor is shown in the following equation:

F � 􏽘

T

i�1
yi − oi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (19)

where T means the amount of times an individual in the
population has walked between feasible regions; yi refers to
the actual output value of the wolf; oi denotes the predicted
output value of the wolf.

According to the perceived concentration of prey odor in
wolf packs, wolves can be divided into head, probe, and
ferce wolves. When the odor concentration perceived by the
probe wolf is higher than that perceived by the head wolf, the
probe wolf takes over the position of the head wolf. If the
odor concentration perceived by the probe wolf is less than
that perceived by the head wolf, the probe wolf swims in
diferent directions once, returns to its original position, and
records the odor concentration perceived in diferent di-
rections. Finally, it chooses the direction with the highest
concentration of prey for walking, and the position trans-
formation equation is shown in the following equation:

x
k+1
id � x

k
id + sin 2π ×

p

h
􏼒 􏼓Stepd

a, (20)

where xk
id indicates the probe wolf position in the feasible

domain search space after the k iteration; Stepd
a expresses the

walking step size; h stands for the direction that can be
explored, while p denotes the direction that the wolf pack
ultimately chooses to walk.

As the wolf approaches its prey, it will summon ferce
wolves from the pack to attack. If the odor perception
concentration of the ferce wolf is higher than that of the
head wolf, it replaces the head wolf to summon. If the odor
perception density of the ferce wolf is lower than that of the
head wolf, the ferce wolf will continue to approach the head
wolf. Te expression for the position change of a ferce wolf
in the feasible domain space is shown in the following
equation:t

x
k+1
id � x

k
id + Stepd

b ×
g

k
d − x

k
id􏼐 􏼑

g
k
d − x

k
id

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
, (21)

where gk
d expresses the head wolf position in the feasible

domain space after the k+ 1st iteration.
Stepd

b means the stride of the ferce wolf towards the head
wolf. Probe wolves track their prey, while ferce wolves assist
the head wolves in capturing their prey. After k+ 1 itera-
tions, the position of the wolf pack within the feasible range
is shown in the following equation:

x
k+1
id � x

k
id + λ · Stepd

c · G
k
d − x

k
id

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (22)

where Gk
d denotes the head wolf position; Step

d
c expresses the

step length of the siege prey; λ refers to a natural number
between [− 1, 1].

Haar wavelet
processing 

Root mean
square error 

Data
input

Gaussian
algorithm

K-means
Data

output 

Gradient
descent 

Figure 5: Schematic diagram of RBF neural network model.
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Te relationship between the steps of the entire hunting
is shown in the following equation:

Stepd
a �

Stepd
b

2
� 2Stepd

c �
maxd − mind

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

S
, (23)

where S represents the step size factor, which can be used to
indicate the accuracy of the above formula solution.

To ensure the stability and accuracy of the algorithm, it
needs to maintain the diversity of individuals in the wolf
pack, eliminate the wolf with the lowest ftness value in the
wolf pack, and generate the head wolf for the next iteration.
Finally, it determines whether the algorithmmeets the target
value or reaches the maximum amount of iterations. In
order to prevent traditional wolf pack algorithms from easily
falling into local optima, unlike the standard wolf pack
algorithm where all ferce wolves participate in summoning
behavior, the improved wolf pack algorithm also searches for
the optimal value within its spatial range during the sum-
moning process.Te adaptive step size of the traditional wolf
pack algorithm is improved. After k+ 1 iterations in the
feasible domain space, the position of the wolf pack is shown
in the following equation:

x
k+1
id � x

k
id + Step ·

g
k
d − x

k
id􏼐 􏼑

g
k
d − x

k
id

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

� x
k
id + rand · norm x

k
id − g

k
d􏼐 􏼑 ·

g
k
d − x

k
k􏼐 􏼑

g
k
d − x

k
id

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
.

(24)

In the feasible domain space, after an iterative optimi-
zation process, the ferce wolf assists the probing wolf in
rounding up the prey. For the k-th generation wolf pack, the
position of the prey is consistent with that of the head wolf.
At this point, the position of the entire wolf pack in the
feasible domain space is shown in the following equation:

x
k+1
id � x

k
id + λ · Step · G

k
d − x

k
id􏼐 􏼑

� x
k
id + λ · rand · norm x

k
id − G

k
d􏼐 􏼑 · G

k
d − x
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􏼌􏼌􏼌􏼌􏼌
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(25)

Te fowchart of the wolf colony algorithm improved the
radial basis function neural network (WCA-RBF) model as
shown in Figure 7.

4. Model Performance Testing and Simulation
Experiment Analysis

To achieve FD in ACs, the RBF was optimized with the
WCA, and aWCA-RBFmodel was constructed.Tis section
contains two parts to test the model. Te frst part is the
performance test of the wolf colony optimization RBF
model, and the second part is the simulation experiment of
the faults in the Sallen–Key bandpass flter.

4.1. Improved WCA and Optimized RBF Model Performance
Testing. To verify the optimization efect of the improved
WCA in data processing, a multimodal Schafer benchmark
function and a single-mode sphere benchmark function
were selected. Under MATLAB simulation software, the
standard WCA was compared and tested with the improved
WCA. Te iteration curves of the two algorithms are shown
in Figure 8.

Figure 8(a) shows the test results of two algorithms
under the multimodal Schafer benchmark function. Te
standard WCA and improved WCA tended to stabilize
after 70 and 60 iterations, with a ftness value of 10− 1 and
10− 3, respectively. Figure 8(b) shows the test results of two
algorithms under a single-mode sphere reference func-
tion. Te standard WCA tended to stabilize after 60 it-
erations, with a ftness value of 10− 1. Te improved WCA
tended to stabilize after 55 iterations, with a ftness of 10− 3.
From Figure 8, the rate of convergence of the two algo-
rithms was basically the same, but at the beginning of
training, the rate of convergence of the improved WCA
was signifcantly faster than that of the standard WCA. In
the later iterative optimization, the convergence accuracy
of the improvedWCAwas signifcantly higher than that of
the standard WCA. Te improved WCA algorithm had
better global optimization ability, faster rate of conver-
gence, and higher convergence accuracy. To examine the
performance of the WCA-RBF and the RBF, 100 sets of
working data in the circuit were selected. Using MATLAB
simulation software, the frst 60 sets of data were applied
as training data, and the last 40 sets of data were utilized as
model testing data. Te error curve obtained from the test
is shown in Figure 9.

Head
Wolf 
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the Wolf 
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Wolf 

Perception of
Wolf

Information 

Explore the environment

Perception of odors

Wolf pack decision-making

Wolf pack movement
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Figure 6: Wolf hunting model.
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From Figure 9, the error values of the two neural net-
work models decreased with the increase in training times.
Te test results of the two neural network models in the test
and training sets were basically consistent. Figure 9(a) shows
the error variation curve of the RBF model during the
training. After 60 training sessions, the RBF model con-
verged with an error value of 10− 1. Figure 9(b) shows the
error variation curve of the WCA-RBF model during the
training. Te WCA-RBF model converged after 40 training
sessions, with an error value of 10− 3. Te RBF model op-
timized by the WCA had a faster rate of convergence, and
the accuracy of FD has also been improved. To evidence the

performance of the WCA-RBF in FD, GA-RBF was used for
comparative testing with the WCA-RBF model. It inputs 50
sets of FD samples into two models and conducts 10 tests
each. Te test results are shown in Figure 10.

Figure 10(a) shows the mean squared error (MSE) curves
of GA-RBF andWCA-RBF models. Te average value of the
MSE of the GA-RBF model was 0.78, and that of the
WCA-RBF model was 0.45. Figure 10(b) shows the con-
sumption time curves of the GA-RBF and the WCA-RBF
models. Te average consumption time of the GA-RBF
model was 275 s, while that of the WCA-RBF model was
148 s. Te error value distribution of the WCA-RBF model
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Figure 7: Flowchart of WCA-RBF.
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Figure 8: Iterative curve of WCA and improvedWCA. (a) Test result graph under multimodal Schafer benchmark function. (b) Test result
graph under single-mode sphere benchmark function.
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was more concentrated, the FD results were more accurate,
and the testing efciency was faster. It selected 10 diferent
fault types from 100 training data and tested the original
RBF, GA-RBF, and WCA-RBF models. Te accuracy of FD
is expressed in Table 1.

From Table 1, the original RBF model had the lowest FD
rate, with an average diagnosis rate of 64.89%.Te FD rate of
the GA-RBF model was in the middle, with an average
diagnosis rate of 84.58%. TeWCA-RBF model had the best
FD rate, reaching 95.52%.

4.2.CaseStudyofFD. To assess the efect of theWCA-RBF in
ACs, FD was performed on soft faults in ACs. Te soft faults
in ACs were divided into 8 fault states and 1 normal state.
Te test experiment sets the input node of the model to 6 and
the output node to 4. Te wavelet transform test data for
each fault type are expressed in Table 2.

Table 2 shows the test data of 8 fault states and 1 normal
state after normalization. Te up and down arrows repre-
sented soft fault situations with an up deviation of 50% and
a down deviation of 50%, respectively. It selected the fltering

circuit in the international standard circuit for testing, with
nominal values of R1�R2�R3�10 k, R4�R5�10 k,
R6� 3 k, R7� 7 k, C1�C2� 20 nF. Te allowable tolerances
for capacitance and resistance were set to 10% and 5%,
respectively. Using OrCAD/PSpice 10.5 software for AC
excitation of the standard fltering circuit, Monte Carlo
analysis was performed on 8 fault states and normal states,
and the output data were used at frequency intervals. It
extracted 200 characteristic values at diferent frequencies of
the out end of the third flter in the standard fltering circuit
for testing. Te MC simulation circuit diagram obtained
through PSpice is expressed in Figure 11.

From Figure 11, the overall trend of the MC simulation
diagram in both states was consistent. Figure 11(a) shows the
MC simulation diagram in the case of C2 being too large.
From the graph, the voltage value before the peak was
basically the same as under normal conditions, and the
voltage value at the peak was 1.2V. Figure 11(b) shows the
MC simulation diagram under normal conditions. Te peak
in the fgure was relatively high, and the voltage value at the
peak was 1.4V. Te voltage values of both graphs showed
a decreasing trend after the peak, and at 10KHz, the voltage
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Figure 9: Training error curves of two models. (a) Error variation curve of RBF neural network model. (b) Error variation curve of WCA-
RBF neural network model.
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dropped to 0V. Te original RBF, GA-RBF, and WCA-RBF
models were used for FD as shown in Figure 11. Te di-
agnostic time is shown in Figure 12.

In Figure 12, the average testing time required for the RBF,
GA-RBF, and WCA-RBF models was 56.5 seconds,
48.3 seconds, and 41.5 seconds, respectively. Te WCA-RBF
model consumed less time and tested faster. Compared the
diagnostic rates of the RBF neural network model, GA-RBF
neural network model, WCA-RBF neural network model, and

the improved RBF neural network model based on the particle
swarmoptimization algorithm, the results are shown in Table 3.

From Table 3, the original RBF model had the lowest FD
rate, with an average diagnosis rate of 70.36%. Te fault
diagnosis rate of the GA-RBF model was slightly better than
that of the RBF model, with an average diagnosis rate of
86.24%. Te average diagnostic rate of the PSO-RBF model
was 94.46%. Te WCA-RBF model had the best fault di-
agnosis rate, reaching 96.17%. From this, GA-RBF and

Table 1: Accuracy of FD by diferent diagnostic methods.

Fault number RBF (%) GA-RBF (%) WCA-RGF (%)
No. 1 60.85 83.52 95.25
No. 2 65.58 84.56 94.88
No. 3 64.31 82.59 95.62
No. 4 67.25 86.06 95.35
No. 5 68.23 84.26 95.42
No. 6 64.55 84.09 94.99
No. 7 64.89 80.99 96.32
No. 8 65.22 87.52 96.25
No. 9 63.52 86.24 97.05
No. 10 64.56 85.98 94.12

Table 2: Wavelet transform data of diferent fault types.

Failure mode EA5 E5 E4 E3 E2 E1
Normal 0.8000 0.1355 0.1152 0.1035 0.1008 0.1000
C1↑ 0.8000 0.1362 0.1145 0.1028 0.1009 0.1000
C1↓ 0.8000 0.1342 0.1126 0.1034 0.1007 0.1000
C2↑ 0.8000 0.1356 0.1125 0.1037 0.1008 0.1000
C2↓ 0.8000 0.1354 0.1136 0.1045 0.1008 0.1000
R2↑ 0.8000 0.1325 0.1148 0.1333 0.1007 0.1000
R2↓ 0.8000 0.1325 0.1205 0.1035 0.1008 0.1000
R3↑ 0.8000 0.1406 0.1185 0.1032 0.1008 0.1000
R3↓ 0.8000 0.1368 0.1145 0.1033 0.1006 0.1000
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Figure 11: MC simulation diagram under diferent scenarios. (a) MC simulation diagram in the case of C2 being too large. (b) MC
simulation diagram under normal conditions.
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WCA-RBF models had an improved diagnostic rate com-
pared to the unoptimized RBF model. Te RBF model
optimized by the WCA had the highest diagnostic rate;
therefore, the RBF model optimized by the WCA had good
diagnostic performance. It has been proven that the WCA
optimized the RBF model and performed well in AC FD.

5. Conclusions

With the complexity and expansion of circuit systems, AC FD
plays a crucial role in AC design and manufacturing. Tis
research aimed at the problem of AC FD, optimized the RBF
based on the WCA, and constructed the model of RBF op-
timized by the WCA. Te test fndings of the model showed
that theWCA-RBFmodel converged after 40 times of training,
and the error value was 10− 3. Te traditional RBF model
converged after 80 times of training, and the error value was
10− 1.Te average value ofMSE of the GA-RBFmodel was 0.78.
Temean value of MSE of theWCA-RBFmodel was 0.45.Te
FD rate of the original RBF, GA-RBF, and WCA-RBF models
was compared. Te FD rate of the WCA-RBF model was the
best, reaching 95.52%. Te error value distribution of the
WCA-RBF model was more concentrated, the FD rate was
higher, and the FD result was more accurate. Te WCA was
used to optimize the RBF model to diagnose the faults in the
CTSV flter circuit, and the FD rate reached 96.17%.Terefore,
the WCA-RBF model had a good diagnosis efect for diferent
faults in the AC.

Abbreviations

ACs: Analog circuits
FD: Fault diagnosis
RBF: Radial basis function
WCA: Wolf colony algorithm
GA-RBF: Genetic algorithm-radial basis function
EMG: Electromyogram
PSO: Particle swarm optimization
WCA-
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Wolf colony algorithm-radial basis function

PSO-RBF: Particle swarm optimization-radial basis
function

MSE: Mean squared error.
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