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China currently boasts the largest installed capacity of wind power; however, its output is unstable and highly dependent on
weather variability. Despite this, the infuence of extreme weather events on wind energy production at the interprovincial scale in
China has not been fully characterized.Tis study aims at investigating the daily variations and regional diferences in wind power
output during heat wave (HW) and cold wave (CW) days in six regions of China. In addition, the study projects the monthly
changes in HW and CW days in the coming decades by utilizing a stacking ensemble machine learning method. Te projections
are under a real-world warming scenario that incorporates current and long-term actions or policies. Te fndings of the study
reveal that, for most regions, the daily cumulative wind power generation on HW days is close to that on normal days; however,
there is a lower output during the daytime and a higher output at night. Furthermore, the number of HW days is projected to
increase by 2.3 to 21.8 days during the periods of 2031–2040, 2041–2050, and 2051–2060 in these regions. By comparison, the daily
cumulative wind power generation increases signifcantly on CW days, and the monthly distribution of CW days is expected to
undergo notable changes in the future. Tese fndings provide valuable insights into wind resource planning and operation under
extreme weather conditions in China.

1. Introduction

China boasts the world’s largest installed capacity and
second-largest technical resource potential for onshore wind
power [1–3]. By the end of 2021, China’s installed wind
power capacity and electricity generation had reached
328GW and 655.8 PWh, respectively, accounting for 13.8%
and 7.8% of the country’s total volumes and playing an
irreplaceable role in the country’s industrial sectors [4]. At
the national level, wind power ranks second among all clean
energy resources (nuclear and renewables) after hydropower
in China, while wind energy is unevenly distributed at the
provincial level. Te installed capacity or electricity gener-
ation from wind power ranks frst among all renewables for
13 provinces, including Hebei, Shanxi, Inner Mongolia,
Liaoning, Jilin, Heilongjiang, Ningxia, Xinjiang, Henan,

Gansu, Shanghai, Jiangsu, and Shandong. Although wind
power makes an important contribution to the electric
system for many provinces in China, the energy output of
a wind farm is unstable and highly dependent on weather
variability. Te wind power output sufers signifcant fuc-
tuations with the occurrence of diferent weather conditions,
especially regional extreme weather events [5–10].

China proposed to reach peak carbon emissions around
2030 and achieve carbon neutrality before 2060, which re-
quires a substantial growth of renewable energies and col-
laborative optimizations among various energy resources
[11]. Specifcally, the onshore wind power installation is
anticipated to reach 1866GW [12, 13]. In addition, the
frequency or intensity of extreme weather events in China is
projected to increase for the next several decades in the
context of global warming [14, 15]. For example, the average
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heat wave (HW) days and HW duration in 2020–2039 is
projected to be 1.86 (2.53) and 1.56 (2.00) times higher than
that in 1986–2015 under the 1.5°C (2.0°C) warming levels.
Tis increase in extreme weather events poses challenges to
uncertainty planning in distributed renewable energy sys-
tems [16, 17]. Terefore, it is essential to understand the
characteristics of wind power output under extreme weather
events such as HW and cold wave (CW).

Some case studies have investigated the impact of ex-
treme weather events on wind energy variability in specifc
regions by comparing wind power generation during normal
and abnormal weather conditions using observed or sim-
ulated wind energy production data. In Western Europe,
Leahy et al. found that the wind generation output was low
during a prolonged spell of unusually cold conditions in
Ireland [18]. Correia et al. evaluated the impact of large-scale
atmospheric circulation patterns on monthly wind power
resources and production in Portugal [19]. Garrido-Perez
et al. assessed the change of wind capacity factors in the
United Kingdom and Spain on eight distinct recurring large-
scale weather patterns [20]. In China, Li et al. analyzed the
characteristics of aggregated wind power generation based
on eight typical weather systems in the western region of
Inner Mongolia [21]. In addition, scholars have developed
many short-term wind power simulation models using
physical, statistical learning and hybrid approaches [22–24].
Tese models provide useful tools to explore the wind power
output in abnormal weather conditions for a single
wind farm.

However, previous studies have focused on specifc
sites or relatively small regions, and research to date has
not yet investigated the infuence of extreme weather
events on wind energy production at the interprovincial
scale in China. Note that when applying a wind power
simulation model to a large number of farms in a wide
area, the orientation of each wind farm needs to be
considered. Tis aspect has been somewhat neglected in
the model design, as most studies concentrate on the
micrositing layout problem [25]. Tis study aims to in-
vestigate the daily variation and regional diferences in
wind power output during HW and CW days in six regions
in China. We calculate the local prevailing wind direction
to determine the orientation of wind farms. Moreover, we
explore the monthly changes of HW and CW days in the
next several decades under a medium pathway of future
greenhouse gas emissions and discuss their potential
impact on wind power generation in diferent regions. It is
worth noting that ofshore wind farms are also important
in China’s power system, but their geographical distri-
bution and related extreme weather conditions are com-
pletely diferent from onshore wind farms. Terefore, this
study is intended primarily for the onshore wind energy. A
description of the study area, wind power simulation
model, the defnition of regional HW and CW events, and
statistical climate projection methods are given in Section
2. Changes in wind power out during HW and CW days, as
well as the future projection of HW and CW frequencies,
are presented in Section 3. Te main conclusions are
summarized in Section 4.

2. Materials and Methods

2.1. Study Area and Historical Climate Data. Tis study
classifes China’s provinces into six contiguous regions based
on their climate classifcation and interprovincial power
network [26]. Te spatial distribution of these regions is
illustrated in Figure 1, and Table 1 provides a list of the
provinces belonging to each region. Northeast China,
consisting of four provinces, is mainly located in the mid-
temperate and humid or semihumid climate zones. North
China spans six provinces and ranges from the warm
temperate and semihumid climate zone to the midtemperate
and arid climate zone. Northwest China, comprising fve
provinces, is mainly located in the midtemperate and arid
climate zone. East and Central China encompass four and
six provinces, respectively, and they extend across the north
to midsubtropical and humid climate zones. South China
spans six provinces and ranges from the south subtropical
and humid climate zone to the tropical and humid
climate zone.

As of May 24, 2022, according to the statistics from
Global EnergyMonitor (GEM), there are 4184 onshore wind
farms in China, and their locations are depicted in Figure 1.
Notably, Tibet’s installed wind power capacity is only
10MW, accounting for 0.25% of the province’s total volume,
and its geospatial information is not recorded by GEM.
Tus, Tibet is not considered in our further analysis. To
explore the infuence of HW and CW events on regional
wind energy production, we extract historical hourly climate
data (surface maximum and minimum temperature, wind
speed, and wind direction) from the ERA5 reanalysis [27] for
the past ten years (2012–2021).

2.2. Regional Wind Energy Simulation. To obtain the re-
gional wind power output curve (WPOC) for a given day, we
use a methodology that utilizes wind speed and direction
data to calculate the wind power generation normalized by
the total installed capacity for each wind farm. Tis calcu-
lation is performed using a single wind farm analytical
model from Kunakote et al. [28]. Te model applies Jensen’s
wakemodel to estimate the decay of wind speed after passing
through a rotating turbine. Te initial wake area is assumed
to have the same diameter as the turbine and expands
linearly to infuence downstream turbines, as illustrated in
Figure 2. Based on the conservation of momentum, the
velocity in the wake cone can be computed as follows:

1 −
V(x)

V0
� 1 −

������
1 − CT


( 

D
2

D(x)
2 ,

D(x) � D0 + 2kx,

(1)

where D represents the turbine rotor diameter, D(x) is the
diameter of the wake disk at a distance of x behind the
turbine, V0 is the initial wind velocity, V(x) is the wind
velocity at distance x, CT is the turbine thrust coefcient, and
k is a constant that relies on the hub height and terrain
roughness. Additionally, the distance between the centres of
the wake cone and the swept area of the downstream turbine
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Figure 1: Map of the six regions and locations of wind farms (indicated by yellow plus markers) in China.

Table 1: Provinces included in the six regions.

Region Provinces included
Northeast China Heilongjiang, Liaoning, Jilin, and eastern part of Inner Mongolia

North China Beijing, Tianjin, Hebei, Shanxi, Shandong, and middle and western parts of Inner
Mongolia

East China Jiangsu, Anhui, Zhejiang, and Fujian
Central China Henan, Hubei, Hunan, Jiangxi, Chongqing, and Sichuan
South China Yunnan, Guizhou, Guangxi, Guangdong, Hainan, and Taiwan
Northwest China Xinjiang, Qinghai, Ningxia, Gansu, and Shaanxi
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d
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Figure 2: Wind turbine wake decay model and its infuence on the downstream turbine.
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is denoted as d; therefore, their intersection area (A) can be
computed using the following equation:

A � D(x)
2 cos− 1 d
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(2)

Real wind industry statistical data and certain as-
sumptions are utilized to determine the layout of wind
turbines in each farm. Firstly, referring to the onshore wind
power installation list from GEM, it is observed that most
existing farms in China were built since the 2010s, with over
65% of them having a capacity of 50MW (Figure 3).
Considering the typical lifespan of a wind farm ranging from
25 to 40 years [29, 30], a capacity of 50MW will remain the
predominant size for Chinese wind farms until 2060.
Terefore, for this study, the capacity of individual wind
farms is set at 50MW. Secondly, the primary type of newly
installed wind turbines in China is 2MW [31], corre-
sponding to a mean rotor diameter of 90m [32], which
suggests that each wind farm comprises 25 turbines. Fol-
lowing the design principles of general wind farms [33],
these 25 turbines are arranged in a 5-by-5 crossed layout
pattern (Figure 4). In this pattern, the orientation of the
wind farm (the alignment of turbine rows) is perpendicular
to the local prevailing wind direction, and the distance
between the rows and columns is set at 7D and 4.5D, re-
spectively. As mentioned earlier, Kunakote’s model is
employed for a single wind farm, and when applying it to
multiple farms in a large region, the orientation of each wind
farm needs to be determined. To accomplish this, we divide
the compass into 36 directions at 10° intervals and calculate
the most frequent wind direction for each wind farm. Tis
calculation is based on hourly eastward and northward wind
data at a height of 100m from ERA5 spanning the period
2012–2021.

After positioning individual wind farms at optimal
orientations and simulating their power outputs, we cal-
culate the regional WPOC by averaging the curves from all
farms shown in Figure 1 within that region. Since the wind
power generation from diferent farms does not follow an
idealized Gaussian distribution, and the arithmetic mean
may not be unbiased, we use the biweight robust method
[34] to estimate the meanWPOC and mitigate the impact of
outliers. Te biweight mean y∗ for time t is iteratively
computed as follows:

y
∗

�
 wiyi

 wi

, (3)

where yi represents the wind energy output of the farm i and
wi is a symmetric weight function defned as follows:

wi �
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(4)

where c is a constant typically ranging from 6 to 9 (set to 7.5
in this study) and S is a robust measure of the standard
deviation of the frequency distribution, computed as the
median absolute deviation as follows:

S � median yi − y
∗
 . (5)

To initiate the iteration process and compute the fnal y∗,
the median is used as an initial estimate. Due to the non-
monotonicity behaviour of the biweight function wi, the
iteration based on equations (3)–(5) may not converge to
a constant. However, typically, only three to four iterations
are needed to achieve an estimation that changes by no more
than 10−3 [35]. In this study, the maximum number of it-
erations is set to 10. Finally, we use a linear-scaling approach
[36] to adjust the biases in the mean of capacity factors
between observations and simulations. Te observed ca-
pacity factors are extracted from the China Electric Power
Yearbook [37]. It is important to note that we assume the
wind farm density remains unchanged as shown in Figure 1,
even with an increasing number of wind farms over years, to
ensure the applicability of the regional WPOC in the future.

To evaluate the performance of our wind farm model
under diferent weather conditions at local and regional
levels, we compare our model simulation with observed
power outputs from recent publications [38, 39] for real
wind farms in China. For a single wind farm with weather
and power output data from 2019–2020 provided by Chen
and Xu [38], the correlation coefcients between simulations
and observations for hourly mean power output on
HWdays, CW days, and normal days are 0.988, 0.880, and
0.884, respectively. All correlation coefcients are signifcant
at the 0.001 level, indicating that our model is capable of
accurately simulating local wind power under extreme
weather conditions. For multiple wind farms within
a province, Wan et al. [39] presented the output distribution
of several main wind farms in Hubei for three extremely hot
days during summer 2016. We also simulate the wind power
outputs for the corresponding farms and days to calculate
their frequency distribution. Te comparison between
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observations and our simulations reveals a similar distri-
bution pattern on hot days (Figure 5). Specifcally, the wind
power output is below 0.1 for nearly 60% of the time, be-
tween 0.1 and 0.2 for approximately 15% of the time, and the
output falls into other intervals for less than 10% of the time.
Te comparison demonstrates the efectiveness of our model
at the regional level.

2.3. Identifcation of Regional Heat Wave and Cold Wave
Events. HW and CW events are commonly defned using
various criteria, and there is no universally accepted def-
nition for these terms [40]. For a specifc location, a basic
absolute standard for a hot day is when the daily maximum
temperature exceeds 35°C, as proposed by the China Me-
teorological Administration (CMA). An HW occurs when
this hot day condition persists for at least three consecutive
days. However, this fxed threshold corresponds to diferent
temperature percentiles across a large region, and it is more
reasonable to defne a hot day based on a relative threshold

that represents regional heat conditions [41–43]. In this
study, we adopt the defnition used in previous research [41]
and defne a hot day at the regional level as one where the
daily maximum temperature, averaged over the entire re-
gion, exceeds the 98th percentile. Similarly, a regional HW is
defned as a hot day condition that lasts for three or more
consecutive days.

Te criterion for identifying a CW at a specifc weather
station is when the daily minimum temperature is lower
than 4°C and decreases by at least 8/10/12°C within the
previous 24/48/72-hour period, as established by the CMA.
For the regional CW, previous studies suggest that it occurs
when the number of sites in a region that meet the station-
level criterion exceeds a predefned percentage threshold,
such as 20% or 30% for midlatitudes [44, 45]. However, the
percentage threshold may be lower (e.g., 10%) for regions in
tropical provinces [46]. In this study, we set the percentage
threshold as 10% in South China and 20% in other regions.
Furthermore, we exclude CW days with a daily minimum
temperature below −20°C from the wind power generation
analysis since wind turbines may shut down due to ex-
tremely low temperatures, resulting in unreliable operation.

2.4.MachineLearning toOptimizeProjection ofRegionalHeat
and Cold Waves. To estimate the monthly changes in HW
and CW days for six regions in the future, we utilize multiple
model results from the Coupled Model Intercomparison
Project Phase 6 (CMIP6). CMIP6 ofers various standard
scenarios that represent diferent socioeconomic environ-
ments and the intensity of the additional radiative forcing in
the future [47]. Among these scenarios, the SSP245 scenario
closely aligns with the real-world warming projections,
taking into account current and long-term actions or pol-
icies such as China’s carbon dioxide peaking and carbon
neutrality targets [48]. Terefore, we project the potential
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Figure 3: Construction of onshore wind farm in China.
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changes in HW and CW days during the periods of
2031–2040, 2041–2050, and 2051–2060 based on the SSP245
scenario.

CMIP6 encompasses more than 30 general circulation
models (GCMs) and fve of them (ACCESS-CM2, FGOALS-
g3, IPSL-CM6A-LR, MPI-ESM-2-0, and NESM3) are se-
lected to use for this study.Tese models have demonstrated
superior performance in simulating temperature change
trends compared to observed records during the historical
period of 1979–2014 [49]. Detailed information on the se-
lected models is provided in Table 2. Te model simulation
data is obtained from the NASA Earth Exchange Global
Daily Downscaled Projections (NEX-GDDP-CMIP6) [50],
which applies bias correction and spatial disaggregation
procedures to the original CMIP6 output. Te processed
datasets from NEX-GDDP-CMIP6 maintain a spatial res-
olution of 0.25° × 0.25° and exhibit better consistency with
historical climate records.

Te most commonly used approach to project future
changes in climate variables from multiple models is to
calculate their arithmetic mean. However, recent studies
have highlighted the signifcant advancements of the
stacking ensemble method in the machine learning frame-
work. Tis method involves using the prediction results of
the previous level learners as input for the next level [51, 52].
Terefore, in this study, we use the stacking ensemble
machine learningmethod to project changes in HW andCW
days under the SSP245 scenario. Te model structure is
illustrated in Figure 6 and implemented using the ensemble
learning toolbox (ELT, available at https://github.com/
vhrique/ELT). To calibrate the stacking ensemble model,
we utilize historical simulations of daily maximum and
minimum temperature from the fve selected CMIP6
models, along with ERA5 data as observational reference,
covering the period from 1990 to 2014.Te dataset is divided
into a training set and a testing set in a 2 :1 ratio, with every

3rd value in the time dimension selected [53]. Te base
learner for the stacking ensemble is the random forest model
initialized by support vector regression, and the hyper-
parameters are predefned using the inbuilt confgurations
from ELT. In order to assess the model performance, we
calculate three metrics: the correlation coefcient (r), root-
mean-squared error (RMSE), and mean absolute error
(MAE), as recommended by prior studies [52, 53].

3. Results and Discussion

3.1. Prevailing Wind Direction in China. Figure 7 shows the
prevailing wind direction at a height of 100m in China with
a spatial resolution of 0.25° based on hourly ERA5 reanalysis
data over a 10-year period (2012–2021). Te wind patterns
exhibit a distinct association with the topography of the
region. Te Northeast China Plain and the North China
Plain experience predominantly southwest winds, while the
middle and lower reaches of the Yangtze River are char-
acterized by east and southeast winds. Te Inner Mongolia
Plateau and the hilly and mountainous regions of South
China are marked by north and northwest winds. Te
Sichuan Basin and the Tarim Basin frequently encounter east
winds. Te Tibet Plateau and the Yunnan-Guizhou Plateau
exhibit strong south and southwest winds. Tese wind re-
gime characteristics are considered in determining the
optimal orientations of wind farms in diferent locations,
and wind energy simulations are conducted for each farm
under diverse weather conditions.

3.2. Changes ofWind PowerOutput onHWDays for Diferent
Regions. According to our defned criteria, regional HW
occurred for 47, 41, 54, 48, 36, and 47 days in Northeast
China, North China, East China, Central China, South
China, and Northwest China, respectively, during the past
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Table 2: List of CMIP6 general circulation models (GCMs) used in this study.

# Model name Institution Country

1 ACCESS-CM2 Commonwealth Scientifc and Industrial Research Organisation/Australian
Research Council Centre of Excellence for Climate System Science Australia

2 FGOALS-g3 Chinese Academy of Sciences China
3 IPSL-CM6A-LR Institut Pierre Simon Laplace France
4 MRI-ESM2-0 Meteorological Research Institute Japan
5 NESM3 Nanjing University of Information Science and Technology China
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10 years. We conducted simulations to estimate the WPOC
for each HW day and normal day (days that were neither
a hot day nor a CW day) in summer season (June to August).
Subsequently, we calculated the biweight robust mean
WPOCs for the six regions under these two weather con-
ditions. Te results are presented in Figure 8.

In Northeast China (Figure 8(a)), the WPOC on
a summer normal day exhibits two peaks and two valleys.
Te highest peak output occurs at midnight, reaching 16.6%,
while the other peak at 3 PM has an output power of 14.5%.
Te output drops to 12.1% and 13.0% at 8 AM and 6 PM,
respectively. In contrast, the WPOC for an HW day shows
a signifcant reduction of 2–5% from early morning to the
afternoon, with an increase of 2–4% in the evening.Te wind
power production on an HW day is 94.6% of that on
a summer normal day.

In North China (Figure 8(b)), the WPOC on a summer
normal day is similar to that in Northeast China, but the
output in the frst valley around 8 AM is slightly lower at
10.2%, and the time of the afternoon peak appears a little
later at 5 PM. On the other hand, the WPOC for an HW day
has a decline of 3-4% during the day (8 AM to 5 PM) and
rises about 2% during the night (9 PM to 5 AM). Te wind
power production on an HW day is 96.1% of that on
a summer normal day.

In East China (Figure 8(c)), the WPOC on a summer
normal day also follows a two-peak and two-valley pattern,
but the range of wind power output is larger than that in
Northeast China and North China. Te highest peak output
occurs at 10 PM, reaching 19.9%.Te other peak is around 5
PM with an output power of 17.7%. Two output valleys are
observed at 8 AM and 6 PM, with outputs of 14.5% and
16.2%, respectively. By comparison, the WPOC for an HW
day drops about 2% during the day (8 AM to 5 PM) but
grows by 2% during the night (9 PM to 5 AM). Te wind

power production on an HW day is 99.3% of that on
a summer normal day.

In Central China (Figure 8(d)), the WPOC on a summer
normal day is similar to that in North China, but the daily
output is slightly lower (about 1%), and the peak at night
occurs a little earlier at 10 PM. By contrast, theWPOC for an
HWday shows a remarkable increase of 2% at night (7 PM to
2 AM), a slight reduction in the morning (7 AM to 12 PM),
and no signifcant changes in the afternoon (2 PM to 6 PM).
Te wind power production on an HW day is 101.7% of that
on a summer normal day.

In South China (Figure 8(e)), the WPOC on a summer
normal day still exhibits a two-peak and two-valley pattern,
with the highest peak of 21.0% occurring in the afternoon at
3 PM, which is 2% higher than the other peak at 9 PM.
Additionally, the output falls to low points of 17.5% and
18.2% at 6 AM and 6 PM, respectively. By comparison, the
WPOC for an HW day maintains almost the same output
during the nighttime period (8 PM to 5 AM) but experiences
a sharp decrease of 3–5% during the daytime period (6 AM
to 5 PM). Consequently, the afternoon peak on anHWday is
slightly lower than the evening peak. Te wind power
production on an HW day is 93.2% of that on a summer
normal day.

In Northwest China (Figure 8(f )), both summer normal
days and HW days show a simple one-peak and one-valley
pattern, where the valley occurs at 9 AM and the peak
appears before midnight. Both WPOCs have comparable
output from 9 AM to 6 PM, while the output on HW days
can reach 25.4% at night, which is 5% higher than that on
summer normal days.Terefore, the wind power production
on an HW day is 109.2% of that on a summer normal day.

Taken together, most regions experience a reduction in
wind power output from late morning to early afternoon on
HWdays. However, this period corresponds to the peak load
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Figure 7: Prevailing wind direction at a height of 100m in China based on hourly ERA5 reanalysis data.
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Figure 8: Comparison of the ensemble meanWPOCs on HWdays and normal days for six regions in China. (a) Northeast China. (b) North
China. (c) East China. (d) Central China. (e) South China. (f ) Northwest China.
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in the commercial sector and the second-highest power
demand peak in residential and industrial sectors for typical
daily power load curves in summer [54]. Terefore, HW
events challenge the daily dynamic supply-demand bal-
ancing capability of a power grid that relies on wind
resources.

3.3. Changes ofWind Power Output on CWDays for Diferent
Regions. In the past 10 years, there were 106, 96, 21, 5, 8, and
8 days of regional CW in Northeast China, North China,
East China, Central China, South China, and Northwest
China, respectively. Figure 9 presents the biweight robust
mean WPOCs for CW days and normal days in autumn,
winter, and spring (AWS) in the six regions. Since the daily
minimum temperature typically occurs from midnight to
early morning, we also include the meanWPOC for one day
before and after the CW event, and these two days are
excluded from the count of normal days.

In Northeast China (Figure 9(a)), theWPOC on an AWS
normal day follows the same two-peak and two-valley
pattern as a summer normal day. However, the average
output is 7.9% higher, with the peak output reaching 24.9%
before midnight (11 PM). In contrast, the output from the
day before CWuntil noon on the CWday shows a signifcant
increase of 15–20%, followed by a rapid decline. By the
evening of the CW day and throughout the next day, the
WPOC is about 3–4% lower than that on an AWS
normal day.

In North China (Figure 9(b)), the WPOC on an AWS
normal day also exhibits two peaks and two valleys. Te
highest peak output is 21.1%, which appears in the afternoon
(3 PM). Te other peak is around midnight with an output
power of 20.7%.Te output drops to low points of 16.4% and
18.0% at 10 AM and 7 PM, respectively. Te WPOCs on the
CW day and adjacent days are all higher than that on an
AWS normal day. Te largest increase (about 10–12%)
occurs from the CW day to the afternoon of the next day,
while the output on the day before the CW only has a slight
growth of 2–6%.

In East China (Figure 9(c)), the WPOC on an AWS
normal day follows a simple one-peak and one-valley pat-
tern, with the valley (16.6%) observed at 10 AM and the peak
(21.2%) occurring before midnight. By comparison, the
output is about 4% lower in the morning of the day before
the CW, then sharply increases, reaching a peak of 47.8% at 3
PM on the CWday, and gradually returns to the normal level
on the day after the CW.

In Central China (Figure 9(d)), the WPOC on an AWS
normal day is similar to that in East China, but the output is
lower (about 6%). By contrast, the output remains at the
normal level in the early morning of the day before the CW
and then gradually increases. It reaches over 60% generation
from early morning until 4 PM on the CW day, and then
slowly decreases but remains above the normal WPOC on
the day after CW.

In South China (Figure 9(e)), the WPOC on an AWS
normal day also exhibits a one-peak and one-valley pattern,
with the valley (19.5%) observed at 10 AM and the peak

(26.0%) occurring in the afternoon (5 PM). By comparison,
the increase in output on the CWday is about 15%, but it can
reach 20–25% within the 12-hour period before and after the
CW day.

In Northwest China (Figure 9(f )), the WPOC on an
AWS normal day also shows a one-peak and one-valley
pattern, with the valley (14.2%) observed at 11 AM and the
peak (18.2%) occurring in the evening. In contrast, the
output starts to increase from the early morning of the day
before the CW and reaches a peak of 43.7% in the afternoon
of the CW day. It then gradually decreases to the normal
level on the day after the CW, with a signifcant upturn
around 2 PM.

In summary, all regions experience higher wind power
generation on the CW day and the day before. Residential,
commercial, and industrial sectors typically demand less
energy during winter, as refected in typical daily power load
curves [54]. Terefore, power supplies face fewer challenges
on CW days compared to HW days. However, it is worth
noting that on the day after a CW event, there is a signifcant
reduction in wind power output while electricity con-
sumption experiences notable growth, particularly in the
residential sector, due to cold weather [55]. Tis situation
may increase the risk of wide-area power outages.

3.4. Future Changes of the HW and CWDays. Table 3 shows
the performance of applying stacking ensemble models in
the test phase for predicting HW and CW days over 6 re-
gions, respectively. All models obtain skilful performance,
with r ranging from 0.792 to 0.976, RMSE ranging from
0.065 days to 0.420 days, and MAE ranging from 0.039 days
to 0.290 days. Althoughmodels for CWdays exhibit superior
results than that for HW days, all the correlation coefcients
pass the 0.01 signifcance level, which indicates that they
efectively capture the temporal characteristics of HW and
CW days among regions and could be used to project future
changes.

Figure 10 depicts the change in the number of HW days
for each month during the past decade and the next three
decades under the SSP245 scenario. Te fgure reveals
a continuous increase in the number of HW days in each
region during 2031–2040, 2041–2050, and 2051–2060, with
signifcant regional diferences in the number of increasing
days. When compared to 2012–2021, the total number of
HW days per year will increase by 1.5 to 3.9 times in
2031–2040, 1.4 to 4.2 times in 2041–2050, and 2.5 to
6.5 times in 2051-2060. Te minimum increase in HW days
is expected in North China, while Central China and South
China are expected to have the maximum increase. For
instance, Central China and South China will have ap-
proximately 10 HW days in July during 2051–2060. Fur-
thermore, the month with the highest number of HW days
will gradually shift from August to July in these two regions.
Prior studies have mostly focused on the mean summer
temperature change in the future and reported that the
warming trend in Northeast China is large but small over
South China [56–58]. However, a roughly reversed spatial
pattern is seen for high temperatures, such as the number of
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warm days, warm spell duration indicators [59], and HW
days in this study. Hence, the increased number of HW days
in the future could lead to a higher likelihood of supply-
demand imbalance from late morning to early afternoon.

Unlike HW days, the change in CW days is relatively
small and does not have coherent trends among regions
(Figure 11). Compared with 2012–2021, the change of
total CW days over a year ranges from 80% to 183% times
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Figure 9: Ensemble mean WPOCs on CW days and adjacent days and their comparison with WPOCs on normal days for six regions in
China. (a) Northeast China. (b) North China. (c) East China. (d) Central China. (e) South China. (f ) Northwest China.
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in 2031–2040, from 55% to 120% times in 2041–2050, and
from 87% to 128% times in 2051-2060. Specifcally, the
number of annual CW days increases signifcantly in
Central China, decreases slightly in East China and

Northwest China, but remains steady in the other three
regions. Moreover, the monthly distribution of CW days
changes a lot for most regions, i.e., CW days decline in
February and November but grow in December and

Table 3: Te stacking ensemble model performance (r, RMSE, and MAE) during the test phase for predicting HW and CW days over six
regions in China.

Region
HW CW

r RMSE MAE r RMSE MAE
Northeast China 0.806 0.325 0.212 0.900 0.420 0.290
North China 0.926 0.338 0.163 0.940 0.218 0.173
East China 0.892 0.149 0.114 0.976 0.049 0.041
Central China 0.840 0.283 0.164 0.869 0.072 0.039
South China 0.792 0.161 0.091 0.844 0.070 0.042
Northwest China 0.836 0.179 0.145 0.897 0.065 0.047
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Figure 10: Change of HW days in each month for six regions over the past 10 years (2012–2021) and three decades (2031–2040, 2041–2050,
and 2051–2060) under the SSP245 scenario. Error bars represent 90% confdence intervals by the bootstrap process. (a) Northeast China. (b)
North China. (c) East China. (d) Central China. (e) South China. (f ) Northwest China.
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January for Central China, CW days decline in November
and December but grow from January to March for East
China, CW days increase in March for South China, CW
days decrease in October and December but increase in
January and March for Northwest China, and CW days
decrease in March and October but increase in December

and January Northeast China. Previous studies have re-
ported that winter temperature will increase in most
regions of China over the 21st century [56–58], but the
frequency of cold extremes will not experience a notable
decline along with the warming trend [60], including the
CW events in this study. Consequently, the impacts of CW

F M A M J J A S O N DJ
Month

0

1

2
N

um
be

r o
f d

ay
s

2012-2021
2031-2040

2041-2050
2051-2060

(a)

0

1

2

N
um

be
r o

f d
ay

s

F M A M J J A S O N DJ
Month

2012-2021
2031-2040

2041-2050
2051-2060

(b)

F M A M J J A S O N DJ
Month

0

0.2

0.4

0.6

0.8

N
um

be
r o

f d
ay

s

2012-2021
2031-2040

2041-2050
2051-2060

(c)

F M A M J J A S O N DJ
Month

0

0.2

0.4

N
um

be
r o

f d
ay

s
2012-2021
2031-2040

2041-2050
2051-2060

(d)

F M A M J J A S O N DJ
Month

0

0.2

0.4

N
um

be
r o

f d
ay

s

2012-2021
2031-2040

2041-2050
2051-2060

(e)

0

0.1

0.2

0.3

N
um

be
r o

f d
ay

s

F M A M J J A S O N DJ
Month

2012-2021
2031-2040

2041-2050
2051-2060

(f )

Figure 11: Change of CW days in each month for six regions over the past 10 years (2012–2021) and three decades (2031–2040, 2041–2050,
and 2051–2060) under the SSP245 scenario. Error bars represent 90% confdence intervals by the bootstrap process. (a) Northeast China. (b)
North China. (c) East China. (d) Central China. (e) South China. (f ) Northwest China.
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on the power supply in the day after CW still exist and
their monthly distribution will experience a notable
change in the future.

Table 4 summarizes the relative wind power output
anomaly on HW and CW days, as well as the expected
change in the number of HW and CW days per year in the
future.

4. Conclusions and Discussion

In this study, we calculate the local prevailing wind direction
to determine the orientation of wind farms and then sim-
ulate the daily wind power output during HW and CW days
for six regions in China. Te major fndings can be drawn as
follows. (1) Most regions (except for Northwest China)
experience a signifcant wind power output reduction from
late morning to early afternoon on HW days, which chal-
lenges the daily dynamic supply-demand balancing capa-
bility of a power grid. (2) All regions receive more wind
power generation on the CW day and the previous day than
on normal days.Te output peak occurs in the evening of the
previous day for Northeast China and South China, while it
appears in the early afternoon for other regions. However,
a rapid decline in wind power is seen on the day after the CW
for all regions, which may increase the risk of wide-area
power outages.

In addition, we apply the stacking ensemble machine
learning method to project the changes of regional HW and
CW days during 2031–2040, 2041–2050, and 2051–2060
based on the SSP245 scenario. In the future, HW days have
coherent growing trends among regions but CW days
mainly show monthly redistributions without notable
changes in total occurrences throughout the year. Terefore,
HW and CW events will mainly infuence the intraday and
interday supply-demand balances of the power grid that
depends on wind resources.

In view of the method, the originality of this study is that
it explores wind energy production at the interprovincial
scale by placing individual wind farm models into a pre-
vailing wind direction network and applying an ensemble
learning algorithm to estimate the extreme weather change
in the future from multiple GCMs. Tis method can better
extract complex dynamical processes and implicit wind
patterns within climate models and it difers from previous
regional wind power simulators mainly based on statistical
relationships [7, 61].

A number of limitations need to be noted regarding the
present study. Firstly, we only focus on the wind power
sector during HW and CW days; further work is required to
identify the output of hybrid renewable energy systems
under diferent extreme weather conditions. Secondly, we
simply assume that the wind farm density remain un-
changed in the future with a growing number of wind farms,
which will induce gradually increased bias of regional
WPOCs. Further research might develop a dynamic wind
farm network based on long-term planning of wind projects
to reduce such bias.
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