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Te predictability of their manufacturing lines allows industrial facilities to optimize their production scheduling and to
participate in demand response (DR), in day-ahead, real-time pricing (RTP) electricity markets. Battery energy storage systems
(BESSs) make the electrical demand of industrial facilities more fexible and increase their potential to beneft from DR.Te BESS
sizing problem, for industrial facilities participating in RTP DR, is complex due to the discreteness of their manufacturing lines
and the stochastic nature of electricity pricing. In this paper, an approach to BESS sizing is proposed. Scenario extraction using
k-means clustering is used to reduce the problem complexity, and the extracted scenarios are preprocessed to reduce the search
space for the optimal size of the BESS. Te steps involved in the proposed approach are demonstrated, in detail, through a case
study that uses a generic model of an industrial unit.Te results of the case study show the efectiveness and validity of the problem
reduction techniques used and highlight the role of electricity storage in maximizing the profts of the industrial unit. Finally,
a sensitivity analysis is carried out to illustrate the impact of the BESS installation cost on the results.

1. Introduction

Real-time pricing (RTP) in day-ahead electricity markets is
used to induce a change in the load patterns of consumers as
part of a mechanism known as demand response (DR) [1, 2].
For the operator, DR is an ancillary service used to support
the operation of the grid [3–5] while reducing costs [6, 7]
and emissions [8]. Meanwhile, consumers, by being aware of
electricity prices, beneft from DR by optimizing their
consumption patterns and minimizing their costs.

Modeling of DR from the perspective of the consumer
depends on the type of the consumer considered. Residential
consumers are often highly responsive with sheddable,
nonsheddable, and shiftable loads [9]. In [10], the authors
divide home appliances into categories based on their energy
consumption and operation characteristics. Tey then
propose a load scheduling algorithm that maximizes con-
sumer value while considering budget constraints. A home
energy management system that minimizes cost while pe-
nalizing discomfort generated by load shifts is proposed in

[11]. Community-based modeling of residential DR is
studied in [12, 13].

Commercial consumers are the least responsive due to
fxed activity hours [9]. However, heating and cooling
systems can be controlled to adjust electricity consumption
patterns while not afecting the level of thermal comfort of
the people in the building, as shown in [14, 15].

Industrial loads are the most elaborate to model. Tey
have a certain level of predictability due to the use of
manufacturing lines; this allows for more accurate demand
optimization used to minimize energy consumption or
maximize proft. Specialized models for the meat, cement,
and food industries are presented in [16, 17], and [18],
respectively. Tese models support manual decision-making
in response to RTP or ofered incentives. An automated
response to the real time, incentive-based DR programs of
discrete manufacturing facilities is proposed in [19]. Te
authors formulate the proft maximization problem to au-
tomatically determine optimal electrical load reduction and
product manufacturing strategies. In [20], the authors

Hindawi
International Transactions on Electrical Energy Systems
Volume 2023, Article ID 8857061, 12 pages
https://doi.org/10.1155/2023/8857061

https://orcid.org/0009-0008-8618-2840
https://orcid.org/0009-0004-2310-132X
https://orcid.org/0000-0003-2057-6325
mailto:harag.margossian@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/8857061


propose a new model for the demand for aluminum, steel,
and cement factories as part of a single microgrid. Tey
formulate the proft maximization problem with a focus on
the cooperation among the factories and the interaction with
the microgrid. A data-driven model of RTP DR is proposed
in [21]. Te authors use long short-term memory recurrent
neural networks (LSTMRNNs) to account for uncertainty in
future electricity prices and determine an optimal energy
management strategy.

Tese prior studies show that industrial consumers have
a lot to gain by participating in DR. Nevertheless, the level of
optimization possible is restricted by the limited fexibility of
their manufacturing lines. In addition, due to their discrete
manufacturing processes, industrial loads can only change
their demand in discrete kW or MW values, making their
DR more rigid [22, 23]. Tese limitations in fexibility and
granularity can be circumvented using battery energy
storage systems (BESSs).

In the open literature, research on BESS has been focused
on its role as a provider of ancillary services in active dis-
tribution grids, microgrids, and hybrid standalone supply
systems. Essential services that the BESS can provide include
voltage regulation [24], frequency control [25], and energy
balancing [26]. In the context of industrial facilities, the role of
BESS is to help reduce the electricity bill or to increase the
profts of these facilities. Tis can be achieved by charging the
BESS during periods with low electricity prices and either
using the charged energy during periods where prices are high
or selling the energy back to the grid for additional proft.

Energy management of industrial facilities with discrete
manufacturing models and energy storage is studied in
[27–29]. In [27], the authors formulate an optimal load
dispatch problem of industrial consumers, with distributed
energy resources (DERs) and energy storage, in response to
RTP. Teir objective is to minimize the cost of these con-
sumers, including fuel, DER maintenance, and electricity
purchasing cost, while meeting a given target for product
manufacturing. In [28], a model that determines the load
reduction capability of industrial consumers in response to
incentive-based DR is presented. Te model minimizes the
completion time of the manufacturing process for a given set
of product orders while reducing electricity purchasing costs
and considering electricity storage and PV production. Te
authors in [29] present a scenario-based stochastic model to
minimize the electricity cost and the battery operation cost
for an industrial unit equipped with a PV production source.
Te authors provide a detailed discrete assembly line model
and an elaborate BESS model for healthier battery utiliza-
tion. Te optimization problem is then solved with a hybrid
method considering diferential evolution techniques and
branch and bound-based solvers. In these papers, the au-
thors considered a fxed or a minimum manufacturing
output and a predetermined BESS capacity.

Optimal sizing of BESS is often studied in conjunction
with their optimal placement. Teir ability to provide an-
cillary services plays an important role in this regard. BESS
sizing for industrial facilities, on the other hand, is more
dependent on the structure of these facilities. Tere are
several articles that have proposed approaches to size the

BESS for industrial consumers. In [30], the authors provided
a bilevel stochastic optimization model to determine the
capacity of the energy storage unit.Te objective of the BESS
is to maximize the annual expected net beneft from the
economic impact energy storage has on the electricity bill.
Te model considers a k-means clustering algorithm to
generate a typical load profle for the industrial unit. In [31],
genetic algorithm is utilized to optimally size the BESS for
industrial prosumers to attain high energy savings with fast
payback periods. Te authors verify their model under four
energymanagement strategies for an industrial load profle and
a solar production profle over a year. To minimize the elec-
tricity bill for industrial consumers with BESS, the authors in
[32] provided an approach considering decision theory. Te
paper considers probabilistic techniques and uncertainties to
optimally size the energy storage given a load profle. While all
the previous approaches considered a typical industrial unit
load profle, the authors in [33] generated this demand from an
integrated simulation model for manufacturing load. Tis load
is thereafter used to optimally size the BESS in addition to other
renewable generation sources to minimize the yearly electricity
billing cost using linearization and meta-heuristic strategies.

To make full use of the BESS, an industrial facility’s
energy management should maximize its proft rather than
only satisfy a manufacturing duty. In addition, it should
consider its elaborate manufacturing scheme and account
for diverse electricity pricing scenarios. Tis merge of dis-
crete manufacturing lines with multiple scenarios increases
the computational complexity and makes the problem
difcult to be solved.

Te main contributions of the paper are as follows:

(1) Te approach proposed in this paper considers
a comprehensive model of industrial facilities with
discrete manufacturing processes. Te models pro-
posed in [30–32] do not consider the discrete nature
of the manufacturing processes, while in [33], the
authors only extract the load profle from the
complete manufacturing model but do not include
the model itself in the optimization.

(2) To overcome the computational challenges of solving
the model, problem reduction techniques are
proposed:

(a) A method is introduced to extract representative
scenarios for electricity pricing from a historical
dataset

(b) Te search space is limited by precomputing,
upper and lower bounds for BESS capacity

(3) Te proposed model is used to illustrate the role that
electricity storage can play in maximizing the profts
of the industrial facilities.

Te remainder of this paper is divided as follows: Section 2
models the industrial facility operation and the energy storage
management and sizing. Section 3 proposes the scenario re-
duction and solving techniques. Section 4 provides a case study
to demonstrate the sizing model and analyze the impact of
BESS. Finally, Section 5 concludes the paper.
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2. BESS Sizing Optimization

In this section, the stochastic optimization problem of the
BESS sizing of a complex industrial facility is presented. Te
model includes an industrial facility that aims to maximize
its manufacturing output while minimizing its costs, in-
cluding purchasing the items, electrical power needed for
manufacturing, and labor.With the addition of the BESS, the
facility can (1) optimally schedule the operation of each
manufacturing unit, (2) purchase the items necessary for
production, and (3) manage the charging and discharging of
the BESS. Te mathematical model of each of the compo-
nents is provided in the following subsections.

2.1. Manufacturing Model of the Industrial Facility. Te
model used for the discrete manufacturing process of an
industrial facility in this paper is based on that presented in
[19]. Tis process is represented in the form of
manufacturing lines and an assembly line that collects the
created items to produce a fnal product. A schematic ex-
ample of the model is shown in Figure 1.

Te assembly line is assigned row 0, and the
manufacturing lines are assigned rows 1 to R.

Each machine produces items that are fed to a bufer to
be stored. Te items in those bufers are then used by the
following machine in the line. Te machines and bufers are
numbered according to their location in the diferent lines.

Machines are represented by squares, and bufers are
represented by circles.

Te machines and bufers are modeled as follows:

Machines: the role of a machine is to manufacture items
in a certain period t.

Te operational status of a machine can be categorized as
either active or inactive. Tere are several reasons for
a machine to be inactive, ranging from high electricity prices
to situations, where the manufacturing line is unable to
accommodate more machines due to a full bufer.

xijt is a binary variable that is used to identify whether, in
period t, the machine at row i and column j is on (xijt � 1) or
of (xijt � 0).

Te number of items produced by the machine (nijt) is
given by the following equation:

nijt �
Ts

CTij
xijt, t ∈ T; i � 0, . . . ,R; j � 1, . . . Mi, (1)

where Ts is the length of the time slot in s and CTij is the
cycling time of the machine at row i and column j, in s.

Bufers: the role of a bufer is to store manufactured items
that will be used later. Generally, the number of items in
a bufer in period t is the number of items in period t − 1 plus
the number of items manufactured by the machine pre-
ceding it and minus the number of items used by the ma-
chine following it. In [18], three types of bufers are defned,
depending on their location:

(1) Bufers in all rows and columns, except the ones at
the end of each line, feed the machine following it.
Te number of items in the bufer in period t, Bijt, is
expressed as given in the following equation:

Bijt � Bij(t−1) + nijt − αijni(j+1)t, t ∈ T; i ∈ 0, . . . , R; j � 1, . . . Mi − 1, (2)

where αij is the number of parts needed for a ma-
chine at row i, column j to provide for the next
machine to produce a single item.

(2) Bufers at the end of nonassembly lines (i≠ 0) feeding
the frst machine at the assembly line (i� 0). Teir
storage level at time t is defned by

Bijt � Bij(t−1) + nijt − αijn01t, t ∈ T; i � 1, . . . , R; j � Mi.

(3)

(3) Te bufer at the end of the assembly line accumulates
all the produced goods. Tis bufer does not feed any
other machine and its storage level at time t is given by

Bijt � Bij(t−1) + nijt, t ∈ T; i � 0; j � M0. (4)

Moreover, the bufers have capacity limits modeled by

0≤Bijt ≤Bij, t ∈ T; i � 0, . . . , R; j � 1, . . . Mi. (5)

Te number of items stored in the last bufer of the
assembly line in period t24 represents the fnal number of
produced items in the day and is defned as follows:

f � B0M0t24
. (6)

Te following additional constraints defne the operation
of the manufacturing process:

(1) A machine is of in period t (xijt � 0) if the bufer
before it was empty in the previous period. Tis
applies to all machines except the frst one of the
assembly line. Te inequality expressed in equation
(7) satisfes this condition:

xi(j+1)t ≤Bij(t−1), t ∈ T; i � 0, . . . , R; j � 1, . . . , Mi − 1.

(7)

(2) Te frst machine in the assembly line needs the last
bufers in all manufacturing lines to not be empty for
it to operate. Tis is achieved by

x01t ≤Bij(t−1), t ∈ T; i � 1, . . . , R; j � Mi. (8)

(3) A machine in period t cannot operate if the bufer
following it was full in period t − 1; equation (9)
ensures this constraint:
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xijt ≤Bij−Bij(t−1), t ∈ T; i � 0, . . . , R; j � 1, . . . Mi.

(9)

2.2. Te BESS Model. Te state of charge of the BESS in
a period t, SoCt, equals the state of charge in the previous
period plus the energy charged in period t, Ect, minus the
energy discharged in period t, Edt:

SoCt � SoCt−1 + Ect − Edt, t ∈ T. (10)

Te BESS is assumed to have a given initial state of
charge at the start of the day and a given fnal state of charge
at the end of the day, defned as a certain percentage, π, of its
capacity, SoC. Terefore, as a special case of equation (10),
the state of charge in periods t1 and t24 are given as follows:

SoCt1
� π · SoC + Ect − Edt, (11)

SoCt24
� SoCt24−1 + Ect − Edt � π · SoC. (12)

Te BESS has an upper storage capacity limit

0≤ SoCt ≤ SoC, t ∈ T. (13)

Te BESS cannot instantly charge or discharge. Tese
limits are shown in equations (14) and (15). In addition, the
BESS is assumed not to be able to charge and discharge at the
same time, determined by the variable xct.

0≤Ect ≤Ec · xct, t ∈ T, (14)

0≤Edt ≤Ed · 1 − xct( , t ∈ T. (15)

2.3. Connection to the Supply Grid. Te industrial facility is
connected to the electrical supply grid and is capable of
buying and selling electricity to the grid. Te amount of
energy to be exchanged with the supply grid,Dt, is defned by
equation (16), and includes

(i) Te energy consumed by each of the machines
during operation.

(ii) A small amount of energy that is consumed by the
machines even when they are of [19].

(iii) Te energy exchanged with the BESS. Tis includes
a charging efciency, ηC, is to refect the energy
losses while charging the BESS and a discharging
efciency, ηD, used to refect the energy losses while
discharging the BESS.

Dt � 
R

i�0


Mi

j�1
xijt · Ponij + 1 − xijt  · Poff ij 

·
Ts
3600

+
Ect

ηC

− Edt · ηD, t ∈ T.

(16)

Te amount of energy that can be exchanged with the
supply grid is limited based on the electrical point of con-
nection. Tis is satisfed with the following equation:

−LL≤Dt ≤ LL, t ∈ T. (17)

2.4. Te Optimization Model. Te goal of the industrial
facility is to maximize its proft that is defned by the fol-
lowing terms:

(1) Te revenue from selling the fnal products is given
by

revenue � f · v, (18)

where f is the fnal number of produced goods and v

is the price per good, in cents.
(2) Te labor cost of manufacturing is given by

labor cost � f · l, (19)
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Figure 1: Industrial manufacturing process.
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where l is the labor cost in cents per product
produced.

(3) Te cost of purchasing the items required for the
manufacturing process is given by

purchased items cost � 
T

t�1


R

i�1
Kpi1 · βi1 · ni1t, (20)

where βi1 is the number of items purchased to
operate the machine in row i, column 1, and Kpi1 is
the price of each of these items.

(4) Te cost of electricity consumption is given by

electricity cost � 
T

t�1
Dt · Pt, (21)

where Pt is the day-ahead electricity market price in
cents/kWh in period t.

(5) Te investment cost of the BESS is given by

BESS cost � κ · SoC, (22)

where SoC is the capacity of the installed BESS and κ
is the equivalent investment cost in cents, per day,
per kWh.

Te objective function of maximizing proft is fnally
given as follows:

maxOF � f · v − f · l − 
T

t�1


R

i�1
Kpi1 · βi1 · ni1t( 

− 
T

t�1
Dt · Pt − κ · SoC.

(23)

However, due to the stochastic nature of the day-ahead
prices, the decision variables and outcomes of the objective
function cannot be deterministic and should be taken to be
their expected values instead. Te objective function is,
therefore, modifed as follows:

maxOF � E f · v − f · l − 
T

t�1


R

i�1
Kpi1 · βi1 · ni1t(  − 

T

t�1

Dt · Pt
⎛⎝ ⎞⎠ − κ · SoC. (24)

In [34], the authors transformed the stochastic variables
into a probability density function (PDF). In the proposed
model, daily ds scenarios are considered each with a prob-
ability cds.

Te PDF of these scenarios is thus obtained, and
equation (24) is rewritten as follows:

maxOF � 
DS

ds�1
c
ds

· f
ds

· v − f
ds

· l − 
T

t�1


R

i�1
Kpi1 · βi1 · ni1t

ds
  − 

T

t�1
Dt

ds
· Pt

ds
 ⎛⎝ ⎞⎠ − κ · SoC. (25)

For every period t, the total probability of the market
prices must add to one:



DS

ds�1
c
ds

� 1, t ∈ T. (26)

With the nature of the variables and the constraints used,
the BESS sizing optimization problem is now formulated as
a mixed integer nonlinear programming (MINLP) model.
Note that MINLP problems have increased complexity
compared to MILP or NLP problems and require advanced
solution methods [35]. All of the MINLP optimization
problems presented in this paper were implemented and
solved in GAMS.

3. Optimization Problem Reduction

Solving the stochastic problem presented in equation (25),
while considering many scenarios, imposes a high com-
putational burden. Tis is due to the use of integer variables
to defne the discrete manufacturing processes of the in-
dustrial facility and the energy management of the BESS. In

fact, if too many scenarios are considered, the problem
becomes nearly impossible to solve even with state-of-
the-art solvers and powerful computer hardware. To cir-
cumvent these issues, in this section, problem reduction
techniques are proposed.

3.1. Scenario Extraction from Historical Data. It is not
possible to consider all variation scenarios of the electricity
price for a given set of historical data (data over a year or
over multiple years).Tus, it is important to identify selected
scenarios that well represent the data. To this end, k-means
clustering is proposed.

k-means is an unsupervised machine learning algorithm
that partitions a dataset into distinct, nonoverlapping groups
called clusters, where each data point belongs to only one
group [36, 37]. Te algorithm aims to make the intracluster
data points as similar as possible while also keeping clusters
as far as possible from each other.Te fewer variations inside
a cluster, the more homogenous and similar are its data
points. k-means is very fast and is a standard method with
many available implementations [38]. It is used to reduce the

International Transactions on Electrical Energy Systems 5



number of days in the historical dataset into K representative
scenarios.

More formally, k-means adopts an expectation-
maximization approach to solve a clustering problem as
seen in Algorithm 1 [38].

Each day from the historical data DS is represented by
a vector Vds � <Pt0, . . . , Pt23> consisting of the day-ahead
market prices that will be partitioned into clusters. Each
vector is assigned to a cluster c based on sharing the min-
imum Euclidean distance to its centroid Cc compared to
other centroids, where the distance is computed as follows:

d Vds, Cc(  �

�����������



T

t�t0
Pt − ct( 

2




, (27)

where ct designates centroid price in a period t. Te rep-
resentative scenario in each cluster is the day that has day-
ahead market prices with the smallest distance to the
cluster’s mean.

3.2. Search Space Limitation. Even with the limited number
of representative scenarios, it is difcult to solve the pro-
posed stochastic optimization problem. To further reduce
the problem complexity, it is proposed to limit the search
space for SoC, the BESS capacity variable. Tis is done by
preprocessing each of the individual scenarios using the
discrete objective function in equation (23) and identifying
the minimum and maximum optimal values of SoC. Tese
are then used as upper and lower limits on the BESS capacity,
while solving the stochastic problem.

3.3. Approach Summary. Te presented approach is illus-
trated in Figure 2 and summarized as follows:

(1) Reduce the number of scenarios DS in the historical
dataset into K scenarios by using k-means clustering
algorithms

(2) Choose a representative scenario from each cluster
(3) Find the optimal energy storage SoC for each of the

scenarios separately considering the objective
function in equation (23)

(4) Identify the maximum and the minimum optimal
values of SoC from the individual scenarios, and use
these as upper and lower limits on the BESS capacity

(5) Solve for the objective function presented in (25)
with the K scenarios and the new capacity constraint

4. Case Study

In this section, a motivating example that demonstrates the
proposed approach is presented.

4.1. System Description. Te schematic diagram of the in-
dustrial facility is shown in Figure 3. Te characteristics and
the parameters of the machines are listed in Table 1.

Te selling price of the product is v � €9.30. Te labor
cost of each product is l� €1.20. All the machines are as-
sumed to consume Pofij � 1 kW when turned of. Te day
studied is divided into 24 hours (Ts� 3600 s). Historical data
of day-ahead hourly prices (Pt) of Finland from the years
2019 and 2020 are considered [39].

Te charging and discharging limits of the BESS
are set to 30% of its maximum capacity, such that Ec �

Ed � 0.3 · SoC. Te charging and discharging efciencies
are taken to be: ηC � 95% and ηD � 80%, respectively.
Te BESS is assumed to be 40% full at the beginning
and the end of each day (π � 0.4). Finally, the line con-
nected to the industrial load has a thermal limitation of
LL � 600 kW.

4.2. Scenario Extraction. Te frst step to fnding the op-
timal BESS size that would maximize the proft of the
industrial facility presented in Section 4.1 is to extract
representative scenarios from the historical data. Te
day-ahead price data of Finland from the years 2019 and
2020 includes 731 diferent scenarios, i.e., DS � 731. Te
objective of the scenario extraction is to reduce the
number of scenarios to K scenarios; for this study, K is
chosen to be 12.

Using k-means clustering, the 731 scenarios are therefore
partitioned into 12 clusters. Te diferent dips and peaks of
the prices in terms of occurrences and magnitude signify the
alterations and the diversity in themarket prices extracted by
the k-means algorithm. After the clusters are formed,
a representative scenario for each of the clusters is chosen
based on (27).

Figures 4 and 5 show all the grouped scenarios in two of
the clusters, k10 and k12, as well as the representative
scenario for these clusters. Despite having some outliers, the
obtained clusters show price variations that are consistent
with each other in terms of shape and magnitude. Tis
highlights the efectiveness of k-means in grouping similar
day-ahead market prices together.

Te representative scenarios of all 12 clusters are dis-
played in Figure 6.

To get the PDF of the selected scenarios, the probability
ck of the representative scenarios is obtained by dividing the
number of scenarios in the cluster by the total number of
scenarios DS in the dataset. Te results are shown in Table 2.

4.3. Preprocessing Scenarios. Once the representative sce-
narios are identifed and their probabilities are de-
termined, the scenarios are preprocessed to fnd upper
and lower bounds for the BESS capacity variable SoC. Tis
results in a reduced search space for the stochastic BESS
sizing problem. To this end, 12 optimization problems are
solved, maximizing (23), while subject to equations
(1)–(17).

Te results are shown in Table 3.
Based on these results, additional variable limits on the

BESS capacity are introduced, given by

0≤ SoC≤ 6562. (28)
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4.4. Final Results and Analysis. After fnding the upper and
lower bounds for the BESS capacity, the optimization
problem with the objective function presented in (25) and
subject to equations (1)–(17). Tis results in an optimal
storage capacity of 5624 kWh.

4.4.1. Result Verifcation. To assess these results, the energy
management optimization problem, with the objective
function in (23), is assessed with a fxed BESS size of
5624 kWh for all original 731 scenarios. Te real average
proft (RAP) over the studied dataset is then calculated as
follows:

RAP � 
DS

ds�1

OFds

DS
, (29)

Historical Data k-means
clustering K Scenarios

BESS sizing optimization
for each scenario

Optimal BESS
for each scenario

BESS sizing
stochastic optimization

considering all scenarios
Optimal BESS size

min/max
identification

Search space for
BESS size

Figure 2: Proposed approach for optimization problem reduction.
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Figure 3: Schematic diagram of studied industrial load.

Table 1: Industrial facility parameters.

CTij (s) Bij Ponij (kW) αij Ki1 (cents) βi1

Machine

i1.j1 50 350 65 3 20 3
i1.j2 300 55 43 1 — —
i1.j3 300 55 31 2 — —
i2.j1 50 350 65 3 20 3
i3.j1 60 120 81 2 20 3
i3.j2 90 80 65 1 — —
i0.j1 300 50 65 1 — —
i0.j2 360 2000 74 — — —

0

100

0:00 6:00 12:00 18:00 0:00

Pr
ic

e (
€/

M
W

h)

Time

Non-representative Scenarios
Representative Scenario

Figure 4: Grouped scenarios in k10.

(1) Specify the number of k clusters to assign.
(2) Randomly initialize k centroids.
(3) repeat
(4) expectation: Assign each point to its closest centroid.
(5) maximization: Compute the new centroid (mean) of each cluster.
(6) until Te centroid positions do not change.

ALGORITHM 1: k-means algorithm.
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Figure 6: Representative scenarios of the 12 clusters.

Table 2: Probability of each scenario.

Scenario k 1 2 3 4 5 6 7 8 9 10 11 12
ck 0.1423 0.0807 0.0999 0.0534 0.1094 0.0150 0.0465 0.1012 0.0930 0.0917 0.0711 0.0958

Table 3: Optimal BESS capacity of each scenario.

Scenario k 1 2 3 4 5 6 7 8 9 10 11 12
SoC (kWh) 1644 0 3565 0 0 6561 0 3152 5624 5624 3278 4325

0

100

Pr
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e (
€/

M
W

h)

0:00 6:00 12:00 18:00 0:00
Time

Non-representative Scenarios
Representative Scenario

Figure 5: Grouped scenarios in k12.
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where OFds is the objective function value of scenario ds.
Tis yielded a real average daily proft of €95.54.
Tis task was then repeated for the diferent values of

SoC obtained from each of the 12 extracted scenarios. Te
daily proft vs. diferent storage capacitates is shown in
Figure 7. Over the course of the studied period, the average
daily proft for the industrial unit without installing BESS is
€43.44, less than half of the proft attained by the optimal
BESS capacity of 5624 kWh. On the other hand, using the
highest optimal capacity obtained from scenario k6
(6561 kWh), the average daily proft is €92.29, 3.4% less
compared to the optimal capacity.

4.4.2. Impact of considering Several Scenarios. To illustrate
the importance of the proposed approach of extracting
multiple scenarios, a direct comparison is made with the
results of taking the two studied years as a single scenario,
i.e., having a single average representative for each hour
in the 24-hour study period. Te average of the scenarios,
calculated based on (27), is shown in Figure 8.

With DS� 731 days and κ� 0.1 cents/kWh, the optimi-
zation model yielded an optimal storage size of
SoC� 2843.667 kWh.

Te real average proft of all days in the dataset, com-
puted using (29), is €82.24, resulting in a decrease of 13.92%,
compared to the optimal BESS size of 5624 kWh.

4.4.3. Sensitivity Analysis. Sensitivity analysis is carried out
for diferent values of κ to study the impact of installation
costs on the sizing. Te simulation results are illustrated in
Table 4.

Te case study results illustrate the signifcance of energy
storage and the importance of low BESS costs in increasing
proft.

At low installation costs κ� 0.01 cents/kWh, the average
daily proft was €97.24 with a high optimal storage capacity
of 6561 kWh.

With higher installation prices κ� 0.5 cents/kWh,
a lower optimal energy storage capacity is needed
(2974 kWh), and lower proft becomes attainable (€85.86).
If the installation prices become high enough, the BESS
will no longer make economic sense, and therefore the

industrial facility is better of without it, as in the case
when κ� 3 cents/kWh. Te average proft in this case
would be €43.44.

For a more comprehensive analysis of the impact of
installation costs and BESS capacities, the previous sensi-
tivity analysis was expanded to also include the diferent
BESS capacities considered in Section 4.4.1. Te results are
shown in Figure 9.

As expected, the highest average daily proft is ob-
served at the values indicated in Table 4. For instance,
when the installation cost is 0.01 cents/kWh, the in-
dustrial unit achieves maximum proftability with a bat-
tery size of 6561 kWh. Conversely, when the installation
cost is high, at 3 cents/kWh, the industrial unit generates
less proft compared to the €43.44 it gets without any
battery installed.
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Figure 8: Representative average scenarios.

Table 4: Proft and optimal storage capacity for diferent BESS
installation prices.

κ (cents/kWh) SoC (kWh) RAP (€)
0.01 6561 97.24
0.1 5624 95.54
0.5 2974 85.86
1 1890 57.62
3 0 43.44
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Figure 7: Average proft per day for diferent BESS capacities.

International Transactions on Electrical Energy Systems 9



5. Conclusion

In this paper, the response of industrial demand to real-time
pricing was considered, with a focus on the impact of energy
storage. A BESS sizing approach, based on a proft-maximizing
model for the energy management system, was presented. Te
model considers the discrete manufacturing processes of in-
dustrial facilities and relies on stochastic modeling of energy
prices based on historical data. Scenario reduction using k-
means clustering and preprocessing the data to limit the search
spacewere proposed tomitigate problem complexity. A detailed
case study based on a generic industrial consumer was pre-
sented. Te efectiveness of the approach was verifed by
comparing the expected proft to the simulated proft over the
studied period. Moreover, a sensitivity analysis was carried out
to show the impact of the cost of installation of energy storage
on its feasibility. Future work will be focused on extending the
model to consider diferent types of demand response pro-
grams, including time-of-use pricing, demand-side bidding, and
incentive-based programs.

Nomenclature

List of Acronyms

BESS: Battery energy storage system
DER: Distributed energy resources
DR: Demand response
MINLP: Mixed integer nonlinear programming model
PDF: Probability density function
RTP: Real-time pricing

Sets

DS: Set of all day-ahead market prices scenarios
K: Set of representative day-aheadmarket prices scenarios
MR: Set of machines in every element of set R

R: Set of serial production line branch
T: Set of time periods

Real Variables

Bijt: Quantity of items stored in a bufer at row i,
column j in period t

Dt: Energy bought by the industrial facility from the
grid in kWh

Dt: Expected energy bought by the industrial facility
from the grid in kWh

Dds
t /Dk

t : Energy bought by the industrial facility from the
grid in kWh in a scenario ds/k

Ect: Energy charged in the BESS in a period t in kWh
Edt: Energy discharged from the BESS in a period t

in kWh
f: Number of fnal products produced
f: Expected number of fnal products produced
fds/fk: Number of fnal products produced in

a scenario ds/k
nijt: Quantity of items that a machine at row i, column j

generates in a period t
nijt: Expected quantity of items that a machine at row i,

column j generates in a period t
nds

ijt/nk
ijt: Stochastic quantity of items that a machine at row

i, column j generates in a period t in a scenario ds/k
SoCt: BESS’s state of charge in kWh
SoC: BESS’s capacity in kWh

Binary Variables

xct: On/of indicator of the BESS charging status
xijt: On/of indicator of a machine at row i, column j in

period t

Parameters

Bij: Maximum storage capacity of bufer at row i,
column j

Cc: Centroid of the cluster
Ct: Centroid price in a period t
CTij: Cycling time of a machine at row i, column j in s
d: Euclidean distance between the vector of day-ahead

market prices and the cluster’s centroid
Ec: Maximum energy charged in period t in kWh
Ed: Maximum energy discharged in period t in kWh
Kpi1: Price of every βi1 in cents
l: Labor cost per product produced in cents
LL: Line limit in kW
Pofij: Power demand of a machine at row i, column j in

a period t when turned of in kW
Ponij: Power demand of a machine at row i, column j in

a time slot when turned on in kW
Pt: Day-ahead market price in cents/kWh in a period t
Pt: Expected day-ahead market price in cents/kWh in

a period t
Pds

t /Pk
t : Market price of a scenario ds/k in a period t in

cents/kWh
RAP: Real average proft per day in the studied period
Ts: Length of the time slot in s

Installation Cost (cents/kWh)
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Figure 9: Average proft per day for diferent BESS capacities for
diferent installation costs.
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v: Market price per product produced in cents
Vds: Vector containing the day-ahead market price of

each day in the dataset
αij: Number of parts needed for a machine at row i,

column j to provide for the next machine to
produce one item

βi1: Number of items purchased to operate the
machines in the frst columns

cds/ck: Probability of a market price in scenario ds/k
ηC: Charging efciency
ηD: Discharging efciency
κ: BESS’s equivalent installation costs per day in cents/

kWh
π: Percentage of charge the BESS has at the beginning

and the end of the day
Objective Functions

OF: Proft of industrial facility without BESS
installation costs

OF2: Expected proft of industrial facility with BESS
installation costs

OF2ds: Proft of industrial facility with BESS installation
costs in each day in the dataset DS.

Data Availability

Te data used in this study are available from the corre-
sponding author upon reasonable request.
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