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Te electrifcation of heating and transportation systems is one of the objectives of developed countries to minimize CO2
emissions. Tis objective pushes distribution systems’ (DBs) operators to incorporate numerous high-power loads into low-
voltage networks that were not designed for such loads. DBs’ reconfguration and the loads’ fexible characteristics are two
remedies exploited to overcome this issue. Heat pumps (HPs), as the most prevalent loads, can be managed by demand response
programs (DRPs) to postpone the costly reconfguration of distribution systems. HPs’ DRP participation afects indoor air
temperature. If this is not accomplished reasonably, the occupants’ thermal comfort (OTC) will be compromised, and it will be
impossible to convince them to continue contributing to DRPs. Based on the ASHRAE55 standard and an experimental building
electrothermal model, this article presents a novel framework for determining the HPs’ DRPs participation. Tis framework
ensures the OTC and optimizes the HPs’ DRP participation. Te modifed IEEE 33-bus network is employed as the test system to
evaluate the proposedmethod.Te simulation results confrm the usefulness of the proposed strategy to improve the technical and
economic aspects of the network.

1. Introduction

Climate change and its harmful efects forced many coun-
tries to sign international agreements to establish a clear
direction for the world’s energy policy [1]. Increasing the
proportion of renewable energy resources is one of the
outcomes of these policies. A perfect example is Denmark,
where the Danish Energy Agreement in March 2012 [2, 3]
considered wind and photovoltaic technologies as the main
power resources in the future. Heat and transportation
systems should be electrifed according to the agreement.
Consequently, the number of space conditioning units
(SCUs) and plug-in electrical vehicles (PEVs) will
increase soon.

Tese new loads would be both an opportunity and a risk
to distribution networks. Tey are being fed by low-voltage

(LV) grids; therefore, a drastic increase in power con-
sumption, congestion, power quality issues, and environ-
mental consequences are probable. On the other hand, DSOs
could rely on new load power consumption fexibility to
defer power system expansion, tackle new resources’ un-
certain power generation, and probable operational prob-
lems. Changing the time and the amount of energy
consumption by new loads, many countries are working to
commence or improve the so-called “smart energy system”
which facilitates bidirectional communication between all
electrifed energy sectors. At the same time, they are seeking
new technologies which decline new loads’ power con-
sumption and mitigate their devastating efects. For in-
stance, China is the world’s largest manufacturer and
consumer of SCUs and it contributes to nearly a quarter of
global space-cooling CO2 emissions. Chinese recently
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argued that by embracing technologies that are constantly
optimizing SCUs’ power consumption, they will have ac-
cumulative CO2 emissions reductions of 12.8% between
2019 and 2050 and accumulative bill savings of 2620 billion
RMB (Chinese currency) for Chinese consumers [4].

One of SCUs’ demand response control methods is
carried out under the supervision of a central load dis-
patching center or local control centers. In this method,
DSOs with the aid of so-called direct load control (DLC)
signals and a communication system regulate SCUs’ con-
sumption. Altering SCUs’ power consumption will change
the indoor air temperature and violate the occupants’
thermal comfort (OTC). If the DSOwants to count on SCUs’
maximum and consistent participation in DRPs for handling
emergencies, the OTC or meeting occupants’ real thermal
needs should be considered a prerequisite for defning SCUs’
degree of fexibility (the main contribution of this paper).

Regarding OTC in SCUs’ DRPs participation, authors
have embraced three diferent visions.

1.1. FeedbackBased. In this category, the data gathered from
an experimental building provide themain foundation of the
method. In [5], with the aid of a supervisory control strategy
called smart zoning, in each room of the building, set points
are regulated so that the whole building’s performance from
energy consumption and OTC perspectives optimize. In [6],
a two-level supervisory closed-loop feedback strategy is
exploited. At the frst level, each building employs a local
closed-loop feedback controller that processes only local
measurements; at the upper level, a centralized unit su-
pervises and updates the local controllers intending to op-
timize the energy cost and thermal comfort. Tree
occupancy-based SCUs’ operational strategies have been
utilized in [7] to optimize energy consumption and indoor
air quality when a typical variable air volume system serves
multiple zones inside a building. Occupancy-based means,
based on the length of time residents occupy a specifc room
and the amount of air entering the area and the consequent
temperature are set. In the aforementioned references, OTC
is utilized to prove the efectiveness of the proposed
methods. However, LV grid’s operational objectives, con-
straints, and parameters are ignored. Tese methods would
not be practical because the main purpose of SCUs’ in-
troduction into electrical surveys is their remedial capability
in the grid’s future operational issues. Moreover, as each
occupant would have his own behavior or each room in
a building could have a diferent occupancy pattern, the
control algorithm will be so elaborate for the DSO or a load
aggregator to adopt for applying to a large number of SCUs.

1.2. Consumer Ideal Temperature Range. In [8], a hierar-
chical robust distributed optimization is introduced for day-
ahead and intraday scheduling operation of fexible devices
(electrothermal heating units) within a city district. Te
paper concentrates on optimization methods. Each con-
sumer introduces a separate objective function to be opti-
mized. In [9], considering self-defned occupant comfort,
a mixed-integer linear programming (MILP) approach

provides optimal scheduling for electrical loads in a smart
building. OTC is used to defne the degree of heat pumps’
fexibility; however, a consumer can change the degree of
fexibility, regardless of weather and network operational
status; however, the DSO should defne the degree of fex-
ibility to exploit the maximum permanent fexibility of heat
pumps. Marco et al. [10] quantifes customer fexibility with
an optimization method in which each consumer introduces
a desirable temperature and an ideal range for temperature
variations. In [11], the loss of dweller-defned thermal
comfort and an appropriate payback method are considered
for the loss of thermal comfort.

Tis work shows that the DSO and heat load owners will
have fewer economic and technical benefts if the so-called
“consumer ideal temperature range” method is adopted.

1.3. OTC Ignorance. In [12], heat pumps are controlled for
distribution system overload relief based on local prices; and
the OTC is not considered. Heat pumps’ thermal settings are
altered in [13] based on voltage magnitude and DR signals
from the power market; and the efect of heat pump set
points alteration on the OTC is not investigated. In [14], an
aggregated electrothermal model is described for a group of
houses and energy consumption moves in time to balance
the grid, and thermal discomfort is permitted. Te authors
have considered large energy storage capacities to move
energy consumption to times when the power generation of
renewable energy resources is high. In [15], an algorithm
optimizes power peak shaving in a distribution grid while
the OTC is maintained based on occupants’ defnition of
thermal comfort. No calculation was carried out to un-
derstand if a user’s defned thermal comfort is following his
real thermal needs. In [16], thermal dynamics of variable
speed heat pumps are modeled in detail using a set of
piecewise linear equations for two diferent methods of room
temperature control; and the results are contingent upon
how an occupant defnes his suitable thermal comfort.

In conclusion, diferent studies investigated the role of
controlling HPs, in general words domestic appliances,
for low-voltage system management [17–28]. Table 1
compares the papers in which heat pumps are exploited
in DRPs.

In this paper, at a given hour, a specifc outdoor tem-
perature, and based on the physical characteristics of oc-
cupants, the ASHRAE55 standard yields temperature
boundaries in which the OTC is satisfed. It is assumed that
all inhabitants live in residential complexes with the same
dimensions and material features as the Massachusetts In-
stitute of Technology (MIT) experimental building. Te
electrothermal model of the building determines SCUs’
electrical consumption corresponding to the standard-
defned temperature boundaries. Finally, the particle
swarm optimization algorithm (PSO) determines SCUs’
optimal OTC-assured consumptions. Occupants yield all
their authority of setting the living place temperature to
DSOs, which would be an obstacle to HP’s DRPs partici-
pation. Terefore, this work assigns proper economic in-
centives to the owners according to the degree of their DR
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participation. Environmental (maximum reduction in CO2
emission) and network infrastructure benefts are high-
lighted to convince DSOs to adopt the proposed method.
Tis paper defnes and contrasts diferent technical and
economic parameters in two scenarios to clarify the necessity
of prioritizing OTC in determining the maximum SCUs’ DR
potential fexibility.

(i) Scenario 1: DSO assigns proper OTC-assured tem-
perature boundaries. DSO, at a given hour, assumes
a typical wearing and activity for inhabitants who are
living/working in residential complexes with a uni-
form material and dimension feature. Two cases are
pondered in this scenario which will be described in
Section 8.

(ii) Scenario 2: the DSO has to maintain house tem-
perature at the dweller’s favorite range. As each
consumer would have his own defnition of his fa-
vorite temperature boundary, for more simplifca-
tion, this work supposes that all consumers defne
boundaries which are considered to be “warm” for
winter and “cold” for summer. Based on the ASH-
RAE55 standard and typical physical and environ-
mental features of occupants, boundaries are
determined to be 18°C–22°C for summer and
25°C–28°C for winter.

Te contributions of this paper are listed as follows:

(i) A new vision of thermal load participation in DRPs
is defned. Te method has its roots in the ASH-
RAEE55 standard to guarantee the OTC and

permanent SCUs’ fexibility ofered in the power
market.

(ii) Te electrothermal model of a typical building
determines the degree of thermal load fexibility to
manage the distribution network problems.

(iii) Consumers have delegated their living place tem-
perature regulation to the DSO and this will de-
teriorate their ideal comfort. Terefore, this work
based on the degree of HP’s participation in DRPs
contemplates economic covenants between DSO
and consumers.

(iv) Congestion improvement is defned as the reduction of
the summation of power fows in all lines (the so-called
“congestion index”); however, this work proposes
a more accurate objective function which maximizes
the diference between actual and maximum power
fow (capacity release) in every single line.

2. Space Conditioning Units

Termostatically controlled loads are substantial DRP re-
sources. Tey will have high penetration and a degree of
fexibility. A SCU comprises an evaporator, a compressor,
a condenser, and an expansion valve. Te heating cycle of
a heat pump extracts heat from the air outside, raises its
temperature, and heats indoor air with warm air. Liquid
refrigerant transforms into a gas by absorbing the outdoor
air heat in the evaporator. Te compressor raises the gas
pressure and temperature. Te hot gas passes through
a condenser coil in the indoor space. Its temperature is

Table 1: Comparison of the reviewed papers.

Ref.

Electro-thermal model Criterion for determining thermal loads 
f lexibility Considering

network
operational 
constraints

Ease of 
application of 
the proposed 
method for a 
distribution 

network
Heat pump House Occupants

definition
Standard-

based

House 
occupancy 

pattern

Baldib et al. [5]
Korkas et al. [6]
Anand et al. [7]
Diekerhof et al. [8]
Angelis et al. [9]
Lingxi et al. [11]
Csetvei et al. [12]
Mendaza et al. [13]
Pedersen et al. [14]
Kim et al. [16]
Bhattarai et al. [18]
Arteconi et al. [19]
Kim et al. [23]
Tasdighi et al. [27]

This paper
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higher than the indoor air temperature. Terefore, the gas
transfers heat to the indoor space and condenses into
a liquid. Eventually, the fuid passes through the expansion
valve. Te cycle terminates by lowering the liquid’s pressure
and temperature. An air conditioning thermostat is used to
control the indoor temperature and is used to adjust the
operating time constant of the air conditioning equipment to
ensure that the indoor temperature remains within a given
range. In winter, when the indoor air temperature falls below
a predetermined value (E

C
), the compressor turns on and

heats the indoor air temperature (Te air) to a predefned
value (EC) and turns of. Te same procedure cools the
indoor air temperature in summer. Te dead band is an
important parameter to consider in a thermostat. In DRPs
and emergencies such as congestion, the DSO could alter the
dead band or SCUs consumption. Te ASHRAE55 standard
is used to determine E

C
, EC so that the OTC is guaranteed

while SCUs’ consumption decreases.

3. Electrothermal Model for
Residential Consumers

Two primary points need to be clarifed. First, how much
thermal energy is required to create a specifc temperature in
a building? Second, the SCUs’ power consumption corre-
sponding to the temperature should be determined [16, 29]
to show how an electrothermal model for a house is built
based on its material arrangement and would be used to
calculate the electrical consumption of a SCU for setting the
indoor air temperature at a predefned value. Each surface in
a building could comprise diferent insulation layers. For
each layer, an electrothermal model is exploited for simu-
lation purposes (Figure 1). Two “lumped” thermal re-
sistances (Rins and Rout) and one thermal capacity (Ctotal) are
the components of the model. Rins and Rout are equivalent
inside and outside thermal resistances and Ctotal is the total
thermal capacity of the layer.

With the help of this basic electrothermal model, a dy-
namic model for the test room is created. In the model, the
heat power injected by the HP (Qhp) maintains the air
temperature at a specifed value.

Figure 2 shows the schematic of the experimental
building room built at MIT; the room has two parts: the
climate room and the test room. Te climate room tem-
perature variations simulate outdoor temperature varia-
tions. Te test room has a thermally activated building

system (TABS). TABS’ ventilation system consists of hot and
cold water pipes passing through the foor. Te walls have
layers of thermal insulation and concrete. Each layer is
defned by its thickness, thermal conductivity, specifc heat
capacity, and density. Te test room has a heater and
lighting; and the heat generated by these sources simulates
thermal losses.

To determine the optimal power consumption of the HP,
Figure 3(a) is used as the electrothermal model of the ex-
perimental room [29]. All houses in the typical LV system
are supposed to be similar to the experimental room from
interior space and insulation material perspectives. Espe-
cially in commercial-residential complexes where all units
have the same material and map characteristics, considering
a valid electrothermal model for all houses would be rational.

Electrical resistance model’s conductive and convective
resistances: voltage and current sources model temperature
and heat gains, respectively. Qhp is the value of thermal
energy injected into the building and Tambient is the ambient
air temperature. Convective and conductive thermal re-
sistance values, Rcd and Rcv, and thermal capacitance C,
could be obtained via the following equations:

Rcd � L.(k.A)
− 1

, (1)

Rcv � (h.A)
− 1

, (2)

C � cshc.L.ρ, (3)

where L and A are the thickness and area of the room
surface, respectively. Te ρ and cshc are the density and
specifc heat capacity of the surface material. Also, k and h
are the conductive and convective heat transfer coefcients;
indeed, h is supposed to be 5W/(m2·K), regardless of the
surface characteristics; Rcv represents the convective
resistor.

Te dynamic behavior of the building model is ignored
because of the following reasons:

(i) Te approach proposed by this work is to change the
building temperature in a range that the stable OTC
is achieved. In other words, occupants feel thermal
comfort at temperatures between initial and steady-
state values, and heat loads only handle network
operational issues. Terefore, there is no need to
monitor the temperature values between the initial
and steady-state response.

(ii) For a winter day, this paper’s proposed method
restrains the indoor maximum temperature varia-
tion between 19°C and 26°C. If the DSO applies
a regulating signal to increase the indoor air
temperature from 19°C to 26°C (Qhp), Figure 3(b)
shows that the variation takes approximately
50minutes. Consequently, if the DLC signal is
applied 1 hour before the schedule (in the form of
day-ahead operational planning), the temperature
will be set at the target value. Te same goes for
a summer day.

Table 2: PMV and thermal sensation.

PMV Termal indication
+3 Too warm
+2 Warm
+1 A little warm
0 Neutral
− 1 A little cold
− 2 Cold
− 3 Too cold
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4. Thermal Comfort

Termal comfort is a mental state that expresses the degree
of satisfaction of a person from the thermal conditions of the
environment. One of the complexities of explaining thermal
comfort is that multiple physical parameters are involved.

To achieve the OTC, the following two conditions must
be met: (1) the composition of the temperature produced
inside the body and the skin temperature must create
a neutral thermal sensation (not cold or warm) and (2) the
body should have an energy balance, which means that the
heat generated by the metabolism is equal to the temperature
exchanged between the body and the environment. Re-
lationships between skin and temperature parameters, the
degree of heat inside the body, and the amount of physical
activity create a neutral sense of warmth in experimental
experiments. In these experiments, transpiration rate and
skin temperature are measured for diferent amounts of
body metabolism, while the person under the test will have
thermal comfort in all conditions. What makes looking into
thermal comfort vital is the OTC’s great impact on work
efciency. Terefore, the use of SCUs in the DRPs while
ignoring the OTC is unacceptable and will lead to a working
efciency decrement.

Predicted mean vote (PMV) is a seven-point scale for
heat sensation [30–32].Tis index allocates a number for the
degree of thermal sensation of individuals. According to an
occupant’s clothing, metabolism, and physical conditions,
the room temperature equals a specifed PMV. PMV could
be positive or negative. Te positive values of Table 2 are
equivalent to the temperatures in which the residents feel
a little heat, and the negative values of the table correspond
to the temperatures that will cause the residents to feel a little
cold. Te ideal residence’s temperature is the one in which
occupants feel thermally neutral.

Te required formulations for the PMV calculation are
provided in [32].

Te ASHRAE55 standard in equation (4) introduces an
allowable range for PMV deviation from the ideal value.
Changing PMV in this range will not disrupt the OTC.

− 0.5≤PMV≤ + 0.5. (4)

5. PMV and Its Impact on the Amount of
Thermal Load Participation in DR

Tis work determines an optimum, day-ahead SCUs’ power
consumption schedule to manage the congestion in
a typical distribution system. For the indoor air temper-
ature, “Tideal” is defned as a temperature at which the PMV
is zero. Tis temperature is the most suitable temperature
for occupants. “Tmin” represents the minimum permissible
temperature at which PMV is − 0.5 and occupants feel
a tolerable sense of coldness. “Tmax” is the temperature at
which PMV is +0.5 and occupants feel a tolerable sense of
warmth. Equations that relate indoor air temperatures to
PMV are stated in [32].

DSO takes over the authority of occupants to regulate
their living place temperature; however, the operator is
obliged to bound internal space temperature variations
based on these three OTC-assured temperatures. De-
termining “Tideal,” “Tmax,” and “Tmin” for a specifc season
and hour in a day, this paper assumes that residents have
season-appropriate clothes and activity with a metabolic rate
proportional to the hour.

6. OTC-AssuredSCUs’MinimumandMaximum
Consumption Definition

In summer, if the outdoor temperature goes higher than
Tmax, the minimum power consumption of the thermal load
is equal to the power needed for cooling the temperature
down to Tmax, and the maximum consumption of the SCU is
the power needed for cooling the temperature down to Tideal.
When the temperature is in other areas, the minimum and
the maximum consumption of a SCU are as follows:

PHPmax,min
�

Pmax � PTmin

Pmin � 0
􏼠 􏼡, Tideal ≤T≤Tmax,

Pmax � Pmin � 0, T≤Tideal,

⎧⎪⎪⎨

⎪⎪⎩
(5)

where PTmin
is the power needed to maintain indoor air

temperature at Tmin.
In winter, if the outdoor temperature becomes lower

than “Tmin,” then the minimum power consumption of the
SCU is equal to the power needed for heating the tem-
perature to Tmin. Maximum consumption of the load is the
power needed for heating the temperature to Tideal. When
the temperature is in other areas, the minimum and the
maximum consumption of a SCU are as follows:

PHPmax,min
�

Pmax � PTmin

Pmin � 0
􏼠 􏼡, Tideal ≤T≤Tmax,

Pmax � Pmin � 0, T≤Tideal,

⎧⎪⎪⎨

⎪⎪⎩
(6)

where PTideal
is the power needed to maintain indoor air

temperature at Tideal.

RinsRout

Ctotal TiTout

Figure 1: Electrothermal model of a construction element.

Climate room Test room
1.52 m

0.90 m
2.44 m

3.66 m

3.45 m 5.18 m

TABS

Window

Wall

Figure 2: Experimental building room.
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Tis procedure is simulated using MATLAB software to
fnd an OTC-assured consumption boundary for a given
hour, then the boundary is introduced to the PSO, and the
optimum consumption for a SCU is determined.

7. Optimization and the Objective Function

7.1. Te Standard PSO. Te particle swarm optimization
algorithm (PSO) is a potent optimization tool in most ap-
plications. Te optimization problem determines a variable
represented by a vector X� (x1, x2, x3,. . ., xn) that minimizes
or maximizes, depending on the proposed optimization
formulation and the function f(X).Te n-dimension variable
vector X is known as the “position vector”; and n represents
the number of variables determined in a problem. On the
other hand, the function f(X) is called the “ftness function”
or the “objective function,” which is a function that assesses
how good or bad a specifc position “X” is.

PSO in each iteration generates a swarm of P position
vectors (Xti � (xi1, xi2, xi3. . .xin)T). Te velocity vector
Vti � (vi1, vi2, vi3,. . ., vin)

T is calculated to move the position
vector from one iteration to the other (7). Tese two vectors
are updated through the dimension j according to the fol-
lowing equations:

X
t+1
ij � X

t
ij + V

t+1
ij , (7)

V
t+1
ij � wV

t
ij + α1r

t
1 pbestij − X

t
ij􏼐 􏼑 + α2r

t
2 gbestj − X

t
ij􏼐 􏼑,

(8)

where i� 1, 2, . . ., P and j� 1, 2, . . ., n.

At iteration t, three terms determine the velocity vector
for the next iteration. pbestij is a particle’s best-achieved
value. gbestj is the best point achieved regardless of which
particle had found it. Te frst term in equation (8) is
a product between parameter “w” known as inertia weight
constant and the particle’s previous velocity, which denotes
a particle’s previous motion into the current one. Te in-
dividual cognition term, that is, the second term of equation
(8), is calculated by using the diference between the pbestij
and the particle’s current position Xt

ij. As the particle gets
farther from the pbestij position, the diference pbestij − Xt

ij

increases and the particle remains close to its best own
position. Finally, the third term is social learning and acts as
an attraction for the particles to the best point until found at
iteration t. Equation (7) updates the particle’s positions. α1,
α2, r1, and r2 are coefcients. Koohi et al. [33] elaborate the
PSO procedure.

7.2.TeDeveloped Adaptive Particularly Tuneable Fuzzy PSO
Algorithm. Particle swarm optimization (PSO) is a meta-
heuristic optimization technique that solves challenging
optimization problems with high efciency and simplicity.
However, several PSO variations exist because the perfor-
mance of the normal PSO is prone to be caught in local
extrema. Fuzzy logic concepts have widely improved the
PSO algorithm. In this study, the performance of a modifed
version of the PSO algorithm known as adaptive particularly
tunable fuzzy particle swarm optimization (APT-FPSO) is
compared with the performance of the standard PSO. Te
standard PSO compares the outputs of this work’s presented
scenarios. Section 8.1 demonstrates that APT-FPSO
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Figure 3: (a) Electrothermal model of the experimental building. (b) Heat time characteristic of the experimental building.
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produces more acceptable results than the standard PSO. In
[34, 35], the APT-PSO optimization method is introduced.

7.3. Te Objective Function. Te objective function is con-
sidered in equation (9).

OF � 􏽘
32

i�1

SL hr li( 􏼁

SL hr max li( 􏼁
􏼠 􏼡 +

Ploss− optimized hr

Ploss− nonoptimized hr
+ G, (9)

g1 � 􏽘
n

j�1
max 0, 0.9 − Vbusj􏼐 􏼑, (10)

g1 � 􏽘
n

j�1
max 0, Vbusj − 1.1􏼐 􏼑, (11)

G � g1 + g2, (12)

where Ploss− optimized hr is the sum of losses in all lines when
SCUs’ consumption is optimized. Ploss− nonoptimized hr is the
sum of losses in all lines when SCUs’ consumptions are not
optimized. Sl hr(li) is the power fow in line i. Sl hr max(li) is
the DSO-defned maximum power fow in line i. G is
a voltage constraint that limits the values between 0.9 and 1.1
(per unit). In the optimization problem, decision variables
are power consumptions at each bus (33 decision variables).
Some authors used the summation of power fows in all lines
as a “congestion index” (objective function) [36]. Minimi-
zation of this objective function does not necessarily mean
that power fow in every single line is minimized; however,
this paper proposes an objective function that is more ac-
curate because it maximizes the diference between actual
and maximum power fow in each line. In other words,
defning “capacity release” as the objective function will
defnitely decrease power fows in all lines. G is a penalty
factor that restricts all buses’ voltages between 0.9 pu and
1.1 pu (equations (10)–(12)).

Figure 4 depicts how the PSO algorithm determines HPs’
OTC-based consumption.

8. Results and Discussions

Tis section introduces several technical, economic, and
environmental parameters to justify the efectiveness of the
proposed method. Two scenarios are introduced.

Scenario 1 (Tis Paper’s Proposed Method). Te DSO
assigned a suitable hourly-defned thermal boundary for
each group of HPs in the same area. For more simplifcation,
it is supposed that all occupants have season-typical clothes
and hour-based metabolic rate. For this scenario, the fol-
lowing two cases are compared:

(i) Without DR (DR� 0), in which all SCUs set house
temperatures at Tideal (DR� 0 case)

(ii) Optimized power consumption (OPC), in which
DLC signal sets temperatures according to PSO
results (OPC case)

Scenario 2 (Old Method ([9, 16]). Occupants intrinsically
introduce temperatures that create warm/cold thermal
sensations in winter/summer. Terefore, according to Ta-
ble 2, it is supposed that each consumer group’s houses
should be cooled down/heated up to temperatures corre-
sponding to PMV� − 2 and PMV�+2, respectively. All
investigations are carried out for the modifed IEEE 33-bus
distribution system.

8.1. Optimal Power Consumption Using APT-FPSO and the
Standard PSO. Figure 5 compares the HPs’ power con-
sumption using the two optimization methods. Te
APT-FPSO algorithm has reduced the consumption in all
buses, and the total amount of consumption reduction is
200 kilowatts, which is equivalent to the typical consumption
in bus no. 33 of the IEEE 33-bus network.

Although the APT-FPSO algorithm reduces the optimal
consumption of HPs, the amount of this reduction is small in
each bus and this point proves the validity of the optimi-
zation results using the standard PSO algorithm. Conse-
quently, the simulations required to prove the technical and
economic superiority of the scenario proposed in this paper
(scenario 1) over the old scenario (scenario 2) will be
performed with the standard PSO algorithm.

8.2. Technical Benefts of SCUs’ Optimized Consumption.
Optimal load fexibility, power fow, congestion index, loss
improvement, transformer loss of life, and voltage im-
provement, as technical parameters, could be utilized as
elaborate, technical comparisons between diferent methods.

8.2.1. Optimal Load Flexibility and Power Consumption
Improvement. For scenario 1, Figure 6 depicts the reduction
of SCU consumption by employing the scenario. Te fol-
lowing equation is used to calculate the optimal load
fexibility:

PL,opt � 1 − εoptimal􏼐 􏼑PL,non, (13)

where PL,opt and PL,non are optimized and nonoptimized
consumption of HPs in each bus, respectively. εoptimal is
the optimal fexibility ofered by SCUs in DRPs. In each
bus, 20% of the load is supposed to be SCUs. In other
words, the maximum fexibility available in each bus is
20%. Te maximum fexibility defned by the PSO is 7.7%
(Figure 7). HPs seem to have a low participation rate
(7.7% vs. 20% available). However, the OTC and the
consistency of SCU participation are guaranteed. Any
other level of HPs’ fexibility may violate the OTC. Fig-
ure 8 shows the optimal fexibility of heat pumps as
a result of applying scenario 2. Scenario 1 increases HPs’
optimal fexibility. Tis superiority is clear when com-
paring Figures 7 and 8.

8.2.2. Comparison of the Outputs of Two Scenarios. Te two
proposed scenarios determine diferent optimized load
profles in each bus. Figure 9 clarifes the diferences
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between the two scenarios’ results. Scenario 1, as a sub-
stitute for the commonly applied scenario 2, improves the
peak shaving on a typical winter day (peak hours occur at
midnight when numerous SCUs are on the service to heat
buildings).

8.2.3. Power Flow and Congestion Index. Te congestion
index (CI) for line L is formulated by using the following
equation:

CIL � 􏽘
12

m�1
SL,m, (14)

where SL,m is line L average apparent power fow in the
monthm. CI is the summation of lines’ power fow for a time
period t:

CIt � 􏽘
32

l�1
SL,t. (15)

Start

Tideal , Tmin and Tmax determination

HPs Pmin and Pmax determination

Define objective function

Performing power flow satisfying inequality
constraints 

+ Load flow constraints

Iteration iter= iter+1 (the default value is 0))

Calculate the objective function

Update gbest , pbest ,velocity and position values

Iter <itermax

gbest contains optimized values for HPs consumption End

Yes

PSO block

Figure 4: Tis paper’s proposed method.
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In winter, the peak consumption occurs from 9 PM to 9AM
because SCUs should produce thermal energy to warm rooms.
However, this period for summer is from 12 AM to 6:00 PM.
Replacing the DR� 0 case with the OPC reduces the power fow
by up to 3% (Figure 10). Tis improvement is achieved when
only 20% of loads in each bus are supposed to be SCUs. In other

words, only 20% of the total load in each bus is supposed to be
controllable, so a 3% improvement could be an acceptable result.

Loads feed from a distribution transformer and line 1
(the line between bus 1 and 2): Figure 11 depicts a noticeable
CI1 (15) reduction in winter when OPC and DR� 0 cases are
compared in scenario 1. Especially in winter, CI improve-
ment is vital as thermal loads consume higher power to
provide the required thermal energy for heating houses (the
dashed line shows the OPC case).
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8.2.4. Distinction of Two Scenarios. Figure 12 compares the
optimized power fows for a winter day peak hour for
scenario 1 and scenario 2.Te fgure depicts 14% power fow
reductions in line 1 by choosing scenario 1.

8.2.5. Loss Improvement. Scenario 1 decreases power fows
in all lines; consequently, LV grid power losses decrease
using this paper’s proposed method.

Figure 13 compares total power loss (summation of
power losses in all lines) in the network for the same winter
day in the OPC and DR� 0 cases. Tis fgure illustrates
a maximum 16% reduction in total power loss by applying
the frst scenario.

8.2.6. Distinction of Two Scenarios. Te optimized total
power loss on a summer day has a remarkable reduction by
utilizing scenario 1 (Figure 14). Tis fact is more noticeable
at peak load hours.

8.2.7. DS Transformer Loss of Life. Te current in line 1 is
supposed to be supplied by a 66/20 kV transformer; it is
shown that the proposed method afects its hotspot and
insulation life.

Te heat generated inside a transformer will reduce
a specifc amount of its life. Te aging acceleration factor
(FAA in (16)) depicts the dependency of transformer life on
its hot spot temperature; indeed, a loss of life index (LOL)
determines the reduction of transformer insulation life
(equations (16)–(18)).

FAA � e
15000/θH273( )− (15000/383)[ ], (16)

where θH is the so-called hot spot temperature in °C. Te
equivalent aging factor (FEQA) at the reference temperature
in a given time calculates the loss of life.

FEQA �
􏽐

N
n�1(FAA)n∆tn

􏽐
N
n�1∆tn

, (17)

where ∆tn is the time interval, N is the total number of time
intervals, andn is the index of the time interval. For every period,
FAA is determined and forms a matrix used by equation (17).

It is necessary to determine the transformer’s normal
insulation life to determine the percentage of the loss of life
equation (18). Tis model considers 180000 hours or
20.55 years as the normal insulation life.

LOL(%) �
FEQA × t × 100

Normal insulation life(18000)
. (18)

In the frst scenario for the case DR� 0, LOL for the DB
transformer will be 0.7525% which means the transformer
loses 1354.5 hours of its life in a year; however, this value is
0.6447% in the OPC case, and the equipment loses
1160 hours of its life in a year. Tese values show that SCUs’
DR participation by utilizing the proposed method adds
195 hours (about 8 days) to the transformer life in a year and
about 160 days in its overall life.

8.2.8. Voltage Improvement. As a result of adding new loads
to the DBs (increasing power fow in power lines), the
magnitude of bus voltages would violate the permissible
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voltage range. In this paper, voltage magnitudes are limited
between 0.9 pu and 1.1 pu. Figure 15 compares exploiting the
OPC method in scenario 1 in approaching/rising 24-hour
voltage magnitudes of bus33 in IEEE 33-bus distribution
system to lower limit (0.9 pu), especially at peak hours on
a winter day. Te OPC corrects the voltage magnitudes
between 12 PM and 2 AM (peak hours) and 8 AM to 10 AM.

8.2.9. Distinction of Two Scenarios. Figure 16 compares
voltage enhancement between two scenarios. Tis fgure
depicts the 24-hour voltage magnitudes of bus 33 because
the maximum voltage drop occurs at the end of a radial
feeder. For scenario 2, only in the period between 2 PM and 8
PM voltage magnitude is higher than 0.9 pu, whereas, in
scenario 1, the voltage magnitude at 7 hours out of 12 peak
hours is limited to the permissible boundary. In the
remaining 5 hours (3 AM to 8 AM), the voltage magnitude is
lower than 0.9 pu, though closer to the limit (0.9 pu) than
scenario 2.

For scenario 2, only in the period between 2 PM and 8 PM
voltage magnitude is higher than 0.9 pu, whereas, in scenario
1, the voltage magnitude at 7 hours out of 12 peak hours is
limited to the permissible boundary. In the remaining 5 hours
(3 AM to 8 AM), the voltage magnitude is lower than 0.9 pu,
though closer to the limit (0.9 pu) than scenario 2.

8.3. Economic Benefts of SCUs Participation in the DRPs.
Two scenarios are applied to a stable LV network in which all
operational parameters, including power fows and power
losses, are within allowable limits. Te two scenarios reduce
power fows and power losses; therefore, without causing any
operational issues, the diference between power fows and
power losses before and after applying the scenarios could be
ofered by the DSO to a power market. Equation (19) defnes
“capacity release” as the summation of power fow reduction
in the grid. Equation (20) defnes the “power loss index” (PLI)
as the summation of power loss reduction in the network.Te
summation of capacity release (CR) and PLI is called “total
capacity release (TCR)” and would be traded in a power
market (equation (21)). In the following equations, all vari-
ables are supposed to be determined at a specifc hour, hr.

For reliability purposes, 10% of each line capacity is not
considered available.

CRhr � 0.9 􏽘
32

L�1
SL,max − 􏽘

32

L�1
SL,optimal, (19)

PLIhr � Ploss− nonoptimized hr − Ploss− optimizedhr, (20)

TCRhr � PLIhr + CRhr, (21)

where SL,max is the DSO-defned maximum permissible
power fow and Sl,optimal is the optimized power at the
hour hr.

Te DSO can sell TCR according to hourly power tarifs.
Power prices are supposed to be the same for low, medium,
and peak power periods in summer and winter; however, for
the two seasons, they happen at diferent periods.Te annual
gross beneft AGB of the DSO could be determined by using
the following equation:

AGB � 􏽘
24

hr�1
tariffhrTCRhr, (22)

where tariffhr is the value of the tarif at a specifed hour.
DSO should consider fnancial incentives for participants.
SCUs will gain benefts in accordance with the level of their
participation. A factor, namely, the “thermal load partici-
pation factor” (TLPF), is calculated frst by using the fol-
lowing equation:

TLPFn,hr �
PL,non − PL,opt

PL,non
􏼠 􏼡

n,hr
× 100, (23)

TLPFhr �
1
n

􏽘

32

n�1
(TLPF)n,hr, (24)
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where PL,non is nonoptimized consumption, PL,opt is opti-
mized consumption of loads at the hour hr, and n is the bus
number.

Te nth member of the TLPF vector shows the degree of
HPs’ contribution on the bus n in the DRPs. TLPF, as the
average value of HPs’ participation, determines the share of
these loads in DRPs (equation (24)).

HPs’ incentives (TLI) are assumed to be 30% of the
DSO’s total. TLI (equation (25)) is higher for the HPS with
higher values of the participation factor. Each month’s
equation (26) determines the pure beneft of the DSO (PDB).

TLIhr �

0.05 × CRhr, 10≤TLPFhr ≤ 30,

0.1 × CRhr, 31≤TLPFhr ≤ 70,

0.15 × CRhr, 71≤TLPFhr,

⎧⎪⎪⎨

⎪⎪⎩
(25)

PDB � AGB − 􏽘
24

hr�1
TLIhr. (26)

Table 3 is scenario 1’s monthly amounts of PDB and TLI
parameters.

It is worth reminding that only 20% of HP’s penetration
has brought the abovementioned benefts. Obviously, with
the increment in the number of HPs, which will be inevitable
soon, the economic benefts increase for both the DSO and
consumers.

Table 4 represents similar data for the second scenario;
the table shows the extra money paid to thermal loads and
the DSO as the results of scenario 1 exploitation. TESB
(thermal loads economic surplus beneft) and DESB (DSO
economic surplus beneft) (equations (27) and (28)) prove
the economic superiority of the frst scenario over sce-
nario 2.

TESB � TLI1 − TLI2, (27)

DESB � PDB1 − PDB2. (28)

Table 4 could be cogent evidence for DSOs and thermal
loads to participate in DRPs based on this paper’s proposed
method. All fgures are calculated based on dynamic time-
of-use with automation tarif in the UK.

TL1 is scenario 1 and TL2 is scenario 2’s thermal loads
economic initiative. PDB1 is scenario 1 and PDB2 is scenario
2’s pure DSO benefts.
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Figure 15: Voltage improvement using scenario 1.
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Figure 16: Scenario 1’ impact on buses’ voltages.

Table 3: Scenario 1 and scenario 2 economic benefts of
participation.

Month TLI1 ($) TLI2 ($) PDB1 ($) PDB2 ($)
1 793 679 1850 1583
2 803 771 1874 1801
3 798 789 1863 1842
4 239 195 559 456
5 223 192 520 447
6 210 147 490 344
7 169 126 395 294
8 160 132 374 308
9 119 88 278 205
10 775 700 1810 1636
11 816 650 1905 1519
12 832 704 1941 1642

Table 4: Economic benefts surplus of scenario 1.

Month TESB ($) DESB ($)
1 114 267
2 32 73
3 9 21
4 44 103
5 31 73
6 63 146
7 43 101
8 28 66
9 31 73
10 75 174
11 166 386
12 128 299

12 International Transactions on Electrical Energy Systems



8.4. CO2 Emission. Load consumption optimization con-
tributes to the reduction of CO2 emissions. Tis section is
about numerically showing and comparing the degree of the
two scenarios of environmental preservation. It is supposed
that electricity is generated by coal in a power plant. 1 kwh
reduction in consumption will lead to a 1000 gr reduction in
CO2 emission [37]. On a typical winter day, the OPC case in
the scenario 1 decreases 300 kg of CO2 emission (in com-
parison with the DR� 0 case). Indeed, compared with
scenario 2, scenario 1 leads to a 400 kg reduction in CO2
emission in the typical day which is acceptable.

9. Conclusion

Tis paper is based on the ASHRAE55 standard and
represents coincident OTC-assured HPs’ participation in
DRPs and capacity release maximization in a typical LV
system (congestion management). Technical limitations of
the LV grid and the electrothermal model of an experi-
mental building are employed. Minimum, ideal, and
maximum temperatures of occupants’ living places are
calculated for one hour. Te PSO algorithm determines
optimal values for SCUs’ consumption and power fows.
Diferent technical and economic parameters motivate
HPs’ owners and DSOs to apply the proposed scenario. Te
scenario deprives HPs’ owners of the right to regulate the
temperature of their houses to maximize the HPs’ potential
in DRPs. Te DSO should be convinced to substitute the
proposed method for the one in which each consumer
defnes its desired temperature range. All the criteria, in-
cluding technical (optimized HPs power consumption,
power fow, network loss, congestion index, DB trans-
former loss of life, and buses voltage profles) and economic
parameters, demonstrate the superiority of scenario 1 over
commonly used scenario 2.

Nomenclature

Acronyms
AGB: DSO annual gross beneft
CR: Capacity release
DR: Demand response
DSO: Distribution system operator
DLC: Direct load control
DRPs: Demand response programs
HPs: Heat pumps
LV: Low-voltage grid
MILP: Mixed-integer linear programming
OTC: Occupants’ thermal comfort
OPC: Optimal power consumption
PMV: Predicted mean vote
PEV: Plug-in electric vehicle
PSO: Particle swarm optimization algorithm
APT-
FPSO:

Tuneable fuzzy particle swarm optimization
algorithm

RMB: Chinese currency
SCU: Space conditioning unit
TCR: Total capacity release
TABs: Termally activated building systems

Parameters
AGB: Annual gross beneft ($)
A: Area of room surface (m2)
CIL: Congestion index for line l
C, Ctotal: Termal capacitance (J·K− 1·kg− 1)
CIt: Congestion index for time period t
cshc: Specifc heat capacity (J/kg·K)
DESB: DSO economic surplus beneft ($)
EC: Cutof band (°C)
EC: Upper band (°C)
FAA: Aging acceleration factor
G, g1, g2: DSO-defned voltage boundaries
Gbest: Global best-achieved position
FEQA: Te equivalent aging factor
h: Convective heat transfer coefcient (W/

(m2·K))
iter: PSO number of iterations
itermax: Predefned PSO number of iterations
k: Conductive heat transfer coefcients

(m·K/W)
L: Tickness of the room surface (m)
LOL: Loss of life (%)
N: Total number of time intervals
OF: Objective function
Pbest: A particle best-achieved position
PDB: DSO pure beneft ($)
PHPmin,max: Minimum and maximum consumption

of a HP
PTmin: HPs’ power consumption proportional

to Tmin (°C)
Ploss nonoptimized hr: Nonoptimized sum of losses (kW)
Ploss optimized hr: Optimized sum of losses (kW)
PL,opt: Optimized consumption of loads (kW)
PTideal: HPs’ power consumption proportional

to Tideal (°C)
Pmax: Maximum consumption of a SCU (kW)
Pmin: Minimum consumption of a SCU (kW)
PLI: Power loss index (kW)
PL,non: Nonoptimized consumption of

loads (kW)
Qhp: Heat pump thermal energy (kW)
Rins: Equivalent inside thermal resistance

(m2·K·w− 1)
Rout: Equivalent outside thermal resistance

(m2·K·w− 1)
Rcv: Convective resistance (m2 K w− 1)
Rcd: Conductive resistance (m2·K·w− 1)
SL,max: Maximum permissible power fow in

line L (MW)
SL,optimal: Optimal power fow in each line (MW)
SL-hr (Li): Power fow in line i at the hour hr (MW)
SL-hr-max (Li): DSO-defned maximum power

fow (MW)
Tambient: Ambient temperature (°C)
TCR: Total capacity release (MVA)
TLPF: Termal loads participation factor ($)
TESB: Termal loads economic surplus

beneft ($)
TLI1: Scenario 1’s thermal load initiatives ($)
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TLI2: Scenario 2’s thermal load initiatives ($)
Tideal: PMV is 0 in this ambient temperature

(°C)
Tmin: PMV is − 0.5 in this ambient

temperature (°C)
Tmax: PMV is +0.5 in this ambient

temperature (°C)
V: Velocity vector
Vbus: Te magnitude of bus voltage
W: Inertia weight constant
X: Position vector
ƟH: Transformer hot spot temperature (°C)
Δtn: Time interval related to FAA
Ɛoptimal: Optimized heat load fexibility
α1, α2: PSO weight constants
r1, r2: PSO weight constants
ρ: Density of the surface materials (kg/m3).
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