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High-resistance ground faults are difcult to detect with existing ultrahigh voltage direct current (UHVDC) transmission fault
detection systems because of their low sensitivity. To address this challenge, a straightforward mathematical method has been
proposed for fault detection in UHVDC system based on the downsampling factor (DF) and approximation derivatives (AD).Te
signals at multiple sampling frequencies were analysed using the DF, and the AD approach was used to generate various levels of
detail and approximation coefcients. Initially, the signals were processed with diferent DF values. Te frst, second, and third
order derivatives of the generated signals were calculated by the AD method. Next, the entropy features of these signals were
computed, and the Random Forest-Recursive feature elimination with cross-validation (RF-RFECV) algorithm was used to select
a high-quality feature subset. Finally, an ensemble classifer consisting of Light Gradient Boosting Machine (LightGBM), K
Nearest Neighbor (KNN), and Naive Bayes (NB) classifers was utilized to identify UHVDC faults. Te MATLAB/Simulink
simulation software was used to develop a ±800 kV UHVDC transmission line model and perform simulation experiments with
various fault locations and types. Based on the experiments, it has been established that the suggested approach is highly precise in
detecting several faults on UHVDC transmission lines. Te method is capable of accurately identifying low or high resistance
faults, irrespective of their incidence, and is remarkably resistant to transitional resistance. Furthermore, it exhibits excellent
performance in identifying faults using a small sample size and is highly reliable.

1. Introduction

Transmission technology based on UHVDC was extensively
utilized for long-distance power transmission due to its high
transmission capacity, fexible control, and low losses. With
recent advancements in power electronics, UHVDC trans-
mission has become more stable and easier to control, of-
fering a broader development prospect. However, the
complex geographical environment and challenging work-
ing atmosphere of UHVDC transmission lines lead to high
fault probabilities, which seriously afect the efciency of
power transmission. Hence, quick and accurate fault
identifcation is crucial to eliminate the impact of faults and
ensure the continued proper functioning of the entire

transmission system [1, 2]. To address these issues, Chinese
and foreign scholars have conducted extensive research.
Currently, fault identifcation primarily relies on the vari-
ability of electrical quantities at the time of failure, with less
application of artifcial intelligence methods.

Faults in a two-terminal DC system can be detected by
using the travelling wave diferential current [3]. While
calculating the instantaneous power, integral value of the
traveling wave has been recognized by some scholars as
a fault detection technique [4]; its application in long-
distance UHVDC systems is impractical due to the strict
data requirements. Te authors of [5] theoretically analysed
the features of the diferences in the reactive energy of
transmission lines during internal and external faults. Ten,
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they proposed the use of the opposite polarity of reactive
power at both ends of the DC line during internal faults and
the same polarity during external faults to achieve fault
discrimination.Te rate at which the bus voltage and current
change was used by the authors to suggest a fault identif-
cation technique [6], however adjusting the parameters for
identifcation is difcult. In reference [7], the authors in-
tegrated the amplitude-frequency properties of DC flters
with the harmonic equivalent circuit of the HVDC trans-
mission system to achieve fault discrimination by exploiting
the polarity contrast of the harmonic currents between the
internal and external faults.

Numerous studies have attempted to employ machine
learning techniques for HVDC system failure detection, as
advancements in statistics and machine learning technology
continue to progress [8, 9]. In reference [10], the charac-
teristics of DC voltage and DC current are extracted using
principal component analysis (PCA), and then these features
are trained and tested using support vector machine (SVM)
for fault identifcation and classifcation. Te authors of [11]
proposed a fault identifcation technique based on K-means
that utilized voltage and current information from the in-
verter of a two-terminal HVDC system to identify faults.
However, this technique may not be suitable for other
transmission systems. While the aforementioned machine
learning methods may perform well under specifc cir-
cumstances, their efcacy may be limited when the system
structure changes.

In recent decades, deep learning has developed rapidly.
Tere are signifcant advances being made in the disciplines
of image, voice, and natural language processing [12], and
several researchers have used them to achieve defect de-
tection. In reference [13], the fault signals were processed by
empirical mode decomposition (EMD), and the results of
these decompositions were applied to train the convolu-
tional neural network (CNN) model. Ten, the trained
model was validated with test data to locate faults. Te
authors of [14] applied the Hilbert–Huang transform to
obtain a time-frequency energy matrix for the signal, which
was then used to create a 2-D image.Tis image was then fed
to a CNN model to identify faults. In reference [15], the
authors proposed modifed complete ensemble empirical
mode decomposition with adaptive noise (MCEEMDAN)
algorithm that can decompose electrical signals into intrinsic
mode functions (IMFs). By using the pseudocolor coding of
the IMF, a grayscale image can be generated from the
original signal, and the conditional generative adversarial
network (CGAN) algorithm was employed to create addi-
tional samples to enhance the dataset. Finally, a CNN model
was used to identify diferent fault types. Deep learning
algorithms are particularly adept at extracting deep features
from vast amounts of data without the need for a specifc
model. Each signal processing technique has benefts and
drawbacks of its own, but they all have a high computational
complexity that makes fault diagnosis less efective. Te
performance of the neural network is highly dependent on
its parameters, and tuning as well as training neural net-
works for power systems with diferent structures can be
a time-consuming process.

To address the issues above, a technique for identifying
faults in UHVDC that combines Downsampling Factor (DF)
and Approximate Derivatives (AD) with ensemble learning
was proposed. To begin with, the DF (DF is a positive in-
teger) was utilized to analyse the signals at diferent sampling
frequencies. Te AD is a simple signal processing method,
and various levels of detail and approximation coefcients
for the signal were obtained by it. Ten, the entropy features
of these signals were calculated, and a subset of high-quality
features were fltered with the RF-RFECV algorithm. Finally,
the three base classifers (LightGBM, KNN, and NB) are
integrated into an ensemble classifcation model for fault
identifcation by a voting rule. Fast recognition and over-
coming the lack of performance of a single weak classifer are
two benefts of the ensemble classifcation model [16]. Te
article’s primary contributions include the following:

(1) A new UHVDC fault signal analysis method based
on DF-AD was proposed. Compared with the tra-
ditional signal analysis method, the DF-AD method
can provide more classifcation information to the
classifer and has higher efciency.

(2) A UHVDC fault identifcation model based on
voting rule and ensemble learning was proposed.
Tree weak classifers (LightGBM, KNN, and NB)
were integrated into an ensemble classifer by using
a voting rule.Te fnal ensemble model identifcation
result is better than that of a single classifer.

(3) In the process of identifying faults, the RF-RFECV
algorithm is employed to intelligently engineer
features without the need for manual screening.

Tis paper is organized as follows: Section 2 describes the
downsampling algorithm based on downsampling factor
and approximate derivative method. Section 3 introduces
the related content of feature extraction, feature selection,
and ensemble classifer. Section 4 explains the simulation
model and fault simulation method. Ten, Section 5 dis-
cusses the fault identifcation results. Finally, the conclusion
is presented in Section 6.

2. Signal Processing Method

2.1. Down-Sampling Factor. Down-sampling based on DF is
a basic signal processing method. By altering the down-
sampling factor, signals with diferent sampling frequencies
may be produced. It is possible to express the signal’s
sampling frequency using the formula:

fs �
N

T
, (1)

where fs represents the signal’s sampling frequency, N
represents the number of the signal’s data points, and T
represents the signal’s duration. Te DF-based down-
sampling method is the fundamental signal processing
technique. It is utilized to lower the signal’s sample fre-
quency. We are able to decrease the sample proportion by
keeping the initial sample as well as every nth sample fol-
lowing the frst sample.
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Sn � down − sample(S, n). (2)

We assume that the length of a signal S is 16,
S � [S(1), S(2), S(3), . . . , S(15), S(16)]. If the downsampling
factor n� 1, S1 � [S(1), S(2), S(3), . . . , S(15), S(16)], the
length of the signal is 16. If downsampling factor n� 2,
S2 � [S(1), S(3), S(5), . . . , S(13), S(15)], the length of the
signal is 8. If downsampling factor n� 4, S4 � [S(1), S(5),

S(9), S(13)]. Te length of the signal is 4. Although the
number of data points varies in the three cases mentioned
above, the signal maintains a constant duration, such as in the
signals above, which can be assumed to last for 0.01 seconds.

When n� 1, the length of the signal is 16, N� 16,
T� 0.01 s.

fs �
16
0.01

  � 1600Hz. (3)

When n� 2, the length of the signal is 8, N� 8, T� 0.01 s.

fs �
8

0.01
  � 800Hz. (4)

When n� 4, the length of the signal is 4, N� 4, T� 0.01 s.

fs �
4

0.01
  � 400Hz. (5)

As can be seen from the above equation, we can obtain
signals with diferent sampling frequencies by varying the size
of the DF value. Diferent numbers such as “1, 2, 4, 8, . . ., m”
could be used for the DF. Table 1 provides comprehensive
details on sample frequency application with diferent DF
values. Te signal lasted 0.1 seconds, as was previously in-
dicated. In addition, the signal was composed of 1280 data
points and its sampling frequency was 12.8 kHz. Te signal
duration was always 0.1 s. However, the data and sampling
frequency changed according to diferent DF values. For each
case, the sample frequency was computed by equation (1). In
this analysis, we assume DF values of 1, 2, 4, 8, 16, 32, 64, and
128. Specifcally, when DF equals 1, the resulting signal is
equivalent to the original signal. Terefore, the signal’s
sampling frequency range is between 0.1 kHz and 12.8 kHz.

As can be seen in Figure 1(a), the voltage signal collected at
the positive electrode of the rectifer side was taken as an
example, when the positive electrode grounding fault occurs in
the UHVDC transmission system. In addition, Figure 1 also
depicts the analysis and presentation of the multiple frequency
ranges of the voltage. However, the approximate coefcient of
the signal may not provide enough classifcation information
for the classifer. Terefore, diferent fault signal detail co-
efcient levels must be determined in order to identify
UHVDC faults. Te various detail and approximation co-
efcients of the signal were determined by the AD method.

2.2. ApproximateDerivative. More detailed information can
be obtained by calculating the approximate derivative of the
signal [17, 18]. We assume that there is a vector S with k
elements. Ten, the AD method computes the diferences
between neighbouring k elements. If S′ � approximate de-
rivative (S), where the matrix S′ is the AD of S, then we can
write S′ as S′ � d(S). S′ can be expressed as follows:

S
′

� [S(2) − S(1), S(3) − S(2), . . . , S(k) − S(k − 1)]. (6)

It is possible to take several derivatives of any one-
dimensional matrix. Taking the AD of matrix F twice, we
can get S″ � d2(S).

S(2) − S(1) � L(1),

S(3) − S(2) � L(2), . . . , S(k) − S(k − 1) � L(k − 1),

S
′

� [L(1), L(2), L(3), . . . , L(k − 1)],

S
″

� [L(2) − L(1), L(3) − L(2), . . . , L(k − 1) − L(k − 2)],

S
‴

� S
″

 
′
.

(7)

Te dimension of S is k, the dimension of S′ is k − 1, and
the dimension of S″ is k − 2. Te elements of the vector
diminish as the order of derivatives increases.

In Figure 2, the AD method was used to process the
voltage signal (12.8 kHz) in Figure 1(a). Te approximation
coefcients and detail coefcients of the signal were de-
termined. Similar results can be obtained for diferent
UHVDC fault types. In the meanwhile, it can be seen from
Figure 2 that similar fgures are obtained after getting the
third-order approximate derivative. Tus, this paper selects
the voltage signal on the rectifer side during the UHVDC
faults and the frst three orders of approximate derivatives as
the research object to determine the classifcation features.

Combining the downsampling factor with the AD
method, a signal can be decomposed intomultiple signals for
analysis, thereby obtaining more classifcation features. As
shown in Figure 3, the voltage signal was decomposed into 8
signals (1, 2, 4, 8, 16, 32, 64, and 128) according to diferent
DF values. And the frst-order approximate derivative, the
second-order approximate derivative, and the third-order
approximate derivative of the signals under each DF value
were obtained, respectively, and a total of 32 signals (8∗ 4)
were obtained.

3. Classification Method

When the input sample has more features, the efciency of
the classifer will decrease. Terefore, we choose the RFECV
algorithm based on a random forest to select the high-quality
features in the data set.

Table 1: Te change of signal sampling frequency under diferent
DF values (time� 0.1 s).

Down-sampling factor Data sample Sampling frequency
(kHz)

DF� 1 1280 12.8
DF� 2 640 6.4
DF� 4 320 3.2
DF� 8 160 1.6
DF� 16 80 0.8
DF� 32 40 0.4
DF� 64 20 0.2
DF� 128 10 0.1
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Te goal of the supervised learning approach to machine
learning is to acquire a model that is robust and efective in
every respect. However, the actual circumstance is fre-
quently less than ideal. Occasionally, we can just get
a number of preferred models (some weakly supervised
models just do well in some ways). Using ensemble learning,
many poorly supervised models are combined to produce
a better, more complete, and more accurate strongly su-
pervised model. Te error of a single weak classifer can be
corrected by the ensemble model. Tis is the potential of
ensemble learning. Tis section explains the feature ex-
traction, RF-RFECV feature selection algorithm, and in-
telligent classifers (LightGBM, KNN, and Bayesian) and
proposes ensemble classifcation models employed in
this study.

3.1. Feature Extraction. Providing useful information to
a classifer is the primary goal of feature extraction. In this
research, nine signal entropy features of the signals are
computed to acquire the classifcation information. Te
faulty signal is decomposed into 8 levels according to 8 DF
values. Ten, one downsampling signal and three derivative
signals generated by the AD method were obtained. Tus,

there are 32 (8∗ 4) signals obtained from the original signal.
Nine entropy values were used to derive a total of 288
(9∗ 32) classifcation features. Table 2 displays specifc in-
formation on the nine entropy features. Where Si stands for
the ith data of S, N stands for the overall quantity of signal’s
data points. And μi stands for the signal’s average value, and
the signal’s standard deviation is represented by σi. Te
feature extraction approach yielded 288 features for the
diagnosis of UHVDC fault classes.

3.2. Recursive Feature Elimination with Cross-Validation.
Some features might not be required for the fault identif-
cation, and longer periods would be needed for training as
a result. To get the outstanding classifcation features, the
RF-RFECV feature selection technique was employed.

RFECV is a feature selection algorithm based on Re-
cursive Feature Elimination (RFE) and Cross-Validation
(CV), primarily used to screen high-quality features in
high-dimensional data [19]. Te RFE method requires
a machine learning algorithm to assess how important the
various features are, and this paper selects the random forest
(RF) model as the RFE feature importance estimator. Tere
are two primary stages involved in the RFECV algorithm.
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Figure 1:Te change of signal sampling frequency under diferent DF values. (a) 12.8 kHz. (b) 6.4 kHz. (c) 3.2 kHz. (d) 1.6 kHz. (e) 0.8 kHz.
(f ) 0.4 kHz. (g) 0.2 kHz. (h) 0.1 kHz.
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Te frst stage is RFE based on random forest, which is
employed to choose the best collection of features in a high-
dimensional dataset. In the RFE stage, the mean decrease
impurity (MDI) was applied to assess the signifcance of
every feature [20]. Ten, the least important one is elimi-
nated until all features have been evaluated for importance
[21]. Te second stage is CV, where the importance of all
features is ranked based on the RFE stage, and CV is per-
formed on diferent sets of features to choose the optimum
amount of features that have the best average score.

We can suppose that the sample dataset consists of data x
and label y. Te initial feature set R contains all the features
of the data. Tis paper selects fve-fold cross-validation to
obtain the optimal feature combination. Table 3 displays the
pseudo-code of the RF-RFECV algorithm [22].

3.3. Ensemble Classifcation Models

3.3.1. LightGBM. In 2017, Ke frst proposed the LightGBM
algorithm [23], which is based on the gradient boosting tree
technique. Te basic idea of LightGBM is to acquire an
optimal model by integrating several weak classifers.
LightGBM mainly includes leaf growth strategy and histo-
gram algorithm [24]. Tis tactic searches through all of the
leaves in the same layer at each iteration to determine which
ones ofer the greatest advantage from being split, and then it
divides the chosen leaves [25] into diferent groups. It is
simpler to include leaf-wise generation into parallel training,
which can improve accuracy. Te histogram algorithm can
merge mutually exclusive sample features and store mass
data during the traversal process, thereby reducing the

memory consumption of the algorithm. Compared with the
original GBDT, the calculation speed is improved by ten
times. More information about LightGBM can be found in
references [26, 27].

3.3.2. K-Nearest Neighbor. KNN is a straightforward ma-
chine learning algorithm that identifes unknown sample
class distributions by the nearest k training samples [28]. It
operates based on the distances between sample locations
and the allocated set of nearest neighbor points. Several
distance metric functions are employed to identify the
closest neighbors [29]. A majority class of nearest k is al-
located for the additional instances in the case of a greater
number of nearest neighbors. Te classifer’s output forecast
is typically computed by a given parameter k and majority
voting rule based on the neighbor class [30]. Te maximum
probability of XC1 in association with class CL1 for the
presented test scenario (XC1) issue of KNN may be
expressed as follows:

KNN XC1(  � max P CL1, XC1( ( , (8)

where P(CL1, XC1) demonstrates the likelihood of XC1 in
class CL1.

Te KNN was deployed with a variety of searching
approaches during the training process to accelerate the goal
of locating the closest neighbors. Te KNN classifer pro-
posed in this study uses a default value of 1 for the parameter
k and combines a linear search strategy with the Euclidean
distance metric function in order to get results.
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Figure 2: Voltage signal processed by AD method. (a) Voltage signal. (b) Te frst order AD. (c) Te second order AD. (d) Te third order
AD. (e) Te fourth order AD. (f ) Te ffth order AD.
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3.3.3. Naive Bayes. Te Naive Bayes (NB) algorithm is
a traditional method in machine learning that categorizes
information by using Bayes’ theorem for probability func-
tions [31]. During the training phase, the algorithm supposes

that each feature pair to be classifed is self-governing of the
others. In the prediction phase, the likelihood of a certain
class can be deduced based on the test sample. Te sim-
plicity, computational efciency, and ease of

(a) Voltage signal (b) 1st AD of voltage signal (c) 2nd of voltage signal (d) 3rd of voltage signal
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Figure 3: Multiple signals obtained by DF-AD processing of voltage signal. (a) Voltage signal. (b) Te frst order AD. (c) Te second order
AD. (d) Te third order AD.

Table 2: Entropy formulas.

Number Name Formula

1 Energy E � 
N
i�1|Si|

2

2 Shannon SE � −
N
i�1Si

2 log(S2i log(S2i ))

3 Log energy LOE � 
N
i�1log(S2i )

4 Standard deviation σi � (1/N
N
i�1(Si − μi)

2)1/2

5 Norm NE � 
N
i�1|Si|

6 Mean μi � 1/N
N
i�1Si

7 Skewness SK � 1/N
N
i�1(Si − μi/σi)

3

8 Maximum Max(Si)

9 Minimum Min(Si)
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implementation of NB classifers have led to their wide-
spread use in classifcation tasks [32, 33]. Te follow
equation defnes the Bayes theory that is utilized in NB [34]:

P(C|D) �
P(C) · P(D|C)

P(D)
, (9)

where P(C|D) indicates the posterior probability; P(C)

indicates prior probability; P(D|C) indicates the possibility
of result; and P(D) indicates the predictor prior probability.

In this study, features extracted from diferent types of
fault data are used to train and test Bayesian classifers. Te
Bayesian classifer uses the highest output probability of each
category to make a prediction of the fault type.

In this study, the features extracted from diferent types
of fault data were used to train and test Bayesian classifers.
Te Bayesian classifer uses the highest output probability of
each category to make a prediction of the fault type.

3.3.4. Proposed Ensemble Classifer Model. To enhance the
capacity of individual weak classifers to generalize, many
practitioners rely on a voting ensemble approach. Tis in-
volves using an ensemble learning method with two-stage
classifcation [35]. Te following sections will detail the
development and concepts behind these proposed ensemble
classifers.

Te ensemble classifer’s voting technique integrates the
outcomes of several diferent classifers and is thought to be
better than a single classifer. Te proposed ensemble
classifer model based on the voting approach has a structure
that contains two stages. Te initial stage of the classifcation
process involves training various base classifers (LightGBM,
KNN, and NB) and predicting the results with the test data.
In the subsequent meta-stage, the voting technique is uti-
lized to integrate the predictions of several base classifers,
resulting in a hybridized prediction. Te ultimate class la-
bels, from L1 to L7, are decided by applying the ensemble
model that was suggested. Te efciency of the ensemble
model may be improved by selecting an appropriate voting
technique.Te “average of probability” voting technique was
used for the meta-level classifcation as part of the proposed

ensemble classifer model. Te following is an explanation of
the suggested method for the voting ensemble classifcation
model:

Step 1: Te 1050 samples were split evenly between the
training and testing data, with a ratio set at 7 : 3. Ten,
the base classifers (C1, C2, C3) were trained during the
frst stage. For the suggested ensemble model, we
choose LightGBM, KNN, and NB as base classifers.
Step 2: To calculate the following stage in classifcation,
the predictions generated by the trained base classifers
(PC1, PC2 and PC3) are taken into account. Te pre-
dictions of each base classifer can be used to express
a probability distribution vector PCi(D) that includes 7
class results from L1 to L7 of the classifer for a given
dataset D, and the PCi(D) can be expressed as [35]:

PCi(D) � PCi L1|D( ,PCi L2|D( , ..., PCi L7|D(  ,

(i � 1, 2, 3).

(10)

Step 3: Te base classifers generate probability dis-
tribution vectors, which are then aggregated and av-
eraged by using the voting rule (meta-level classifer).
Tis rule is known as the “average of probability” voting
combination rule [36], which can be represented as
follows:

PCE(D) � 
N

i�1

1
N
PCi(D), (11)

where PCi represents the probability distribution of
every base classifer in dataset D, N defnes the number
of basic classifers, and PCE(D) is the probability
distribution class of the ensemble classifer sorted by
voting rule.

3.4. Performance Evaluation Indices. Te following perfor-
mance index (PI) has been utilized to assess the properties of
the ensemble learning classifcation described in this paper.

Kappa Statistics (KS): Te kappa coefcient is a measure
of consistency in statistics. When it comes to classifcation
problems, the consistency refers to the degree to which the
predicted outcomes of the model match the actual classi-
fcation results. Te kappa coefcient, which is generally
greater than zero and falls within the range of −1 to 1, is
computed from the confusionmatrix.Te KS value indicates
the performance of the classifer. If KS� 1, the classifer
exhibits outstanding performance; if the KS value ranges
from 0.4 to 0.75, the performance of the classifer is good.
And the performance of the classifer is considered poor
when the KS index is lower than 0.4. Te KS index can be
calculated by the following equation [37]:

KS �
PO − PE

1 − PE

. (12)

In the above equation, PO represents the observed fault
type and PE represents the expected fault type.

Table 3: Pseudo-code of RF-RFECV.

Algorithm 1: RF-RFECV
Input: data set samples x � [x1, x2, . . . , xn], and classes labels
y � [y1, y2, . . . , y7]

Output: optimal feature subset R

(1): for i in 1 : 5 do
(2): split the dataset samples into 5 groups, select the ith as test
data, the RF model was trained by the other four groups
(3): train the random forest model
(4): calculate the accuracy of RF
(5): evaluate the MDI and remove the least import feature,
update feature subset R

(6): repeat step 4 to step 5 until the quantity of features of
dataset is 0
(7): end
(8): determine the optimal feature subset R with highest accuracy
of CV
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Mean Absolute Error (MAE): Te MAE can be calcu-
lated by the predicted and observed results of classifer. And
it can be stated by the equation below [38]:

MAE �


n
i�1 EP − EO( 




n
, (13)

where EP represents the predicted results and EO represents
the observed results of the classifer for a particular set of
sample data n.

Precision (P): Te Precision measures how well the
model can separate positive and negative samples. A greater
precision indicates that the model performs better at this
classifcation task [39].

Precision �
TP

TP + FP

, (14)

where TP represents true positive samples and FP represents
false positive samples.

Recall (R): Te ratio of accurately predicted positive
observations to all observations in the class may be used to
indicate the recall, and it can be shown as follows:

Recall �
TP

TP + FN

, (15)

where FN indicates false negative samples.
F1 score (F1): Precision and recall are combined to create

the F1 score.Te categorization model is more reliable as the
F1 score is higher.

F1 �
2∗R∗P

R + P
, (16)

where P indicates the precision and R indicates the recall.

3.5. Identifcation Process. Te UHVDC fault identifcation
framework based on the DF-AD and the ensemble learning
is shown in Figure 4. Tere are primarily four parts to the
model structure. All experiments were carried out under
MATLAB2019a and Python 3.6 programming.

(1) Several subsignals are obtained from diferent types
of UHVDC fault data by the DF-AD method. For
example, a fault voltage signal of UHVDC system
can obtain 32 subsignals after 8 times downsampling
and 3 times approximate derivative derivation.

(2) For each subsignal obtained, nine entropy features
shown in Table 2 are calculated. Terefore, a total of
288 features can be obtained from 32 subsignals.

(3) Te Algorithm 1 RF-RFECV was used to select
important features, which is convenient for the
ensemble classifer to classify faults. In this paper, the
Algorithm 1 RF-RFECV is used to obtain 12 high-
quality features from 288 feature sets.

(4) Trough step (3), a data set with 12 high-quality
features can be obtained. Te size of the data set is
1050∗12, and it is divided into training set and test
set in a ratio of 7 : 3. Te training data was utilized to
train the ensemble classifer, and the test data was
utilized to validate the model’s performance. Finally,
the fault identifcation is realized.

4. Simulation

4.1. SimulationSystemParameters. To validate the efcacy of
the fault diagnosis approach suggested in this paper, an
±800 kV line commutated converter-based (LCC) UHVDC
system was built in MATLAB/Simulink as illustrated in
Figure 5. Te system has a rated power of 8000MVA, a rated
voltage of 800 kV, operating at a frequency of 50Hz, and
features a total transmission line length of 1095.7 km, while
utilizing a 12-pulse bridge circuit for the converter.

4.2.Diferent Types of Fault Simulation. Seven diferent types
of failures were simulated on the basis of this model. Figure 5
illustrates the types of faults that might manifest in the
UHVDC transmission system under actual conditions. Te
f1 indicates a positive ground fault; f2 indicates a negative
ground fault; f3 indicates a short circuit fault between poles.
And the f4 indicates a A-phase ground fault on the rectifer
side of the AC system; f5 indicates a A-phase ground fault on
the inverter side of AC system; f6 indicates a positive ground
fault on the rectifer side, and f7 indicates a positive ground
fault on the inverter side.

Te DC voltage of diferent types of faults is collected as
the analysis signal, the sampling frequency of the data is set
to 12.8 kHz, the duration is 0.1s, and each signal has 1280
sampling points. Table 4 describes the sampling data for
various fault parameters of UHVDC model. For each in-
ternal fault, this paper considers 10 fault resistances of 1, 50,
100, 200, 350, 500, 650, 800, 950,1100Ω, and 15 fault lo-
cations from the rectifer side 70∼1050 km (step size of
70 km). Terefore, each internal fault has 150 (10∗15)
samples. Tis study considers 100 transition resistances of
6∼600Ω (step size of 6Ω) and 50 transition resistances of
610∼1100Ω (step size of 10Ω) for every external fault and
AC system fault. Hence, for every external fault and AC
system fault, there are 150 (100 + 50) samples. For faults on
DC lines, diferent fault samples can be obtained by
changing the size of transition resistance and fault location.
Similarly, each type of fault contains 150 samples. In this
work, we collected a total of 1050 (150∗ 7) fault samples.
Tese samples were processed by the DF-ADmethod used in
this paper, and a data set with a size of 1050∗ 288 was
obtained. Te data sets are then randomly separated into
a training set and a test set in proportions of 7 : 3. Te table
demonstrates how defect sample data sets are generated.

5. Results and Discussion

5.1. Results of RFECV Feature Selection. Trough the IF-AD
algorithm and diferent entropy features introduced above,
we can acquire a total of 288 classifcation features. In spite
of there being numerous features, not all of them are ap-
propriate for classifcation purposes. Te aim of Algorithm
1 RF-RFECV is to identify the features that are most efcient
for classifcation. Te Algorithm 1 RF-RFECV-based feature
selection algorithm is applied to the resulting data set
containing 288 features, and 12 features are selected to
identify faults as shown in Table 5.
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5.2. Classifcation Results: Ensemble Classifer. To increase
the accuracy of fault identifcation and guarantee the sys-
tem’s safe and stable functioning, this study proposed an
ensemble classifcation model, which is composed of three
basic classifers: LightGBM, KNN, and NB, aiming at
detecting and classifying various UHVDC faults. In this
model, the basic classifers (LightGBM, KNN and NB) are
frst trained by using the entropy features extracted from
diferent types of UHVDC fault signals. Ten, the predicted
values of the basic classifer are combined with the voting

method by the meta classifer to obtain new anticipated class
values during the fnal stage of decision making. In this
work, in order to efectively classify the classifer, the samples
in the training and testing stages are randomly selected,
while the training set has 735 samples. To assess the efec-
tiveness of the suggested ensemble classifcation model
based on its identifcation accuracy and performance index,
the outcomes of suggested model are contrasted against
those of every individual base classifer. Te identifcation
accuracy can be interpreted as the proportion of the

Input:
voltage signal

DF-AD method:
diferent signals were obtained

...

LightGBM

KNN

NB

P1

P2

P3

f1
f2
f3

f5
f4

f6
f7

InputVoting
rule

Final
prediction

Ensemble classifier

Feature extraction:
calculate diferent 

entropy values

RF-RFECV:
select the optimal 

feature subset

Figure 4: Flowchart of the fault identifcation approach.

f 3 f 5

f 1

f 6 f 7

f 2

AC filter AC filter

DC 
filter

DC 
filter

DC
filter

DC
filter

f 4

Figure 5: ±800 kV UHVDC system schematic diagram.
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UHVDC faults properly identifed out of the total number of
UHVDC faults and may be represented as follows using
equation:

Accuracy �
Number of faults correctly classified

Total number of faults
× 100%.

(17)

Tables 6–8 display the confusion matrices for LightGBM,
KNN, and NB classifers, and Table 9 displays the confusion
matrix for the ensemble model. Te primary diagonal ele-
ment in the confusion matrix represents correctly classifed
test samples, whereas of-diagonal elements signify mis-
classifcations. Table 10 displays the performance indicators
of each classifer.

Te UHVDC faults are classifed by the basic classifers
(LightGBM, KNN and NB) and the ensemble classifer
model. Tables 6–9 show the confusion matrix of the clas-
sifcation results of the four classifers. From the results,
compared with the single basic classifer, the ensemble
classifer based on the voting rule possesses higher accuracy
(99.05%) in UHVDC fault identifcation. Table 10 shows the
performance indicators of the three base classifers and the
integrated classifer. Te KS values of the three base clas-
sifers are 0.9407, 0.9629 and 0.8592, respectively, while the
KS value of the ensemble classifer is increased to 0.9889,
indicating the stability of the ensemble classifer model was
improved. Compared with the three basic classifers, the
MAE value of the ensemble classifer is lower, indicating the
classifcation error of the ensemble classifer is lower.
Similarly, as evidenced by Table 10, the ensemble classifer
exhibits superior performance to the basic classifer with
respect to the precision, recall, and f1 score measures.

To assess the robustness of the ensemble classifer, we
examine the data with varied noise content, and the result is
shown in Table 11.

According to the performance indicators of the classifer
and Table 11, the ensemble classifer has better performance
and more powerful anti-interference capabilities than basic
classifers in fault identifcation.

5.3. Comparison between DF-AD and Discrete Wavelet
Transform. In this section, to demonstrate the DF-AD
method’s efectiveness, a comparison is made with the

commonly used signal processing method Discrete Wavelet
Transform (DWT). Te computational complexity of
DF-AD and DWT is measured by calculating the time taken
to process the same data, with the experimental data from
the same computer.

Applying DWT to the voltage signal in Figure 6(a), eight
detailed and one approximate signal were obtained. Figure 6
depicts the energy entropy for the eight detailed coefcients,
but it only yields one distinctive curve through the 8-level
DWT of the fault voltage signal. However, as shown in
Figure 7, using the suggested DF-AD approach, four attri-
bute curves were constructed for the fault voltage signal.
Terefore, the DF-ADmethod used in this paper can analyze
more characteristic curves of the signal. Diferent UHVDC
fault types have diferent entropy values. As may be observed
from Figure 6(b), the measured voltage signals have diferent

Table 5: Feature selection results.

Number Feature label DF value AD value Entropy
1 25 1 Second Skewness
2 26 1 Second Maximum
3 27 1 Second Minimum
4 37 2 Signal Energy
5 50 2 First Norm
6 96 4 Second Mean
7 99 4 Second Minimum
8 119 8 First Shannon
9 172 16 Tird Energy
10 173 16 Tird Shannon
11 178 16 Tird Skewness
12 181 32 Signal Energy

Table 6: Results of LightGBM.

Type f1 f2 f3 f4 f5 f6 f7
f1 38 0 0 0 0 0 0
f2 0 42 0 0 0 0 0
f3 0 0 47 0 0 0 0
f4 0 0 0 42 0 0 0
f5 0 0 0 0 39 0 13
f6 0 0 0 0 0 47 0
f7 0 0 0 0 3 0 44

Table 7: Results of KNN.

Type f1 f2 f3 f4 f5 f6 f7
f1 38 0 0 0 0 0 0
f2 0 42 0 0 0 0 0
f3 0 0 47 0 0 0 0
f4 0 0 0 42 0 0 0
f5 0 0 0 0 43 0 9
f6 0 0 0 0 0 47 0
f7 0 0 0 0 1 0 46

Table 8: Results of NB.

Type f1 f2 f3 f4 f5 f6 f7
f1 38 0 0 0 0 0 0
f2 0 41 0 1 0 0 0
f3 0 0 47 0 0 0 0
f4 0 0 0 42 0 0 0
f5 0 0 2 1 29 0 20
f6 0 0 0 0 0 47 0
f7 0 0 3 1 10 0 33

Table 9: Results of ensemble classifer.

Type f1 f2 f3 f4 f5 f6 f7
f1 38 0 0 0 0 0 0
f2 0 42 0 0 0 0 0
f3 0 0 47 0 0 0 0
f4 0 0 0 42 0 0 0
f5 0 0 0 0 49 0 3
f6 0 0 0 0 0 47 0
f7 0 0 0 0 0 0 47
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Table 10: Te performance evaluation indices of each model.

Type KS MAE Precision Recall F1 Accuracy (%)
LightGBM 0.9407 0.1016 0.9572 0.9552 0.9537 94.92
KNN 0.9629 0.0635 0.9733 0.9722 0.9711 96.82
NB 0.8592 0.2603 0.8862 0.8908 0.8858 87.94
Proposed 0.9889 0.0095 0.9909 0.9908 0.9908 99.05

Table 11: Identifcation results with data of diferent noise levels.

Classifer Without noise (%) 20 db (%) 30 db (%)
LightGBM 94.92 91.43 93.65
KNN 96.82 93.97 94.92
NB 87.94 83.49 85.40
Proposed 99.05 96.51 98.41
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Figure 6: (a) Energy entropy of detail coefcients after DWT. (b) Energy entropy of the detail coefcients after DWTunder diferent faults.
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Figure 7: Continued.
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Figure 7: Energy entropy of voltage signal under diferent DF-AD parameters. (a) Voltage signal. (b) Te frst order AD. (c) Te second
order AD. (d) Te third order AD.
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entropy values when the UHVDC system has faults such as
positive pole grounding, negative pole grounding and two-
pole short circuit.Te fault types of UHVDC are classifed by
entropy diference. As shown in Figure 8, with various
DF-AD parameters, it is available to attain the comparable
results.

Te times required to analyze the fault data with DWT
and DF-AD for diferent fault types were shown in Tables 12
and 13. By performing DWT analysis on the fault voltage
signals, it is possible to obtain an approximate signal and
eight detail signals. In total, nine diferent signals are ob-
tained.While DF-ADmethod obtains a total of 32 signals, so
more information can be obtained from the original voltage
signal.

Although the signal obtained by the DF-AD signal
processing method is more than four times that of the DWT
method, the calculation time of this method only needs 1/6
of DWTmethod, as shown in Tables 2 and 3. Tis is mainly
because the DF-AD method only requires basic arithmetic
operations.

5.4. Comparison with OtherMethods. In the environment of
a 30 dB signal-to-noise ratio, Table 14 presents the results of
comparing the method presented in this paper with fault
identifcation techniques from other literatures.

Table 14 indicates that, despite the infuence of noise
interference, the proposed method continues to exhibit
superior accuracy compared to other methods.

6. Conclusions

In this study, we propose a fault identifcation model that
utilizes the DF-AD approach and ensemble classifer to
accurately classify seven common fault types in UHVDC. To
simulate the faults, we built a ±800 kV model in MATLAB/
Simulink. Te voltage signal from the rectifer side is pro-
cessed using our proposed DF-AD approach, which extracts
more precise information and is faster than DWT. For the
generated several subsignals, from which we calculate nine
types of entropy to identify UHVDC faults. High-quality
features were selected using the Algorithm 1 RF-RFECV,
and the ensemble classifers were trained using a voting rule.
Te experimental results show that our proposed fault
identifcation model shows higher accuracy and robustness
to transition resistance when compared to other methods. In
future work, we plan to add more fault types and investigate
more efcient recognition models.

Nomenclature

DF: Down-sampling factor
AD: Approximation derivative
RF-RFECV: Random forest-recursive feature

elimination with cross-validation
LightGBM: Light gradient boosting machine
KNN: K-nearest neighbor
NB: Naive bayes
PCA: Principal component analysis
SVM: Support vector machine
EMD: Empirical mode decomposition
CNN: Convolutional neural network
MCEEMDAN: Modifed complete ensemble empirical

mode decomposition with adaptive noise
IMFs: Intrinsic mode functions
CGAN: Conditional generative adversarial network
DWT: Discrete wavelet transform
FFT: Fast Fourier transform
GAF: Gramian angular feld
DBN: Deep belief network
ANN: Artifcial neural network.
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Table 12: Te running time of DWT (one approximation signal
and eight detail signals).

DWT Without noise (s) 20 dB (s) 30 dB (s)
f1 0.13 0.12 0.13
f2 0.13 0.13 0.12
f3 0.13 0.12 0.12
f4 0.12 0.12 0.12
f5 0.11 0.11 0.11
f6 0.12 0.12 0.12
f7 0.12 0.13 0.20

Table 13: Te running time of DF-AD (32 diferent signals).

DF-AD Without noise (s) 20 dB (s) 30 dB (s)
f1 0.024 0.023 0.024
f2 0.025 0.026 0.026
f3 0.023 0.021 0.022
f4 0.021 0.020 0.020
f5 0.020 0.018 0.019
f6 0.018 0.019 0.018
f7 0.022 0.020 0.023

Table 14: Comparison with other classifcation methods (30 dB
noise).

Ref. Signal process Classifcation
algorithm Accuracy (%)

[13] EMD CNN 93.01
[40] FFT+GAF CNN 98.09
[41] DBN 93.97
[42] DWT ANN 97.78
Proposed DF-AD Ensemble classifer 98.41
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51907138), and the Science and Technology Project of State
Grid Shanxi Electric Power Co., LTD, China (grant no.
520510220002).
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