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Tis paper presents a grey-box model of a DC/DC boost converter for PV energy systems. Te proposed model contains a white-
box model part and a black-box model part together to prepare a better model for the PV boost converter. Te white-box model
part is used for knowledge of the circuit by mathematical equations since the black-box model part is used for unknown
parameters such as temperature and electromagnetic interference. Te black-box part of the proposed model is created by
a nonlinear system identifcation of a real boost converter circuit with an artifcial neural network. Te precision of the
mathematical model and the advantages of the fast prediction ability of the artifcial neural network were used together. Te
proposed grey-box model is compared with the existing state-space and black-box models and experimental results. Te results of
the study showed that the average correlation between the proposed grey-box model output and the experimental results is
97.52%. Terefore, the proposed model can be used for analyzing DC/DC boost converter output characteristics before feld
applications.

1. Introduction

1.1. Background. Photovoltaic (PV) energy systems are
taking an important role in energy production systems due
to their clean energy production process. However, im-
proving PV energy system efciency is a big issue. For this
reason, there are many studies about improving PV cell
technology. However, another way to increase PV system
efciency is by improving the efciency of the power
electronics circuits used in PV energy systems. Since DC/DC
boost converters are one of the most commonly used power
electronic circuits in PV energy systems, efciency im-
provements of DC/DC boost converters directly afect the
efciency of PV energy systems. To increase the efciency of
DC/DC converters used in PV energy systems, the working
principle and the behavior of the circuit should be well
known. So accurate modeling of DC/DC boost converters
for PV energy systems is a good way to understand circuit
behavior before feld applications.

Commonly, DC/DC converters are modeled with de-
terministic models such as mathematical equations. How-
ever, mathematical equations are not adequate to express the
transient output voltage changes of the circuit. So to un-
derstand the input-output relation of the circuit better,
black-box models are used in various types of DC/DC
converters. Black-box models are used to obtain parameters
that cannot be expressed mathematically by identifcation.
However, in some situations, black-box models can have
uncertain output behavior when input-output data are poor.
So when some mathematical equations of the system are
known, using a grey-box model is a better way to model
a dynamic system instead of using a black-box model. A
grey-box model is described as a combination of a white-box
model part and a black-box model part. Te white-box
model part is based on mathematical equations since the
black-box model part is created by nonlinear identifcation
of the uncertain system parameters by using an input-output
dataset.
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1.2. Literature Review. In the literature, there are various
studies about the grey-box modeling of energy systems.

Zhao et al. [1] used the grey-box method for online
monitoring of DC-link capacitors. Te authors stated that
the damping factor α (related to capacitance) of the large-
signal transient trajectories of converters is a new health
indicator for capacitors. Based on this, the model realizes the
condition monitoring of DC-link capacitors with minimum
dependency on the detailed topology and control in-
formation. According to experimental results, the estimation
errors of the damping factor and DC-link capacitance were
found to be less than 1%.

Ungerland et al. [2] introduced a grey-box technique for
consolidating active distribution networks that incorporate
grid-forming converters. Teir method relies on voltage
sensitivities to depict the grid’s resilience at the connection
point of the grid-forming converter. Te resulting aggre-
gated model efectively replicates the intricate dynamic
characteristics of the original network. Consequently, their
grey-box method ofers a substitute equivalent model ca-
pable of replacing detailed distribution network models.

Roosta et al. [3] put forward an adaptive neuro linear
quadratic regulator (ANLQR) controller designed specif-
cally for buck converters functioning in environments with
disruptive disturbances. Teir investigation centers on the
integration of a neural network to refne and adjust the gain
of the linear quadratic regulator (LQR) approach by using an
adaptive mechanism. Tis approach operates under the
premise that the system can be treated as a grey-box process,
obviating the requirement for an exact mathematical model,
which can lead to reduced computational demands, swifter
system response, and simpler implementation.

Rosati et al. [4] conducted a study exploring system
identifcation (SI) and data-driven modeling methods as
substitutes for deriving models from fundamental principles
in the context of modeling a vented oscillating water column
wave energy converter. Teir fndings suggest that SI models
ofer a degree of adaptability, as they can either rely solely on
data (referred to as black-box models) or integrate some
level of physics-based insights (referred to as grey-box
models). Teir research demonstrates that when the con-
verter system is regarded as a grey-box model, metaheuristic
algorithms can be efectively employed for targeted design
within this framework.

Wang et al. [5] highlighted that viewing a converter
system as a grey-box model allows for the implementation of
metaheuristic algorithms for targeted design within this
framework. Consequently, they introduced a genetic algo-
rithm (GA) applied to the parametric design of the dual
active bridge (DAB) converter. Teir approach included an
explicit ftness criterion aimed at identifying and mitigating
the high-frequency oscillation (HFO) issue. Trough com-
parative experiments, they demonstrated the efcacy of their
method, achieving a 4% enhancement in efciency with
a power delivery of 200W, particularly through the tuning of
the splitting inductance.

Liu et al. [6] introduced two Bayesian methodologies:
semiconjugate linear regression and noisy input Gaussian
process regression. Tese techniques serve for both

parametric and nonparametric modeling in the context of
grey-box and black-box modeling. Teir fndings illustrate
that the proposed approaches for system identifcation of
ships and wave energy converters (WECs) exhibit strong
generalization capabilities and robustness.

Zong et al. [7] introduced a comprehensive grey-box
aggregation model for wind farms along with a parameter
identifcation technique that does not necessitate detailed
knowledge of the wind farm internals. Tey developed
a simplifed grey-box aggregation model for low-medium
and high-frequency ranges and applied a vector ftting-based
method to identify its parameters. Te resulting aggregation
model closely matched the broad frequency characteristics
(ranging from 1 to 2500Hz) of the detailed wind farm,
making it suitable for wideband oscillation analysis.

In reference [8], the authors introduced a method for
analyzing small-signal stability in grid-tied converter sys-
tems, considering both the “white-box” and “black/grey-
box” scenarios, accounting for frequency couplings across
various operating conditions. Consequently, they identifed
stable operating regions under diferent grid impedances,
ofering valuable insights into ensuring the stability of grid-
tied converters.

Hafz et al. [9] introduced a straightforward approach to
grey-box identifcation for modeling a real DC-DC buck
converter operating in continuous conduction mode. Teir
method, rooted in the concept of term clusters, ofers
a simplifed means to determine the static response of po-
tential models. Essentially, their approach transforms the
grey-box identifcation challenge into a multiobjective
framework, aiming to balance the bias-variance trade-of in
model construction while incorporating prior knowledge
into the structure selection process. Trough their in-
vestigation focusing on a practical buck converter scenario,
they showcased the feasibility of identifying concise models
capable of capturing both dynamic and static behaviors
across a broad input range.

Hu et al. [10] developed a small-signal model for
a variable-speed multigenerator (VSMG), which is com-
parable to an adapted third-order synchronous generator
(SG). Te authors used a grey-box system specifcation in
which equivalent electrical parameters were estimated al-
ternately and iteratively to model the synchronous generator
(SG). Te accuracy of the equivalent SG model in the time
domain is confrmed by simulation results.

In reference [11], the authors introduced a dynamic
model for active distribution networks that aggregates
various generation technologies, considering their antici-
pated responses in compliance with the latest European grid
code requirements, particularly regarding voltage support
services. Te primary objective of this model and its iden-
tifcation methodology was to accurately represent the
transient behavior of the active distribution system following
signifcant voltage disturbances originating from the
transmission side. Te model’s parameters were determined
using an evolutionary particle swarm optimization algo-
rithm, which involved comparing the frequency domain
responses of active and reactive power fows at the boundary
of the transmission-distribution interface substation
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between a detailed distribution network model and the
aggregated model.

Amin et al. [12] introduced a grey-box approach
designed to estimate the parameters of controllers within
a wind energy conversion system (WECS), relying on
fundamental assumptions regarding the system’s control
structure. Teir method focused on identifying the portions
of the equivalent WECS impedance that signifcantly in-
fuence system stability and subsequently adjusting the
impedance to promote stability. Teir research fndings
indicated that this method efectively guarantees system
stability by readjusting only the crucial controller
parameters.

Lee et al. [13] performed a requirements analysis using
a grey-box approach and utilized select products from the
design phase derived from this analysis. Subsequently, they
developed an automation system that converts these
products into a systemmodel by using a model converter for
use with the model checker.

Mat Zali et al. [14] outlined the creation of a dynamic
equivalent model for an active distributed network (ADN)
by utilizing the grey-box methodology. Teir model com-
prises a converter-connected generator and a composite load
model running in parallel. Opting for the grey-box approach
was motivated by its ability to integrate prior knowledge
about the ADN structure into the model, rendering it more
physically meaningful and intuitive compared to black-box
or white-box models. Tis approach holds promise for
enhancing the model’s accuracy.

Milanovic et al. [15] introduced an equivalent model for
an active distribution network cell (ADNC) featuring dis-
tributed generation, intended for studies on transmission
system stability. Tis ADNC model includes a converter-
connected generator and a composite load model operating
in parallel. Tey opted for the grey-box approach to model
development because it allows for the incorporation of prior
knowledge about the ADNC structure, thereby enhancing
the model’s physical relevance and intuitiveness compared
to black-box or white-box models.

In reference [16], the authors outlined a swift calibration
method aimed at determining the parameters of a dynamic
battery model tailored for automotive applications. Tis
dynamic model adopts a phenomenological approach based
on an equivalent circuit model, with parameters varying as
linear spline functions of the state of charge (SoC). Te
model identifcation process follows a layered approach:
a two-step optimization procedure utilizing a genetic al-
gorithm (GA) is employed to fne-tune the model param-
eters across an experimental dataset covering the pertinent
operating conditions for the batteries. Te authors suc-
cessfully applied this process to both lithium-ion and NiMH
chemistries, yielding favorable outcomes.

Arahal et al. [17] developed a thermal storage tank model
by employing the simultaneous perturbation stochastic
approximation technique to fne-tune the parameters of
a serial grey-box model structure. Te advantages of this
approach are discussed within the context of its intended
application, which necessitates a model capable of accurately
simulating the storage tank’s behavior while imposing

minimal computational burden and maintaining low error
levels over medium to large timeframes. Te model un-
derwent testing against real-world data across various sce-
narios, evaluating its performance in terms of simulation
accuracy for temperature profles and the amount of usable
energy stored in the tank. Te results obtained afrm the
efectiveness and practicality of the proposed approach.

In reference [18], the authors explored the practical
utility of artifcial neural networks (ANNs) for constructing
measurement-based continuous-time dynamic equivalents
for power systems. Teir methodology involves utilizing
measurements taken at boundary nodes between a sub-
system earmarked for detailed modeling (the “retained”
portion) and the segment slated for replacement with
a simplifed (“equivalent”) model. Teir approach blends
conventional physics-based models with signal-based
models derived from measurements. To categorize these
models, they employ a color-coding scheme, distinguishing
between physics-based models (termed clear or white box)
on one end, signal-based models (referred to as opaque or
black box) on the opposite end, and hybrid (grey box)
models in between.

In reference [19], the authors adopted a grey-box
methodology employing parameter estimation for NAR-
MAX polynomial models applied to a practical DC-DC buck
converter. While the static relationship was theoretically
understood, the identifcation data were limited to a narrow
range around an operating point. Despite being derived
from dynamic data, their models efectively approximated
the nonlinear static function, ofering a promising outcome.

Aguirre et al. [20] explored the integration of prior
knowledge regarding the system’s static nonlinearity into the
model, highlighting the trade-of between accurately esti-
mating the model’s static nonlinearity and the quality of
predictions, especially in applications involving nonlinear
systems. Tey applied these concepts to identify a real
DC-DC buck converter operating continuously. By in-
corporating straightforward prior information that con-
siders the steady-state voltage relation of the converter, they
achieved an enhancement in the overall stability of the
model. Tese models, which are valid across a broad op-
erational spectrum, are concise and can be directly estimated
using data obtained from the converter.

1.3. Research Gap and Motivation. As mentioned above,
there are some studies about grey-box modeling used in
various energy systems. However, there are few studies
about the grey-box modeling of DC/DC converter circuits.
Tese few studies are mostly about buck converters. On the
other hand, for renewable energy systems, especially PV
energy systems, boost converter circuits are one of the most
preferred power electronic circuits. In PV energy systems,
DC/DC boost converter circuits are used to adjust the
preinverter voltage. Also, they are used as voltage stabilizers
when DC loads are directly connected to PV panels. Another
usage of DC/DC boost converters is maximum power point
tracking (MPPT) applications for charging batteries.
Terefore, the voltage input-output behavior of DC/DC
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boost converters should be well-known before feld appli-
cations. Te subject of developing innovative models for
boost converter circuits, which is so important to be used in
renewable energy systems, has remained missing in the
literature. Detailed, efortless, and realistic modeling of DC/
DC boost converters is revealed as a research gap in the
literature. So models used for simulations of DC/DC boost
converters used in renewable energy systems need to be
improved.

Te diferent aspect of this study from other studies in
the literature is that the boost converter circuit is modeled
using the grey-box modeling method. So the proposed
model contains both the advantages of deterministic
mathematical modeling and system identifcation. Te
proposed model consists of a state-space white-box part that
comes from physical knowledge of the boost converter and
a black-box identifcation part by artifcial neural networks
(ANNs) for the addition of system dynamics which is dif-
fcult to express mathematically.

In solar energy and wind energy systems, MPPT algo-
rithms adjust the PV output voltage with DC/DC boost
converter circuits and ensure that the maximum power that
can be drawn from the PV panel is transferred to the load or
battery. In order forMPPTalgorithms to work without errors,
the boost converter simulation model used in the design
phase of the algorithmmust be realistic. So the main objective
of this paper is to make a realistic model for existing boost
converter circuits. So this model will be able to be used to
simulate boost converter circuits for PV renewable energy
systems before feld applications. Also, in the future, better
MPPTcontroller designs can be made by using the proposed
grey-box model of DC/DC boost converters, since the input-
output relationship of the boost converter circuits can be
expressed more clearly than existing mathematical models.

Tis study also aims to prepare a foundation for speeding
up the output voltage stabilization process and robust
control of PV renewable energy systems. As a result, it is
anticipated that a chain reaction will occur in which a better
systemmodel will pave the way for more powerful controller
designs.

1.4. Challenges. In DC/DC boost converters used in PV
renewable energy systems, the main issue to be controlled is
the output voltage level. Te controller in the PV renewable
energy system decides what the converter output voltage
should be by observing the input voltage and produces
a duty cycle signal appropriate to this value. Te existing
state-space model of the boost converter is based on
mathematical equations. In the existing mathematical
model, excessive fuctuations in the output voltage appear
that do not exist in reality. Te reason for that should be the
system dynamics caused by the magnetic feld, temperature,
and EMI stress do not exist in the existing state-space model.
Since the controller in the system is designed according to
the existing deterministic model of the boost converter, the
controller may produce a control signal diferent from what
it should be at various times. On the other hand, in real
applications, it takes longer for the control system to fx the

control signal. Tis drawback is tried to be encountered by
black-box modeling in earlier studies in the literature.
However, black-box models have an obstacle in that they do
not have sufcient results when training data are poor.
Terefore, in some cases, it may not be possible for control
systems to generate the control signal correctly.

So it is seen that a new modeling technique is required
for a better understanding of the input-output behavior and
transient response of DC/DC boost converter circuits.

1.5. Contribution. Tis paper primarily focuses on the fol-
lowing key contributions:

(1) Tis study compensates for the lack of dynamic
parameters in the existing mathematical model.

(2) Tis research focuses on the transient responses of
the DC/DC boost converter circuit models. Te
transient responses of the white-box, black-box, and
grey-box models are compared.

(3) Te DC/DC boost converter circuit is modeled as
closely as possible in terms of the system input-
output relationship by the proposed model.

(4) Tis paper is a preliminary study on designing
control systems to be used to stabilize the output
voltage of PV energy systems.

(5) A groundwork has been prepared for the MPPT
action to be carried out more efciently.

(6) Amore suitable model than existing models has been
created to enable feasibility and efciency analyses of
DC/DC boost converter circuits before feld
applications.

1.6. Paper Organization. Te remainder of this paper is
organized as follows. In the Introduction section, the pur-
pose of using DC/DC boost converters in PV energy systems
is mentioned. Ten, a detailed literature review is given.
Ten, a literature review about grey-box modeling of PV
energy systems and grey-box models used in DC/DC con-
verters is given. Ten, the purpose of the study and the
diference between the study and other studies in the lit-
erature are given. In the Methodology section, the proposed
grey-box model is presented. Ten, the real PV energy
system and the prototype boost converter circuit used for the
identifcation are given. In the Simulation Results section,
the simulation output of the proposed grey-box model is
investigated. In the Experimental Results section, the ex-
perimental results of the study and comparative output
results of the proposed model and existing model are given.
In the Conclusion section, the benefts of the proposed
model are explained and the planned improvements of the
proposed system in the future are expressed.

2. Methodology

A grey-box model of a DC/DC converter is created for use in
photovoltaic renewable energy systems. Te proposed grey-
box model includes a white-box model and a black-box
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model. Te white-box model and the black-box model are
designed to work in parallel. Te white-box model is created
using mathematical equations, while an artifcial neural
network algorithm is used to describe the system dynamics
in the black-box model. In the study, a 10 kW DC/DC boost
converter is designed and produced. Te boost converter is
operated with a duty cycle signal with a period of 10 kHz.
Te produced boost converter circuit is used to defne the
black-box model. Te produced boost converter circuit is
connected to the 10 kW solar panel block on the roof of the
Ege University Solar Energy Institute and operated at var-
ious photovoltaic panel voltages and duty cycles. By pro-
cessing the obtained data with artifcial neural networks,
a black-box model within the proposed grey-box model is
created. Afterward, the proposed grey-box model is used in
simulation tests. Following simulation studies, the model is
tested experimentally. Experimental test results and simu-
lation study results are compared.

2.1. ProposedGrey-BoxModel for theDC/DCBoost Converter.
Te proposed grey-box model for the DC/DC boost con-
verter consists of a white-box part which parallels a black-
box part. Te white-box part consists of the state-space
model equations for the boost converter. Tis part con-
tains well-known electrical information about the boost
converter by mathematical equations. On the other hand,
the black-box part contains boost converter system dy-
namics caused by energy storage elements in the converter
circuit (inductor and capacitor). Te black-box part of the
model is obtained by identifcation of the boost converter
circuit with artifcial neural networks. Te main objective of
adding a black-box part to the model is to quickly predict
what value the system’s output will reach when it becomes
stable. Figure 1 shows the proposed grey-box model.

2.1.1. Te White-Box Model. Fundamentally, a DC/DC
boost converter converts low input DC voltage to a higher
output DC voltage. A single-switch boost converter consists
of an inductor connected in series with an insulated gate
bipolar transistor (IGBT) or a metal oxide feld efect
transistor (MOSFET) and parallels to a diode and capacitor
connected in series. Figure 2 shows a basic single-switch
boost converter circuit. Te output voltage changes by the
duty cycle of the pulse width modulation (PWM) signal
applied to the gate of the IGBT/MOSFET.

For the determination of the white-box model of the boost
converter, state-space equations of the circuit are used. Con-
sidering the circuit in Figure 3, the inductor current iL and the
capacitor voltage vc have been chosen as the state variables.
When the period of the PWM signal is Ts and the duty cycle is
d, the converter circuit can be examined in two states. In the
frst state 0< t< dTs, the Q1 switch is of. So the current comes
from the input stored as magnetic energy in the inductor L1. In
the second state dTs < t< (1 − d)TS, theQ1 switch is on. So the
stored current in the inductor is released by the diodeD1 to the
capacitor C1. Figure 3 shows the schematics of the two states of
the circuit for state-space analysis.

For the on-state, vi � vL and iC � −iR. Tus, vo � vc and
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For the of-state, vi � vL + vc and ic � iL − iR. Tus, vo �

vc and
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So, for the of-state, the state equations and the output
equations can be written as
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Figure 1: Proposed grey-box model.
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Figure 2: Basic single-stage boost converter circuit diagram.
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From equations (2) and (4), the averaged large-signal
model of the boost converter for 0< t<Ts can be written as
shown in the following equation.Tese equations are used as
a state-space model for the boost converter circuit.
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(5)

Te state-space equations of the boost converter circuit
are embedded in a state-space block in MATLAB/Simulink
for the simulation of the white-box part of the module.
Figure 4 shows the state-space block and the block pa-
rameters for the white-box model of the DC/DC converter.
As mentioned above, the state-space model contains the
state variables (iL and vC) and their derivatives ( _iL and _vc)
together. Te state variables are related to circuit output
resistance, inductor, and capacitor. Te duty cycle variable
(d) is added to the module to express the switching efect of
the boost converter circuit. vi is described as the model input
signal and vo is described as the model output signal. Matrix
A is the coefcient of the efect of the state variables on
derivatives of the state variables, matrix B is the coefcient of

the efect of the input variable on derivatives of the state
variables, and matrix C is the coefcient of the efect of the
state variables on output. In this case, the matrix D, the
coefcient of the efect of the input variable to the output
variable is equal to zero.

2.1.2. Te Black-Box Model. In the literature, the black-box
identifcation method is generally used to describe the efects
of dynamic system parameters, which are difcult to express
mathematically on the system output signal. In DC/DC
converters, the magnetic feld created by the coil changes
with the coil temperature. Te inductor voltage is related to
the magnetic feld created on the coil. Inductor voltage is an
important factor afecting the output voltage of the circuit.
Terefore, it is difcult to express the efect of electro-
magnetic feld changes occurring in the inductor on the
output voltage with mathematical equations. However, the
voltage stress on switches, diodes, and other components is
also difcult to model by mathematical equations. For this
reason, in this study, the black-box identifcation method is
used to model dynamic voltage changes that are difcult to
express mathematically.

For black-box identifcation, a feed-forward back-
propagation type ANN is created in MATLAB/Simulink. Te
created ANN has one input layer, one output layer, and one
hidden layer. Te hidden layer of the network contains fve
neurons.Te number of neurons in the hidden layer is defned
by using a pruning algorithm. Te ANN structure is given in
Figure 5. Te neurons have tangent-sigmoid activation func-
tion inside. Every neuron has weight factors and biases.

Te created ANN has two inputs and one output. Te
inputs of the ANN are the PV panel output voltage and duty
cycle of the DC/DC converter. Te output of the ANN is the
DC/DC converter output voltage.
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Figure 3:Te state schematics of the boost converter circuit: (a) the
on-state of the boost converter circuit (0< t<dTs) and (b) the of-
state of the boost converter circuit (dTs < t< (1 − d)TS).
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(1) Training of the ANN. Te ANN training data are obtained
from a boost converter circuit that is connected to a 10 kW
PV energy system. Te PV energy system consists of 3
parallel PV panel strings, each of them consisting of 14 PV
panels in series. Te PV energy system is located in Izmir,
Turkey. Te panel tilt angle is 45 degrees and the panel
direction is directed to the south. Figure 6 shows the
electrical characteristics of the PV energy system. Te
maximum power output of one PV panel is 243watts. Te
open circuit voltage of one panel is 38.3 volts. Te short
circuit current of one panel is 8.81 amperes. Te maximum
power point voltage of one panel is 30.2 volts.Temaximum
power point current of one PV panel is 8.06 amperes.

Te DC/DC boost converter circuit in Figure 7 is used for
training the ANN.Te DC/DC boost converter circuit consists
of an 80mH inductor denoted as L, a 1200V 100A IGBT
denoted as Q, two 1200V fast switching diodes in series
denoted as D, a 100μF output capacitor denoted as C, a 0.1μF
capacitor as a snubber capacitor denoted as Cs, and a snubber
resistor denoted as Rs. Te component details are given in
Table 1. Te IGBT in the circuit is triggered with an external
driver circuit with a switching frequency of 10 kHz. Te
switching signal is generated by a PIC microcontroller. Te
driver circuit allows the duty cycle value to be changed between
1% and 95%. To prevent the circuit from being damaged due to
high current, the duty time upper limit is limited to 95%.

Te ANN training data have two inputs and one output.
Te inputs areVi (converter input voltage) and d (duty cycle of
the PWM signal). Te output is Vo (the converter output
voltage). For the compilation of training data, boost converter
input voltage (as PV panel output voltage) and boost converter

Input Layer Hidden Layer Output Layer

Vp

d

Vo

b1

b2

b3

b4

b5

w1

w2

w3

w4

w5

+

+

+

+

+

Figure 5: Artifcial neural network structure.
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output voltage values are measured when the solar irradiance
value increases from 100W/m2 to 1000W/m2 by 100W/m2

step. Te duty cycle value is changed from 20% to 80% by 10%
step increases for each 100W/m2 solar irradiance period.
Figure 8 represents the three-dimensional training dataset
obtained from the real boost converter circuit.

For a better understanding of the training data, Figure 9
displays a transection of the training data representing input
voltage ranging from 107V to 109V and duty cycle ranging
from 60% to 70%. Te training data comprise 40 transec-
tions, as illustrated in Figure 9.

2.1.3. Te Grey-Box Model. Te proposed grey-box model
Simulink diagram is shown in Figure 10.Tere, input signals
interact with the white-box part and the black-box part
together (since there is no input for the duty cycle for the
state-space block, duty cycle changes are made by an
external.m fle during simulations.). Ten, these two signals
are averaged. Te advantage of averaging the white-box
model and black-box model outputs is that the system
dynamics can be added to the model output at a sufcient
level. Te general goal of averaging two signals is as follows:
Te white-box model system does not include some system
dynamics as explained in the previous sections. Te black-
box model, on the other hand, may contain more system
dynamics than necessary because the data in the identif-
cation process made with the artifcial neural network are
insufcient in some cases. In the grey-box model, which is
designed as a model in which the outputs of two models are
averaged, the defciencies of the white-box model output are
completed, and it is also aimed to prevent excessive dynamic
behavior efects on the system output.

Te model is simulated by connecting to a PV array
block that simulates PV panels, and measurements of the
input-output signals have been taken. Te PV array block in
the simulation consists of 14 PV panels in series and 3 PV
panels in parallel strings. Figure 11 shows the Simulink
diagram of the proposed grey-box DC/DC converter model
with the PV energy system.

Te proposed grey-box model of the boost converter is
shown in a subsystem. Inside the subsystem, a white-box
part of the model and a black-box part of the model work in
parallel. Te PV panel I–V block is a scope for the PV panel
output current, PV panel output voltage, and solar irradi-
ance. Te panel temperature is simulated as 25 centigrade
degrees. An output capacitor is connected in parallel to the
PV panel block to dampen the output voltage spikes.

3. Simulation Results

In simulation studies, while the solar radiation value is
800W/m2, the duty cycle is changed between 20% and 90%
(d� 0.2 to d� 0.9). In these changes, the waveforms of the
white-box model, black-box model, and grey-box model
outputs are examined. Transient state responses and steady-
state responses of the model outputs are observed. Te
reasons for the fuctuations in transient responses are tried
to be explained.

Figure 12 presents the output of the white-box model
simulation. When examining the white-box model output,
fuctuations in the transient response become apparent.
Tese temporary fuctuations start from a high value and
gradually fade away and disappear. Te frequency of these
fuctuations is high, ranging from 20% to 50% of the duty
cycle. Te frequency of fuctuations in the transient re-
sponse appears to be lower when the duty cycle is in the
range of 60%–90%. It is thought that these fuctuations
occur as a result of the capacitor and the inductor in the
model entering into resonance. Another reason for the
fuctuations may be the absence of damping resistive ele-
ments or snubber capacitances modeled in the white-box
model. Terefore, the imprecision of the output transient
response at lower duty cycles can be attributed to these
omissions.

Figure 7: DC/DC converter circuit and the external driver circuit used in experiments.

Table 1: Details of the components in the boost converter circuit.

Component Value
Inductor (L) 80mH
IGBT (Q) 1200V 100A
Diode (D) 1200V fast switching diodes
Output capacitor (C) 100 μF
Snubber capacitor (Cs) 0.1 μF
Snubber resistor (Rs) 50 kΩ
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Figure 13 depicts the output of the black-box model under
the same conditions. Upon examination of the black-boxmodel
output, it becomes apparent that the artifcial neural network
primarily focuses on the steady state of the system output,
especially when the duty cycle is between 20% and 60%.
Conversely, when the duty cycle falls within the range of 70%–

90%, the artifcial neural network predicts transient responses
more accurately. Tis behavior of the artifcial neural network
can serve as a factor in reducing the controller response time for
designs aiming to stabilize the output voltage. However, it is not
deemed suitable for standalone use in modeling, as it provides
fewer transient responses than necessary.
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Figure 14 illustrates the output of the grey-box model,
aiming to amalgamate the advantages of both the white-
box and black-box models. Upon examination of the grey-
box model output, it is observed that transient state re-
sponses are present in the signal, although not as pro-
nounced as in the white-box model. However, steady-state
responses are established more rapidly compared to the
white-box model. Te proposed grey-box model addresses
the issue of the black-box model’s defciency in transient
response, resulting in a more realistic representation of
step-up DC/DC converters.

4. Experimental Results

In this section, the proposed grey-box model of the DC/DC
boost converter simulation results and experimental results
are compared. A 10 kW PV array on the top roof of the Solar
Energy Institute, Ege University, Turkey, is used for the
experimental study. Te single-stage DC/DC boost con-
verter circuit in Figure 7 is used for the experiments. A time

period in which solar radiation is 800W/m2 during the day is
chosen for the experiments. Te duty cycle is changed from
20% to 90% for boosting the output voltage.

4.1. Calculation of the Correlation Coefcient. Te correla-
tion coefcient between model output signals and the real
boost converter output signal is calculated by using the
method described as follows.

Te correlation coefcient between two random vari-
ables quantifes the strength of their linear relationship [21].
When each variable comprises N scalar observations, the
Pearson correlation coefcient is defned as follows:

ρ(A, B) �
1

N − 1


N

i�1

Ai − μA

σA

 
Bi − μB

σB

 , (6)

where μA and σA are the mean and standard deviation of A,
respectively, and μB and σB are the mean and standard
deviation of B. Alternatively, the correlation coefcient can
be expressed in terms of the covariance of A and B as
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Figure 12: Steady-state model output corresponding to duty cycle
from 0.2 to 0.9 at 800W/m2 solar irradiance.
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σ(A, B) �
cov(A, B)

σAσB

. (7)

Te correlation coefcient matrix for two random var-
iables represents a matrix containing correlation coefcients
calculated for each possible pair of variables.

R �
ρ(A, A) ρ(A, B)

ρ(B, A) ρ(B, B)
 . (8)

AsA and B are inherently correlated with themselves, the
diagonal entries of the correlation coefcient matrix are
always 1. Terefore, the correlation coefcient R can be
represented by using the following equation:

R �
1 ρ(A, B)

ρ(B, A) 1
 . (9)

4.2.Model Comparisons. First, the existing white-box model
output is compared with the output signal of the real boost
converter circuit. As is seen in Figure 15, the white-box
model output has many fuctuations in the transient re-
sponse. However, the experimental output does not have as
many fuctuations as the white-box model. Te correlation
between the white-box model output and the experimental
output is 0.9360. On the other hand, the steady-state re-
sponse of the white-box model is nearly the same as the
original output signal. So, it is understood that the white-box
model is not suitable for modeling a boost converter alone.

Ten, the black-box model of the boost converter circuit
output is compared with the experimental results. Figure 16
shows the transient responses of the real boost converter
output signal and black-box model output. According to the
scope view, the black-box model responds quicker than the
white-box model. It makes it more suitable to use the black-
box model than the white-box model for controller appli-
cations. However, the black-box model lacks transient re-
sponses. Te correlation between the black-box model
output and the experimental output is 0.9612. So the black-
box model is considered to need to be improved.

Ten, the proposed grey-box model is compared with the
experimental data.Te results of the experiments showed that
the proposed grey-box model (the white-box model with
ANN black-box identifcation) correlates with the original
output signal better than the existing white-box model and
black-box model. Figure 17 illustrates the real boost converter
output signal and grey-box model output corresponding to
the duty cycle from 0.2 to 0.9 at 800W/m2 solar irradiance. It
is found that the correlation between the original boost
converter output voltage value and the proposed grey-box
model output is 0.9690. Te proposed grey-box model can be
used for both controller design and transient response
analysis of DC/DC boost converter circuits.

It is thought that the reason for the deviation in transient
time responses at low duty cycle values in the models is due
to the fact that damping elements are not defned in the
white-box model. However, since the white-box model is
partially used in the grey-box model, it can be interpreted
that deviations occur at low duty cycle values in the grey-box
model. However, in the grey-box model, it is observed that
this handicap is reduced by half, as the white-box model
output is combined with the black-box model.

4.3. Experiments under Load Variations. Te featured
models have been tested over a wide range of resistive loads
from 100 ohms to 1Mohms. Te correlation between the
outputs of the proposed model and the output of the real
system was examined. Te results of the experiments con-
ducted under a wide variety of loads are shown in Table 2. At
each load value, 8 experiments were carried out by changing
the duty cycle in the range of 20%–80% with increments of
10%. Te correlation coefcient was calculated for each of
these experiments, and the average value of the calculated
correlation coefcients was written in the section of the
relevant model in the table.
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Figure 16: Transient responses of the real boost converter output signal and black-boxmodel output corresponding to duty cycle from 0.2 to
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Figure 17: Transient responses of real boost converter output signal and grey-box model output corresponding to duty cycle from 0.2 to 0.9
at 800W/m2 solar irradiance (output resistance R� 1150Ω).
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When Table 2 is examined, it appears that for the load
between 100 ohms and 1 kohm, the models are similarly
correlated with the results of the real system by approximately
99%. However, it is observed that the accuracy of the white-
box model output gradually decreases when the load re-
sistance is larger than 1 kohm. It is observed that when the
load resistance reaches levels of several hundred kilo-ohms,
the correlation coefcient of the white-box model output
drops to 91%. Within the same range, the black-box model
correlates with actual results around 95%, while this value for

the grey-box model is 96%. Te change of the correlation
coefcient corresponding to load resistance is given in
Figure 18.

As a result of the experiments and simulation studies, the
correlation of the white-box model output with the real
experiment outputs was found to be 0.9532, that of the
black-box model to be 0.9625, and that of the grey-box
model to be 0.9752. While the black-box model out-
performed the white-box model, the grey-box model
demonstrated an even higher level of performance.

Table 2: Correlation coefcients of the proposed models corresponding to load resistance.

Load
Correlation coefcient

White-box model Black-box model Grey-box model
100Ω 0.969607374871639 0.989513638531563 0.989820560464109
200Ω 0.976144494547240 0.991640393050001 0.993413906368015
300Ω 0.976923513467295 0.990436320971092 0.993590316644113
400Ω 0.979988267054458 0.989421560287630 0.993837996469483
500Ω 0.980225900502161 0.988866958508408 0.993865075783872
600Ω 0.985603416035943 0.989670275878091 0.994144100656739
700Ω 0.982795930071293 0.986884751559852 0.993201940018121
800Ω 0.984517235328024 0.987159320329735 0.992496091425469
900Ω 0.982673910426754 0.988889783662086 0.993452111138890
1 kΩ 0.979762754682253 0.986772163427075 0.991985164520238
2 kΩ 0.976144494547240 0.991640393050001 0.993413906368015
3 kΩ 0.976923513467295 0.990436320971092 0.993590316644113
4 kΩ 0.979988267054458 0.989421560287630 0.993837996469483
5 kΩ 0.980225900502161 0.988866958508408 0.993865075783872
6 kΩ 0.985603416035943 0.989670275878091 0.994144100656739
7 kΩ 0.982795930071293 0.986884751559852 0.993201940018121
8 kΩ 0.984517235328024 0.987159320329735 0.992496091425469
9 kΩ 0.982673910426754 0.988889783662086 0.993452111138890
10 kΩ 0.935970454110177 0.961261382638612 0.963262087672671
20 kΩ 0.931870554390938 0.963208688647779 0.965073476115451
30 kΩ 0.933618975230007 0.959623222565440 0.961791180543948
40 kΩ 0.933903318154406 0.959545572674599 0.961225377879551
50 kΩ 0.913986342412283 0.949099664989821 0.950941023597757
60 kΩ 0.930819295880845 0.957568658115150 0.958862100443451
70 kΩ 0.930682875491503 0.955620053912268 0.957565076893362
80 kΩ 0.924463965754733 0.955476590411907 0.956782645035189
90 kΩ 0.932454024167612 0.959497120248109 0.960276549391506
100 kΩ 0.934523015669254 0.958883606912570 0.959847019029370
200 kΩ 0.926376070445581 0.959697268346821 0.960287822022982
300 kΩ 0.934618234112205 0.958547227511676 0.959703720185535
400 kΩ 0.924483253918741 0.956441961509381 0.957258335268235
500 kΩ 0.918083893513768 0.954893996522147 0.956127236637524
600 kΩ 0.922747183436913 0.954612204426463 0.955873694057610
700 kΩ 0.932109903206404 0.958829830993813 0.959931624512020
800 kΩ 0.912661691575812 0.947996746439804 0.949092672243520
900 kΩ 0.920549605992836 0.949959031814387 0.951848302572760
1MΩ 0.928352443784171 0.958162827359424 0.958908262966600
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5. Conclusion

Tis paper proposes a grey-box model for a better un-
derstanding of the input-output behavior of DC/DC boost
converters. Te physical characteristics of the circuit are
modeled by the state-space equations, and a nonlinear black-
box identifcation is made by an ANN for circuit dynamics.

Results of the simulations and experimental studies
showed that the average correlation of the proposed grey-
box model output with the real experiment outputs is
97.52%.

Te proposed grey-box model can be used for transient
output voltage analysis. It can also be used for faster con-
troller designs for output voltage stabilization of DC/DC
converter circuits.

In future studies, novel controller designs can be pro-
posed by using the grey-box boost converter model to speed
up the control operations in DC/DC boost converter cir-
cuits. Tus, it is aimed for PV renewable energy systems to
react faster and therefore operate more efciently when
environmental conditions change.
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Figure 18: Change of the correlation coefcient corresponding to
load resistance.
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