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Available transfer capability (ATC) is an important measurement index to evaluate the security margin of interconnected power grids
and serve as a reference for the transmission right transaction. Inmodern power systems, ATC is afected by the transmission network
topology, renewable power output uncertainty, and load demand uncertainty. Traditional works usually model the power source-load
uncertainty by using robust optimization, interval optimization, or chance-constraint optimization, which cannot fully refect the
probabilistic distribution of the daily source-load uncertainty. Tis paper proposes an ATC assessment methodology based on the
typical stochastic scenarios of renewable output and load demand of multiarea power systems. Furthermore, the conditional
generative adversarial network (CGAN) algorithm is adopted to generate and select representative scenario sets based on historical
raw data, which can fully refect the usual operating condition of a system with high renewable energy penetration. Te scenario set
that is fed into the ATC assessment model can fully characterize the impact of source-load uncertainty on daily ATC. Finally, the
proposed method is verifed by a modifed three-area IEEE 9-bus system and a real-world provincial power system.

1. Introduction

In the electricity market, ensuring economic operation
under power system security constraints has become an
urgent problem for operators and participants. Available
transfer capability (ATC) represents the remaining power
transfer capacity on condition that the secure and stable
operation of the power system is guaranteed. In other words,
ATC approximately evaluates the safety and stability margin
of the current operating point.Terefore, ATC is not only an
important basis for electricity market participants to carry
out transmission right transactions [1–3] but also
a boundary condition for the power system expansion
planning [4]. In modern power systems with high pene-
tration of renewable energy and multiple types of loads, it is
of great signifcance to propose an ATC evaluation method
to satisfy electricity market operation.

Traditionally, researchers proposed multiple calculation
methods of ATC under deterministic source and load

parameters, including the linear distribution factor method,
continuous power fow method, and optimal power fow
(OPF)method [5–7].TeOPFmethod aims to maximize the
power fow of interarea tie lines with the constraints of
power fow balance, security, and stability criteria. Tus, the
power system ATC in a deterministic operating state can be
directly obtained by solving the OPF problem.

Te modern power system with high renewable energy
penetration is characterized by uncertain renewable power
output, long-distance power transmission, and complex load
composition.Terefore, the uncertainty of wind/photovoltaic
power generation and the uncertainty of the load lead to the
fuctuation of power transfer between diferent areas [8, 9]. As
a result, the ATC of interareas tie lines can be uncertain and
difcult to obtain. Regarding the uncertainty of renewable
power generation and load demand, researchers have pro-
posed methods based on robust optimization [10], interval
optimization [11], and optimization including chance con-
straints [12]. Considering the uncertainty of wind farm output
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and load demand, a robust ATC evaluation model was
proposed, which included a master problem of determining
total transfer capability and two subproblems of solving
capacity beneft margin (CBM) and transmission reliability
margin (TRM). In comparison, the authors of [10] propose
a robust ATC evaluation model considering reliability
marginal terms with a focus on the impact of dynamic line
rating (DLR) instruments on ATC. An interval optimization-
based model was proposed for ATC evaluation, which
considers the range of uncertain variables [11]. In this model,
the maximum of the ATC lower bound and the minimum of
the upper bound were presented by a lower boundary (op-
timistic) model and an upper boundary (pessimistic) model,
respectively.Ten, the feasible region of ATCwas obtained by
simplifying the solution with the strong duality theory. Te
study in [12] established the joint probability distribution
function of multiple wind farms’ power output and in-
corporated the uncertainty with chance constraints.Ten, the
chance-constrained programming problem was converted
into an equivalent linear programming one. In the studies of
[13, 14], a prediction error probability model of wind power
output was developed and a bilevel optimization model
considering regional wind power output correlation was
proposed, where the upper layer maximizes inter-regional
ATC and the lower layer minimizes generation cost and risk
cost. In [15], an ATC evaluation framework of an intraday
market was developed based on the existing Var sources. In
[16], the ATC evaluation was modelled as a nonlinear OPF
problem, which adopts an iterative decomposition-
coordination approach based on the constrained aug-
mented Lagrangian method. In addition to static security
constraints, the small-signal stability constraint is considered
in the ATC evaluation [17]. Considering the rigorously small-
signal stability model is complex, this study proposed a se-
quential quadratic programming method combined with
gradient sampling (GS). Te study in [18] proposed an online
ATC evaluation method considering the uncertainty of re-
newable energy output.Temethodmaximizes the diference
between the benefts and risks of the power increase.
Moreover, ATC is an important basis for transmission system
expansion planning and renewable power plant planning [4].
Terefore, electric power utility companies need to assess the
ATC based on the power grid topology and power source-
load distribution. Te study in [19] presented a methodology
for reinforcing an existing transmission network, considering
wind power investment to enhance ATC, and proposes
a bilevel structure where the upper level is the joint trans-
mission expansion planning (TEP) and wind power in-
vestment, while the lower level calculates the ATC.

To summarize, the ATC of modern power systems is not
only determined by a set of security constraints but also
characterized by the spatial-temporal probability distribution
of renewable power output and load demand. Terefore, the
key problems of ATC evaluation are the generation of source-
load random scenarios. Traditional methods based on robust
optimization or interval optimization are relatively easy to
solve. However, they only provide the distribution range of
the ATC and can neither provide its probability distribution
nor average value. Terefore, the transaction right trading in

the electricity market lacks an accurate boundary. Although
the traditional Monte Carlo simulation method can generate
many stochastic scenarios of renewable energy and load, the
computation workload is high and it cannot efectively
classify and screen the scenarios [20]. Consequently, it is
difcult to obtain the probability distribution of the ATC of
multiarea power systems.

Based on this motivation, this paper proposes a multi-
time-step ATC evaluation method based on typical scenario
sets of renewable power output and load demand. First, the
calculation method of the maximal transfer case considering
the security index of multiregional power system operation
is proposed, and the ATC evaluation model is developed.
Second, according to the multidimensional uncertainty of
renewable energy and load, the conditional generative
adversarial network (CGAN) method is adopted to generate
and screen the typical daily scenario sets. Hence, the sets’
system baseline operating points are obtained for ATC
evaluation. Finally, the probability distribution of ATC is
calculated by the optimal dispatch model based on the
stochastic scenario sets, which serves as an important basis
for power system expansion planning and developing
trading mechanisms of the electricity market.

Te remaining parts of this paper are organized as
follows. Section 2 proposes the ATC calculation model based
on the stochastic baseline case. Section 3 introduces the
CGAN-based method to generate and screen the stochastic
scenarios of renewable energy and load. Te verifcation
study based on a three-area IEEE system and a real-word
system is presented in Section 4, considering the stochastic
scenario set. Section 5 concludes the whole paper and in-
troduces future research directions.

2. ATC Assessment Model

Given the network topology, nodal load, power growth
mode, and other operation parameters, the power system
ATC indicates determining the maximum additional power
that can be transmitted based on the existing transmission
power of the key lines of the power system.

2.1. ATC Evaluation Framework. ATC is the diference
between total transfer capacity (TTC) and existing transfer
commitments (ETC), capacity beneft margin (CBM), and
transmission reliability margin (TRM) [12]. TTC is the
maximum transferred power between areas of the system
under various safety constraints such as bus voltage and line
capacity [20]. ETC is the transfer of power between areas of
the system under the baseline case. Generally, CBM and
TRM are constants determined by the area dispatch and
control centre [21].Terefore, CBM and TRM are ignored in
this paper for simplifcation. In a given renewable energy-
load scenario, the objective function under the maximum
transfer case is established as follows [9]:

min . 
t∈T

αciP
G
i,t − β

i∈G
P
Gm
i,t − P

G
i,t ⎡⎣ ⎤⎦. (1)
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In this study, the increased power is only provided by the
source area. Te frst term of the objective function is the
day-ahead economic dispatching cost of the generators in
the case of known new energy output and load demand, and
the second term is the sum of the generators’ output margin.
Te maximum transfer case of the power system indicates
the operating state where the thermal generators reach their
maximum power output (not necessarily the generators’
upper limit) under the system security operating constraints.
Te constraint conditions include line power fow con-
straints, nodal voltage constraints, frequency security con-
straints, and transient stability constraints. It is noted that
since the objective function and constraints are determined
by stochastic scenarios, the subscript s used to describe
scenarios in power and voltage variables is omitted.

According to the random scenario set, the ATC of the
system in the time slot t has a probability distribution, and its
mean value is calculated by the following equation:

ATCs �
1
T



T

t�1
ATCt,s. (2)

When the random source-load scenario sets are suf-
cient, their probability distribution can represent the dis-
tance from the baseline case to the maximum transfer case
under stochastic scenarios.

2.2. Operation Constraints of Power System. In the power
system, starting from the typical baseline case, the exchanged
power between diferent areas is continuously increased by
adjusting the generator output and nodal load until the
safety constraints reach the limit, and the maximum transfer
case of the system is obtained. ATC is the diference of the
exchanged power in areas between the baseline case and the
maximum transfer case. Te operation constraints of the
system are summarized as follows.

2.2.1. Baseline Case. Considering the power fow constraints
and static security constraints, the operating constraints of
the baseline case are given by the following equations:
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i,t,

Qi,t � Q
G
i,t + 0 − Q
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(3)
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Constraint (3) is the active and reactive power balance
constraint of nodes. It is assumed that the wind farm only
generates active power. Te power factor is assumed to be
constant, and the reactive power variable is replaced by the
real power, as given by (4). Constraint (5) is the linearized
power fow equation, in which the amplitude and phase
angle of the nodal voltage can be solved simultaneously. Te
equivalent admittance B1

ij, B2
ij of the power fow equation is

calculated by the resistance and inductance of the line, as
given by equation (6) [22].Te capacity constraint of the line
is nonlinear. However, considering that the active nodal load
and the active power transmitted by lines are generally
greater than the reactive nodal load and the reactive power
through lines, the capacity constraint of the line (i, j) is

approximately represented by equation (7) [23]. Constraint
(8) enforces the voltage limit of each node. Constraint (9)
represents the output limit of the generator i at time t,
indicating that the active output of the generator i at time t
should be between its upper and lower limits. Constraint
(10) represents the ramping down and ramping up con-
straints per unit time of the generator i, respectively.

2.2.2. Maximum Transfer Case. Similar to the baseline case,
the power system still satisfes the nodal power balance
constraint, power fow constraint, nodal voltage constraint,
and thermal power plant constraint. Terefore, the con-
straints (3), (5), (7)–(10) are rewritten as follows:
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where variables Pm
i,t, Qm

i,t, PGm
i,t , QGm

i,t , PDm
i,t , QDm

i,t , δm
i,t, and Vm

i,t

in the maximum transfer case correspond to Pi,t, Qi,t, PG
i,t,

QG
i,t, PD

i,t, QD
i,t, δi,t, and Vi,tin the baseline case, respectively.

Since ATC measures the incremental potential of interarea
power transfer, this paper makes two assumptions regarding
the maximum transfer case: (1) the power output increment
from the baseline case to the maximum transfer case is
totally caused by thermal power plants in the source area and
(2) the load increment from baseline operating point to

extreme operating point is totally caused by the load in the
sink area. Tis assumption is widely adopted in many early
literature [8, 11]. Based on the assumption, the variation
relation between baseline case and maximum transfer case is
given by constraints (17)-(18).

2.3. Stochastic Scenario Set. Te baseline operating point is
a set of operating parameters, including the power plant output,
load demand, and line switching state. In the provincial-level
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power system, the baseline case is afected by the distribution of
power fow, which is naturally determined by time-varying
renewable power plant output and load demand.Terefore, for
the purpose of comprehensive ATC assessment, it is necessary
to establish the typical scenario set of supply-demand based on
the historical raw data.

S0 � SW
, SD

 ,

SW
� P

W
1 , P

W
2 , · · · , P

W
i , i ∈W,

SD
� P

D
1 , P

D
2 , · · · , P

D
i , i ∈ D,

(19)

where PW
i � [PW

i,1, PW
i,2, · · · , PW

i,24]
T and PD

i � [PD
i,1, PD

i,2, · · · ,

PD
i,24]

T. Te detailed stochastic supply-demand scenario
generation will be discussed in Section 3.

3. CGAN-Based Scenario Generation

A set of representative scenarios of renewable power and
load is generated based on extracting the features of the
historical raw data. Generative adversarial networks (GANs)
leverage deep neural networks (DNNs) to express complex
nonlinear relationships (the generator) and to classify
complex signals (the discriminator). Te key insight of
GANs is to set up a mini-max two-player game between the
generator DNN and the discriminator DNN. Terefore,
GAN is an efective approach to ATC assessment.

During each training epoch, the generator updates its
weights to generate “fake” samples trying to “fool” the
discriminator network, while the discriminator tries to tell
the diference between true historical samples and generated
samples. Tis training will continue until the discriminator
is unable to tell the diference. Based on GAN, CGAN
transmits additional condition information to the dis-
crimination model and generationmodel as part of the input
layer. Figure 1 shows the general architecture of CGAN’s
training procedure under our specifc setting [24].

3.1. Problem Formulation. In a large system, multiple re-
newable resources need to be considered at the same time. It
is essential to simultaneously generate multiple scenarios for
a given group of geographical-close sites. Te generated
scenarios should capture both the temporal and spatial
correlations between the resources, as well as the marginal
distribution of each individual resource.

In order to generate scenarios with distinct properties,
the given properties are incorporated into the training
process by labelling each training sample with an assigned
label that represents the event. Specifcally, this work uses
a label vector y to classify and record certain properties in an
observation xj. Tis method is proposed to generate sce-
narios conditioned on the label y, where samples with the
same label are expected to exhibit similar properties. Te
objective is to train a generative model based on CGAN
using historical conditional power generation data xj|yj ,
j� 1, 2, . . ., N as a training set.

3.2. Conditional Generative Adversarial Networks. Te ar-
chitecture of the CGAN is depicted in Figure 1. Assume
observations xt

j for times t∈T of renewable power are
available for each power plant j� 1, 2, . . ., N. Let PX denote
the true distribution, which is unknown and hard to model.
Suppose there is an access to a group of noise vector input z
under a known distribution Z ∼ PZ that is easily sampled
from (e.g., jointly Gaussian). Te goal is to transform
a sample z drawn from PZ such that it follows PX. Tis is
accomplished by simultaneously training two deep neural
networks: the generator network and the discriminator
network. Let G(·; θ(G)) and D(·; θ(D)) denote the generator
and discriminator function parametrized by θ(G) and θ(D),
the weights of two neutral networks, respectively. Te
generator and discriminator are defned as follows [24].

3.2.1. Generator. Te generator is trained to take a batch of
inputs and to output realistic scenarios with a series of up-
sampling operations. Suppose that Z is a random variable
with a distribution PZ. Ten, G(Z; θ(G)) is a new random
variable, whose distribution is denoted as PG.

3.2.2. Discriminator. Te discriminator is trained simulta-
neously with the generator. Te discriminator takes input
samples from real historical data or generator, and by taking
a series of operations of downsampling using another deep
neural network, the discriminator outputs a continuous
value Preal that measures to what extent the input samples
belong to PX. Te discriminator can be expressed as follows:

preal � D x; θ(D)
 . (20)

Te discriminator is trained to distinguish between PX

from PG and to maximize the diference between E[D(X)]
(real data) and E[D(G(Z))] (generated data).

With the objectives for the discriminator and generator,
the next step is to formulate the loss function LG for the
generator and LD for the discriminator to train them, and
a small LG refects the generated samples as realistically as
possible from the discriminator’s perspective. Similarly,
a small LD indicates a discriminator that is good at telling the
diference between generated scenarios and historical sce-
narios. Tus, LD and LG can be written as follows:

LG � −EZ[D(G(Z))], (21)

LD � −EX[D(X)] + EZ[D(G(Z))]. (22)

Te combination of (21) and (22) forms a two-player
mini-max value function and establishes a game between the
generator and discriminator so that they can be trained
simultaneously. Te mini-max objective of the game can be
interpreted as the dual of the so-called Wasserstein distance.
Te purpose of CGAN is to obtain two random variables
PX(D(X)) andPZ(D(G(Z))) close to each other. It is given
by the following equation:

International Transactions on Electrical Energy Systems 5



W(D(X), D(G(Z))) � sup
θ(D)

EX[D(X)] − EZ[D(G(Z))] .

(23)

Wasserstein distance directly calculates the distance
between two distributions PG and PX. Since the purpose is
to generate scenarios that refect the variability of renewables
generation and load demand, the training based on Was-
serstein distance leads to capture all the modes in training
samples.

Furthermore, it is necessary to obtain scenarios “con-
ditioned on” certain classes of events. Conditional genera-
tion is carried out by incorporating more information into
the training procedure of GANs, such that the generated
samples conforming to the same properties as certain class of
training samples. Hence, the event labels are combined with
training samples, and the objective for G is to generate
samples under a given class. Tus, the problem can be
written as follows [25]:

min
θ(G)

max
θ(D)

W(D(X), D(G(Z))) � EX[D(X|y)] − EZ[D(G(Z|y))]. (24)

Class labels are assigned based on user-defned classi-
fcation metrics. Tere are three types of conditional values
set in this study:

(1) Historical meteorological data with time attribute

(2) Spatial characteristics such as station location, to-
pography, and landform

(3) Output characteristics of power plants

As shown in Figure 2, the generator is trained to generate
the required typical scenarios. Both D(x; θ(D)) and G(z; θ(G))

consist of diferentiable functions with distinct neural layers.

Te gradient descent training method is employed to optimize
the performance of these two networks. A batch update training
method was used, the RMSProp algorithm was applied as
a gradient descent optimizer to adaptively adjust the learning
rate, and this algorithm was used for weight updating of the
discriminator and generator neural networks [26]. Clipping is
also applied to constrain D(x; θ(D)) and to prevent gradients
explosion [27].

Furthermore, the generator accepts random noise and
conditional values as inputs, while the discriminator accepts
wind power output curve or load curve and conditional
values as inputs. Te wind power output data or load data of

Historical data X

Condition label value Y

Random noise Z

pretreatment

Input .
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Training
set .

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.Feature

Transformation

Generated data

Output

Input

Generator G

Discriminator D

Real/Fake
Output

Alternating optimization training
updating model weight parameters

Figure 1: Te architecture for CGANs used for wind scenario generation.
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each substation are decomposed into a matrix of N×T,
where N and T represent the number of scenario curves and
the number of daily curve sample points, respectively. Five
and three are selected as classifcation labels for wind power
and load, respectively. Ten, one-hot coding is utilized to
convert these discrete classifcation labels into binary vec-
tors. Tis method can efectively introduce the condition
information into the training process of the generator and
discriminator. As a result, both the generator and dis-
criminator can obtain the condition information during
training to better generate and discriminate sample data.

Tese label values are horizontally spliced into the
historical data matrix to input the real data and condition
values as training sets into the discriminator for training.
Similarly, it is assumed that the Gaussian noise, being

sampled randomly from the normal distribution, has the
same dimension N×T. Te next step is to concatenate the
Gaussian noise horizontally with the label value after one-
hot coding and send the Gaussian noise as input to the
generator for training. In each training, we select appro-
priate batches of noise and real data, and we input them
together with condition label values into the generator and
discriminator, respectively. Te “fake” data generated by the
generator will be further input into the discriminator for
discrimination, and the discriminator will output the value
of Wasserstein distance as its discrimination result. To
improve the accuracy of the discriminator network and to
make the training process more stable, the generator is
trained every four times after training the discriminator.
Tis alternative updating method can balance the training of

Input

T=0

T ≤ ndiscri

True

#Update parameter for generator

Update generator nets using gradient descent:

False

End training

Ture

False

Learning rate α, clipping parameter c, batch Size m, Number of iterations for discriminator
per generator iteration ndiscri, Initial Weights θ(D) (Discriminator) and θ(D) (Generator)

θ(D)converged

# Update parameter for discriminator

Update Discriminator nets using gradient descent:

{(x(i) , y(i))}m
i=1 from X # Sample batch from historical data

{(z(i) , y(i))}m
i=1 from X # Sample batch from Gaussian distribution

gθ(D) ▽θ(D) [– 1
m ∑m

i=1 D(x(i) ∣ y(i)) + 1
m ∑m

i=1 D(G(z(i) ∣ y(i)))]

θ(D) θ(D) – α ∙ RMSProp (θ(D) , gθ(D))
θ(D) clip (ω, –c, c)
T = T + 1

gθ(G) ▽θ(G)
1
m ∑m

i=1 D(G(Z(i) ∣ y(i)))

θ(G) θ(G) – α ∙ RMSProp (θ(G) , gθ(G))

Figure 2: Te fowchart of scenario generation based on CGAN.
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the generator and discriminator and ensure their mutual
infuence to achieve a better training efect. Trough con-
tinuous iterative training, the Wasserstein distance will
gradually approach 0. Meanwhile, the generator can accu-
rately generate wind power output or load scenarios under
diferent conditions.

4. Case Study

Tis section validates the proposed ATC assessment method
by using two multiarea power systems, including a modifed
IEEE 9-bus system and a real-world provincial system. Te
stochastic source-load scenario set is discussed in 4.1 and
applicable to two test cases. Ten, the simulation results are
presented and analyzed in 4.2. Te computational tasks are
performed on a personal computer with an Intel Core i7
processor (2.60GHz) and 8GB RAM, and the code is
implemented via MATLAB-based IBM ILOG CPLEX Op-
timization Studio V12.10.0.

4.1. Stochastic Scenario Generation. Tis subsection presents
the historical raw data of wind power plant and substation-level
load in a coastal area inChina.Te representative scenario set of
daily wind power and load demand is generated using the
CGAN introduced in Section 3. First, eight representative daily
scenarios (named as W1∼W8) of wind power are generated
based on 365days of historical data, as shown in Figure 3(a), in
which the vertical axis represents the p.u. power output re-
garding the installed capacity of a wind power plant. Second,
eight representative scenarios of load demand (named as
L1∼L8) are generated based on 365days of historical data, as
shown in Figure 3(b), in which the vertical axis represents the
p.u. power output regarding the yearly peak load of this
substation. Figure 4 indicates that after a certain number of
iterations, the empirical Wasserstein distance between the
distribution of the real sample and the generated samples
gradually converges to zero. Terefore, the CGAN-based sce-
nario generation method can achieve high convergence ac-
curacy and extract the best representative daily source-load
scenario from massive historical data.

Generally, it is essential to evaluate the ATC based on the
representative baseline cases of high thermal power plant
output and low thermal power plant output. Terefore, the
set of representative scenarios is generated and classifed into
four types, as summarized in Table 1. Diferent scenarios
indicate diferent baseline operating states. For example, in
Type 1, the output of most thermal power plants is relatively
high, and it can be inferred that the margin of thermal power
increase is low.

4.2. ATC Assessment Result

4.2.1. IEEE 9-Bus System. Te test system is shown in
Figure 5, which consists of two 9-bus systems. Te source
area and sink area share a similar structure with attached loads
and generators. Both the source area and sink area contain
thermal power plants and wind power plants. Detailed pa-
rameters of thermal power plants are listed in Table 2 [28].Te

installed capacity of three wind power plants that are in-
tegrated into bus 4, 13, and 19 is 300, 500, and 600 MVA,
respectively. In the source area, the total rated power of
thermal power plants is larger than its peak load while, in the
sink area, the total rated power of thermal power plants is
smaller than its peak load. Besides, the wind power penetration
of both areas is 28.40%. Terefore, the power is transferred
from the source area to the sink area no matter how the wind
power fuctuates. Te daily profles of wind power output and
load demand are generated by the CGAN algorithm.

Te ATC assessment is conducted based on four types of
representative wind-load scenarios. In the multiobjective
optimization model, the weighted factor α and β are set to be
0.2 and 0.8, respectively. For each of these four types of
typical scenarios, a typical day is selected, and the time-
varying ATC assessment results are displayed in Figure 6.
Te maximum average ATC value is 1195.510MW, which
occurs in the scenario of type 4 (i.e., large wind power
generation-low load). Under the low load condition, the
transmission network has more ATC to meet the power
supply-demand due to a large number of wind power
generations. Te minimum average value of ATC is
517.600MW and appears in type 1 (i.e., small wind power
generation-high load scenario). Te reason is that in the case
of high load and low wind power output, the ATC of the
transmission network is bounded, and there may be a risk of
power supply shortage. Terefore, the uncertainties of load
and wind power output are the key factors afecting ATC.

Among each type of scenario, the daily average standard
deviation of ATC can be obtained, as shown in Table 3. Te
probability distribution of ATC suggests the margin for
increasing the thermal generator output under the uncertain
wind power and load demand of a regional power system.
Te result provides the power market participants with the
potential capacity of tie lines.

Te thermal generator outputs under four types of
scenarios are shown in Figure 7. It can be observed that
generators in area 2 under the four types of scenarios are
close to full capacity. Here, type 1-G3 reaches the maximum
output from 7 a.m. to 9 p.m., type 2-G4 reaches the maxi-
mum output from 8 a.m. to 10 p.m., type 3-G4 reaches the
maximum output from 5 p.m. to 11 p.m., and type 4-G6
reaches the maximum output during the typical day.

Te proposed ATC evaluation method is compared with
the interval optimization method which consists of opti-
mistic and pessimistic models [11] by using the same test
system (in Figure 5).Te result is shown in Figure 8. It can be
observed that in terms of calculation accuracy, the results
obtained by the proposed method always fall within the
range of the interval optimization method. Compared with
providing only a possible range for ATC, the proposed
method provides higher calculation accuracy. Terefore, the
proposed method is more practical in power system oper-
ation and planning.

4.2.2. A Read-World Power System. Te ATC assessment
method is implemented on the 44-node read-world power
system for further verifcation, as depicted in Figure 9.
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Tis system consists of interconnected source areas, sink
areas, and a wind power area, with four tie lines facilitating
the interconnection. In this system, there are 15 thermal
power plants with their parameters detailed in Table 4 and
six wind turbine units located at bus 3, bus 12, bus 26, bus 42,
bus 43, and bus 44, respectively, and the installed capacity of
wind power accounts for 28.694% of the maximum power
supply load.

Te weighting coefcients β and α are maintained at
a ratio of 4, as per the previous case. For the four typical
scenarios, ATC was evaluated sequentially, and the results
obtained are shown in Figure 10. For large systems, under
low loads, the value of available transmission capacity
changes less and is more stable.Te highest available transfer
capability scenario remains type 4, and the smallest scenario
remains type 1.
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Figure 3: Stochastic scenarios of source and load. (a) Wind power output stochastic scenarios sets. (b) Load stochastic scenarios sets.
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Figure 4: Error of forecast. (a) Wind power output. (b) Load.

Table 1: Summary of 4 types of scenarios.

Type Wind power output Load demand
Termal power output

in the baseline
case

1 Low High High
2 High High Medium
3 Low Low Medium
4 High Low Low
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Figure 5: Multiarea 9-node system diagram.

Table 2: Parameters of thermal power plants for 9-node system.

Bus no. c Pmax (MVA) Pmin (MVA)
G1 2 700 240
G2 1 550 200
G3 1.2 600 180
G4 1 530 150
G5 2 500 150
G6 1 250 100
G7 1.2 300 150
G8 1.2 350 180
G9 1.5 250 100
G10 1.2 370 150
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Figure 6: Day-ahead ATC evaluation result for 9-node system.
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Table 3: Probabilistic distribution of ATC.

Type Daily average (MW) Standard deviation (MW)
1 517.60 97.57
2 1132.03 141.17
3 862.02 120.21
4 1195.51 65.11
Average 926.79 121.02

204 6 8 10 1814 16 240 222 12
Time (/h)

400

500

600

300

200

100

0

O
ut

pu
t (

M
W

)

(a)

204 6 8 10 1814 16 240 222 12
Time (/h)

400

500

300

200

100

0
O

ut
pu

t (
M

W
)

(b)

204 6 8 10 1814 16 240 222 12
Time (/h)

400

300

200

100

0

O
ut

pu
t (

M
W

)

(c)

204 6 8 10 1814 16 240 222 12
Time (/h)

O
ut

pu
t (

M
W

)

350

300

250

200

150

100

50

0

(d)

Figure 7: Termal generator output. (a) Type 1. (b) Type 2. (c) Type 3. (d) Type 4.
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Figure 8: Comparison with the interval optimization method. (a) Type 1. (b) Type 2. (c) Type 3. (d) Type 4.

G1

42
W1

W2
Wind power area

43

44

1

23

G2

4
5

G3

6
7

G4

8

9

10
W4

11

12

13

W5

G5

14

G6

16
1517

G7

18
19 20

Source area

21
G8

23

22
24

26

41

G14

25

27
G9

28

29

G10

G11 W6

30

33

32

31

34
35

G12
36

G13

38

40
37

Sink area

39

W3

G15

Figure 9: Real-world provincial power system diagram.

12 International Transactions on Electrical Energy Systems



5. Conclusion

Accurate and efcient online assessment of ATC of tie lines,
especially renewable energy sending lines, is quite essential
for the power market operation and renewable energy
consumption. Tis paper proposes a probabilistic ATC as-
sessment model considering the renewable energy and load
uncertainty. With the multiobjective of thermal power plant
cost and tie line ATC, the model is conducted with a set of
stochastic renewable energy generation and load demand.
Terefore, the transmission margin of tie lines is fully
evaluated under the operation uncertainty. Furthermore, the
scenario-based method overcomes the problem of conser-
vative evaluation in the traditional method. Te case studies
of the IEEE standard system and real-world system suggest
that a larger regional mismatch between the power output
and the load demand leads to a lower ATC. In a power
system with high renewable energy penetration, this mis-
match is larger and the ATC tends to fuctuate more
seriously.

Future works will also consider the frequency security
constraint and N-1 contingency in ATC assessment, which
can represent a more realistic operating condition of the
power system [29].

Nomenclature

ATC: Available transfer capability
G: Te set of nodes where the generators need to

be adjusted
Pm

i,t/Q
m
i,t: Active/reactive power output of the generator

at node i at time t in the maximum
transfer case

ci: Te unit power generation cost of generator i
ATCs: Daily available transfer capability of the

system under typical daily scenario s
PW

i,t : Active power output of the wind farm at node
i at time t

λi: Te ratio of active nodal load and reactive
nodal load

Smax
ij : Te upper capability limit of line (i, j)

Vmax/Vmin: Te upper limit/lower limit of the voltage of
each PQ node

SR: Te set of nodes in the source area
B1

ij/B
2
ij: Equivalent admittance

SD: Te set of load demand ratio
PX: Te true distribution of the observation
PG: Te distribution of random noise z generator
G(·; θ(G)): Te generator function, the symbol θ, can be

suppressed for convenience
LG/LD: Loss function for the generator and

discriminator
W(A, B): Te Wasserstein distance between A and B
W/D: Te set of wind power integration node/

load nodes
PG

i,t/Q
G
i,t: Active/reactive power output of the generator

at node i at time t in the baseline case
α/β: Te weight coefcients of the multiobjective

optimization model
Pi,t/Qi,t: Active/reactive power injection at node i at

time t
PD

i,t/Q
D
i,t: Active/reactive nodal load of node i at time t

δi,t/Vi,t: Phase/and amplitude of the voltage of node i
at time t

rij/xij: Resistance/reactance of line (i, j)
PGmax

i /PGmin
i : Te upper limit/lower limit of power output

for each generator
SK: Te set of nodes in the sink area
SW: Te set of wind power plant output
xt

j: Te vector of historical data indexed by time
t ∈ T

PZ: Te distribution of random noise z
θ(G)/θ(D): Te weights of the generator and

discriminator network
D(·; θ(D)): Te discriminator function, the symbol θ, can

be suppressed for convenience
y: Condition label value.

Table 4: Termal power plant parameters for the 49-node system.

Bus no. c Pmax (MVA) Pmin (MVA)
G1 1.2 2652 100
G2 1 2280 220
G3 2 1280 170
G4 1.5 1100 300
G5 1.5 1100 100
G6 2 1280 70
G7 1.5 1455 180
G8 1 360 50
G9 5 3252 300
G10 1 1280 70
G11 1.2 370 40
G12 1.5 1100 100
G13 2 430 40
G14 1.2 1570 200
G15 5 3252 300
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Figure 10: Day-ahead ATC evaluation result.
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Data Availability

Te data that support the fndings of this study are partially
available in the main context of this article. Te details of
data availability are described as follows: the testing system
diagram, generator cost coefcient, generator output limit,
and load/wind power curve are presented in Section 4. Te
impedance data of the IEEE 9-bus system are open to the
public, while the impedance data of real-world systems are
not available due to the confdentiality provisions.
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