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Te output of photovoltaic (PV) systems is signifcantly impacted by the vagaries of ambient temperature, solar irradiance, and
environmental fuctuations. To achieve the utmost attainable power from PV systems, it is desired to be efcient at the maximum
power point in diverse weather climates. Maximum power point tracking (MPPT) is used to schedule a designated location from
where the highest power can be harvested. In the context of solar photovoltaic systems connected with DC microgrid platforms,
this study introduces a recently developed drone squadron optimization (DSO) scheme that tracks the global maximum power
point under PSCS difculties. Furthermore, an exhaustive comparative analysis has been presented among particle swarm
optimization (PSO), cuckoo search algorithm (CUSA), and grey wolf optimization (GWO) under diferent operating envi-
ronments to endorse the supremacy of the nominated technique. Te suggested method performs noticeably faster than many
other methods currently in use, and in addition to ofering the highest power, it can also use bidirectional power fow regulation in
both constant and variable air conditions. Lastly, an MPPT system interfaced with the DC microgrid based on DSO ensures
a sustainable and reliable architecture to provide at load in low power generating situations.

1. Introduction

Inherent increase in energy stipulation and excess con-
sumption of conventional resources has motivated man-
kind’s attention toward unending power generation in the
last couple of years [1, 2]. Government has increased en-
dowment and instigated tarif-free plans to attract civiliza-
tion toward environmentally hazard-free power generation
[3]. Out of the numerous appearances of green energies, hot
cake to the researchers is solar energy for its eminent features
and opulence availability. Solar energy is well known for its
spectacular applications in various large as well as small

industries [4]. Te PV structure is emphasized to transform
absorbed photon energy accumulated from the sun and
convert it into electrical energy. Here, scientists faced utmost
difculties in using PV systems because of their nonlinear
electrical behaviours. As a result, fnest performance is af-
fected under rapid changes in atmospheric temperature and
irradiance [5]. Considerable outcome from solar PV panel is
greatly contingent on rapid changes in atmosphere and
partial shading conditions (PSCS). To step up the output
power in changeable atmospheric conditions, whole ar-
rangement is assimilated with maximum power tracking
(MPPT) controllers. In addition, with DC-DC converters,
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these controllers vigorously run for maximum power point.
Power-voltage (P-V) behaviour is trickier as multiple peaks
are observed named local maximum power point (LMPP),
but only the highest peak is considered in this regard named
global maximum power point (GMPP) [6]. So, searching for
GMPP is a crucial task to harvest maximum power and
supreme performance of PV modules. Fundamental block
diagram of a complete PV system has been introduced in
Figure 1 which incorporates sensors for voltage as well as
current measurement with a DC-DC boost converter, using
various MPPT methods which control the duty cycle of
converters [7].

Te voltage vs. power (V-P) and voltage vs. current (V-I)
plots in photovoltaic cells are nonlinear due to specifc
changing atmospheric conditions. Many MPPT methods
have been requested by researchers in the past few years.
Traditional methods (TMPPT) and soft computing methods
(SC-MPPT) are the two standard approaches used to arrive
at MPP. Elgendy et al. discussed the perturb and observe
(P&O)-based technique to extract maximum power from
standalone PV pumping system. Te impact of algorithm
parameters on system behaviour is examined, and the
benefts and downsides of each method are noted for specifc
meteorological scenarios. But they fail to distinguish be-
tween local and global maximum points [7]. In order to
increase the generated PV electrical energy, Lasheen et al.
suggested a technique that incorporates the advantages of
the ANFIS and HC techniques while mitigating their
drawbacks. To evaluate the duty ratio (control signal) being
applied to a boost converter for MPP tracking, a two-stage
approach is suggested. However, they failed to stabilize the
power in a lower settling time [8]. Sagonda et al. in their
paper evaluated and contrasted the perturb and observe
(P&O), increment conductancemethod (IC), and fuzzy logic
approaches for tracking a solar PV system’s maximum
power point. It has been demonstrated by the authors that
compared to traditional methods, the fuzzy control meth-
odology performs better and more consistently. It had the
ability to minimise power oscillations around the maximum
power point (MPP) and track it more quickly [9]. Imple-
mentation of the neural network in the solar MPPT tech-
nique had been well described in [10]. Te proposed paper
showed good efciency under both dynamic and static
conditions. Ram et al. proposed a new fower pollination
algorithm (FPA) that can attain a worldwide peak in their
article [11]. An essential component of the FPA method’s
success in the MPPT application was its optimization pro-
cedure, which did both local and global search in a single
step. Tree diferent shade patterns are used to assess the
algorithm’s ruggedness: zero, mild, and strong. Regretfully,
this process is very complicated compared with other tra-
ditional methods like fuzzy logic or Hill climbing methods.
Te primary benefts of the suggested algorithm in [12] are
its ability to track GMPP and react to load variations more
quickly; its use of a single-ended primary-inductor converter
allows the optimization algorithm to fnd the GMPP over
a wider operating region; and its ease of tuning due to the
reduced number of parameters that need to be set. Pillai et al.
introduce an efective hybrid tracking system that, by

precisely identifying instances of shade, ofers a suitable
compromise between traditional P&O and sophisticated soft
computing methods. For this, the distinctiveness of P&O’s
operating point conductance at the P-V curve’s leftmost
power peak is used. Consequently, tracking MPP in uniform
irradiance and PSCS detection are the two main uses of P&O
in their proposed convention [13]. Partial shading imple-
mentation of maximum power point tracking (MPPT) using
cuckoo search is shown in [14]. Tis paper’s research focuses
on the 6× 4 TCT confguration of PV arrays to maximise
energy output regardless of the surrounding conditions. Te
cuckoo search method is used in this situation while taking
into account shadowing scenarios. System models are cre-
ated and evaluated in the MATLAB/SIMULINK environ-
ment. A real-time adaptive perturb and observe (PO)
maximum power point tracking (MPPT) technique based on
variable perturbation size and gain scheduled proportional
(PR-P) controllers is introduced in [15]. Te constant
perturbation size used in the standard PO MPPT approach
causes poor transient response and large continuous steady-
state oscillations. Tese issues were addressed by the pro-
posed control strategy by Yanarates et al. Incremental
conductance (INCE) [16] comes under traditional tech-
niques, and they proved their efectiveness under uniform
irradiance situations, but the main drawback of these
methods is that they are unable to create diference among
various local peaks and the global peak, especially under
nonuniform irradiance conditions in the P-V curve cause in
most cases they stick in local peak [17]. For this, conven-
tional techniques are not acceptable to deal with PSCS in
solar PV systems.

During the past decade, a variety of soft computing-
based optimization techniques, such as the neural network
(NNK) and fuzzy logic controller (FLCR), have been
adopted in order to overcome the limitations of conven-
tional methods [18, 19]. However, because of their close
relationship to hardware confguration and longer pro-
cessing times, today’s GMPP tracking primarily relies on
various bio-inspired metaheuristic algorithms. Various
swarm algorithms like particle swarm optimization (PSO)
[20, 21], genetic algorithm (GA) [22], grey wolf optimization
(GWO) [23, 24], ant colony optimization (ACO) [25], ar-
tifcial bee colony (ABC) [26], slap swarm optimization
(SSO) [27, 28], grasshopper optimization [29], and jelly fsh
optimizer [30] had been applied by the researchers to fnd
GMPP. In the modern era, researchers observed excellent
efciency, accuracy, and low settling time in bioinspired-
based optimization techniques to track GMPP [31, 32].
Bioinspired-dependent MPPT techniques are advantageous
for their simplicity and accurate tracking capability in lower
settling time. However, swarm-based methods create their
impact in terms of more expeditious tracking. Truly
speaking, every single algorithm has some own adept dis-
advantages for a particular business.Tat is why, hunting for
a new scheme is always decisive for future progress in the
invention path.

Here, the concerned paper pays attention to the consent
of recently self-adaptive metaheuristic algorithm named the
drone squadron optimization-based MPPT technique. One
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important aspect of self-adaptive is code generation and
modifcation along with parameter modifcation by its own.
So, this method has the ability to change the steps that
drones generally used to generate resolution. For more
upgradation in MPPT performance, self-adaption is always
one of the favourite choices [33]. Nowadays, most methods
useman evolve adaption techniques and those are unsuitable
under dynamic conditions. So, the technique that can learn
on its own has a signifcant price. Tis article provides
a comprehensive overview of the DSO method’s operation
and application in the feld of solar MPPT. Moreover,
a simulation with varying weather conditions was run to
prove its superiority. When compared to another algorithm,
the simulation result indicates that this one has the most
accurate MPP tracking with PV and load power enhance-
ment. Te discussion that followed focused on the relative
performance of DSO with GWO and the cuckoo search
algorithm (CUSA) [34]. Te design of boost converter
permits nonerupted current fow from input side. Here, in
Figure 2, pictorial representation of boost converter has been
shown. Due to the LC flter, output side felicitates with
constant smooth current waveform. Te boost converter
generates very less output voltage oscillation due to the
presence of the frst-order low pass flter. So, comprehensive
impression of boost converter utilization is intrinsically
lesser noise with better efectiveness of the entire system.

Exploration of this paper is accomplished in the context
of DSO implementation in the MPPT feld. Interpretation of
the chosen approach examines under varying weather
conditions and contrasted with the other procedures. Te
original contributions of this article are summarized as
follows:

(i) A unique self-adaptive metaheuristic approach is
developed which optimizes power generation on-
the-fy and acts like metamorphic algorithm. Its
superior fast tracking and lower oscillation features
are confrmed with results obtained from diferent
simulation cases.

(ii) Under this proposed approach, the DSO particles
are capable of enduring immobilization and the
oscillation becomes almost zero when one ends, and
the adaptability of power convergence is almost
99.5%. Te absence of these attributes in CUSA and
GWO etc. results in the mislaying power and ir-
relevant oscillations.

(iii) A maiden attempt has been taken to introduce the
self-adaptive algorithm-based MPPT method in-
tegrated with the DC microgrid platform which is
examined under various irradiance conditions. It
has been investigated that DSO has the capability to
draw utmost power in partial shedding and in-
variable irradiance condition. Besides, this tracking
of MPP under various irradiance scenarios, which
claimed this MPPTmethod, is better with respect to
more power harvesting, sustainability, reliability,
and lower settling time in diferentiation with
existing MPPT structures available in the
compositions.

Te rest of this article is organized as follows: Section 2
provides a detailed description of the structure and mod-
elling of photovoltaic systems, including the impact of
changes in solar irradiance on their performance, with the
help of current-voltage and power-voltage graph depictions.

Solar
Panel

Controller

DSO Algo

Solar
Energy

I

V

DC-DC
Converter
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Figure 1: Fundamental schematic outline of the whole photovoltaic system.
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In Section 3, the efects of PSCS on the execution of PV
systems are discussed. Section 4 presents the drone squadron
algorithm, while Section 5 outlines the development of
a DSO-based MPPT. Section 6 discusses simulation and
investigation results, followed by a conclusion in Section 8.

2. Design of Solar PV Module

Photovoltaic cell is an essential component of the system,
though PV cell energy accumulated from the sun changes
into electrical energy through photovoltaic reaction. Photon
energy from daylight irradiance on photovoltaic module
exceeds the energy gap, and the emanation of electrons from
photovoltaic array encourages the growth of electrons to
start an electric fow. Te schematic circuit of a solar

photovoltaic cell is shown in Figure 2 In the whole network,
a current source, diode, and a set of resistors are hitched in
series and parallel. PV cell output current may be intended as
(1).

IOUT � IPVC − ID1 − IPL, (1)

where IOUT, VPVL are output current and voltage from photo
voltaic cell discretely. IPL, ID1 (equation (2)), IPVC are
parallel resistance (RPL), diode and photovoltaic current,
respectively. Series resistance is noted as RSER.

ID1 � IRSC + e
qVPVL+IOUT∗RSER/nKT−1

, (2)

where IRSC is the reverse saturation current. q, T, n, K sig-
nifes electron charge, atmospheric temperature, and diode
factor Boltzmann constant separately. Te current generated
in the PV cell is expressed as (3).

IPVC �
W

W0
ISCN + λ T − T0( 􏼁( 􏼁. (3)

Short circuit current is designated by ISCN, T0, andW0
are temperature and reference irradiance separately. λ and
W were noted as atmospheric temperature and irradiance
coefcient. (4) represents the IOUT after combining (2) and
(3).

IOUT � IPVC − IRSC + e
qVPVL+IOUT∗RSER

nKT
− 1􏼔 􏼕 −

VPVL + IOUT ∗ RSER

RPL
. (4)

Production of power from separate solar cell is approx in
range of 1–1.5W which is very low. To meet the power
demand, solar cells are assimilated either in series or in
parallel. MPP also changes with varying atmospheric con-
ditions. So, it is necessary to employ a controller to meet the
photovoltaic load in a suitable way so that it may reachMPP.

As noticed in Figure 3 where power is intact as a function
of voltage, MPP graphs are true.Te corresponding equation
is formulated in (5).

dP

dVPVL
�

0 atMPP

> 0, at left hand portion of MPP

< 0, at right hand portion of MPP

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (5)

3. Consequence of Partial Shedding

PV system is unable to generate a uniform output when
a certain portion of PV module gets variable irradiance that
creates disparity with other portions of the module. As
a result, partial shading condition occurs and various ir-
radiance levels are received by the PV module [35]. Due to
clouds, birds, portion of trees, and dust particles, some cells
of photovoltaic array get blocked. As an outcome of this, the

shaded portion of the module receives lesser solar insolation
compared with uncovered parts of the module during PSCS
condition. Naturally covered parts are not able to harvest
desire output voltage; consequently, efciency is hampered
at that instant. By introducing bypass diode, the mis-
matching efect can be reduced. Bypass diodes make another
way for the excessive current produced by uncovered cells.
So, shaded cells are able to avoid the efect of hotspots [36].
Figure 4 appears with a shaded photovoltaic module in an
array. Almost every diode gets uniform solar irradiance, i.e.,
1000W/m2 under uniform irradiance condition, so no
voltage drop will take place. Under PSCS conditions, various
irradiance levels must be met by the PV module. When PV
cells get various irradiance levels, various crests are observed
in the power-voltage curve, but the peak related to highest
power can be considered as GMPP whether others peaks are
called as LMPP [37] . As numerous local crests exist in the
power-voltage curve, an appropriate MPPT technique with
intrinsic capability to track MPP under varying atmospheric
conditions must be incorporated. Tis is worthwhile to say
that the efciency of the espoused MPPTmethod infuences
the overall efectiveness of the photovoltaic module [38].
Keeping these matters in mind, a unique DSO is suggested to
implement an MPPTcontroller which has inherent ability to
track GMPP within minimum settling time.

IPVC

ID1

D1

RPL

IPL

RSER

IOUT

VPVL

Figure 2: Analogous schematic circuit diagram of the PV cell.
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4. Drone Squadron Optimization

A novel feature of like submarines or any other fying
machines like helicopters and aeroplanes are able to traverse
independently. With the help of sensors, they can establish
communication from wide distance, even they are able to
utilize solar power also. But the supreme character is that
they can upgrade or improve not only their hardware but
also the concerning software. Scientists simply want to
utilize their upgradation ability as simple software update.

Te DSO algorithm expressed in this article is possessed
with several teams with a command center [39, 40]. Te data
which are accumulated by drones used by the command
center to execute two operations: (1) to control some portion
of search and (2) to confgure another frmware for con-
trolling drones as described in Figure 5. Normally,

a command center is a middle place from where controlling
action can be performed over drones. It collects inputs,
processes the data, and executes the outputs. Te command
center has the ability to renovate frm were of drones
whenever it concludes.

In practice, one can notice that drones have a hunt
assignment (objective function) to discover a predetermined
target in landscape. Values of this operation are stored in
drone’s sensors. It is not needed for the teams for fnding
a defnite and distant area of landscape. In truth, all proceed
from predetermined origin points that may be invariable for
few teams [41]. Due to the fact that the squads have distinct
frmware, they may reach distinct coordinates but may
overlap in the area of exploration. In addition, one squad
may restrict to go along with other squad until the command
centre cryptic such character in frmware.
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Figure 3: (a) Current vs. voltage and (b) power vs. voltage characteristics of the predefned solar cell.
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Figure 4: Solar PV cells in (a) invariable irradiance and (b) partial shading states.
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As DSO has plenty of components to share with the
command centre, teams, and frmware adaption, so one can
think that this algorithm is more complicated rather than
conventional nature-inspired algorithms. Here, a detailed
algorithm is going to elaborate in lieu of simple one that
might be helpful for future research [39].

4.1. Command Centre. “Heart” of the DSO algorithm is
nothing, but its command centre as this is responsible for
generating and commanding orders and drones accomplish
the orders and return the results. Te command centres
upgrade the farm wears to modify the teams with the
knowledge acquired by drones. Command centres employ
a hyperheuristic idea to produce frmware codes. Drones
utilize updated frmware along with every single piece of
information allotted by the command centre to control their
character. Te command centre was possibly furnished with

processes to learn from the search to produce superior
frmware.

4.2. Te Firmware. For the present drone squadron opti-
mization edition, the frmware carrying diferent techniques
to produce updated trial coordinates (TCOD) by pertur-
bation; so, in the drone’s frmware perturbation method, it
may be treated like Heart. An upgraded frmware is created
depending on the popular perturbation methods of a biased
haphazard walk:

M � Departure + Offset (), (6)

TCOD � Compute (M). (7)

It is necessary to compute the total perturbation formula
to return the coordinates of the trial as departure is
a function that recurs the authentic perturbation gesture (an
absolute value).M represents the total perturbation formula.

A new set of departure coordinates is generated along
with the ofset producing function. Identifable teams have
well-defned methods of selecting departure coordinates and
the process for determining ofsets. Te following example
illustrates two perturbations for teams 1 and 2, where K1
represents a user-defned constant, L (0, 1) represents
a scalar sampled from a Gaussian distribution with a zero
mean and unit standard deviation, and U (0, 1) A represents
an array of A numbers sampled from a uniform distribution
where nominal value is 0, but the highest value is 1.

M1: GBCS + K1 ∗ (GBCS − CBCS drone),

M2: CBCSdrone + L(0, 1)∗
�������

U(0, 1)A

􏽱

+ CBCSdrone􏼒 􏼓􏼒 􏼓,
(8)

GBCS are the global optimum coordinates, the best solution
established as yet, and CBCS is a 2D formation bearing the
current fnest coordinates of drone.

Te two departures are the arrays GBCS and
CBCS drone.Te design of motion from a fxed leaving point
is crucial as this omits shortening of the explored space
toward the origin.

4.3.DroneMovement. To reach at target position drones, we
utilize an autonomous trick. After reaching the target des-
tination, drones acquire information and then send it to the
command centre. Methods obtainable to DSO for com-
puting target location are harvested at diferent evolutionary
and nonevolutionary algorithms. Te main aim here is to
discover the goal position of every drone in every squad.
Conceptually, there are two ways to complete its task. Either
refashioning with the fnest coordinates established up to
now for generating TmC (a two-dimensional structure
containing a team’s coordinates) or no recombination
conceivably. Defnitely, the option is haphazard, but all
amalgamation methods accessible to the drones have the

equal chance of being selected. At last, the drones get
permission to proceed narrowly inmost a predefned pe-
rimeter. In such a case, it is necessary to correct TmC co-
ordinates if they occur outside a boundary (a breach). Tere
are various correlation techniques available that can be used,
and there is no bias in the current DSO to favor one over
the other.

Te objective function has been computed just after the
drone proceeds, and their outcome is forwarded to the
command centre for taking judgment like upgrading the
frmware.

4.4. Firmware Update. In this condition, hyperheuristic
deputize if required. For checking out the standard of a team,
the command centre utilizes two chunks of information like
(1) its position considering target function data’s and (2) the
degree of out-of-bound coordinates that they produce. If
violations are not considered into account, then better
outcomes may not be produced by the correlation methods
just by chance. But TmC had, in reality, huge violations.
Team quality is computed at each iteration. Te command

Upload the
firmware

Teams of Drones
Search for the Landscape

Command Center
Processes the information

Recover the
information

Figure 5: An abstraction of the peak DSO showing the two main
modules of the system: the command center and drone teams.
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centre updates w worst frmware by variations of the w best
frmware just after frmware update criteria satisfed. No
reassimilation of codes was used there, but it is essential that
the current variant fulfls the following mentioned rule:

(i) In the tree data confguration, S is the number of
nodes and k is the number of teams, where
Sleast and Shigh are customized parameters. At the
time of updating, S(Pk) should be greater than least
and S(Pk) greater than high, where Sleast and Shigh
are customized parameters.

(ii) As for identifying the actual perturbation from the
updated one, the upgraded version does not take
into account illustrative variations but only syn-
tactic variations.

(iii) Functions cannot collect the same argument for
both parameters at the same time.

(iv) Te perturbation strategy of (6) must maintain.

4.5. Choice of Succeeding Iteration, Stagnation Recognition,
and Discussion. Te drones are able to generate similar are
mostly similar prey coordinates after utilizing a specifc
region of landscape. With the help of convergence avoidance
methods, drones are able to run away from local optima, but
this mechanism is generally not available in evolutionary
algorithms. With the help of scaling, observation, and in-
vestigation of inertness, the creation of conficting co-
ordinates allows proceeding to areas long away from the
neighbourhood, but it can bring recession for arriving to-
ward utmost results that may also diminish its perfection.
Te command centre gives privilege to important data after
the drone returns back for what they searched in the
landscape (i.e., in cost function). Tey also store the search
plan for near future. Stagnation is noticed when the cost
function assessment of the present utmost output at a spe-
cifc index remains unchanged succeeding a precise amount
of repetitions. Quite a number of techniques were imple-
mented by DSO for producing a good sampling strategy to
look into various regions in search space for upgrading the
interpretation to others.

5. DSO-Based MPPT Approach

Drone squadron optimization is a non-nature-motivated
evolutionary metaheuristic that mimics the behaviour of
drones that are commanded by a command centre and fy
over a region to explore. Te duty cycle (D) is treated as an
optimistic variable for soft computing optimization prob-
lems as a converter is associated with the PV module and
MPP may be sleighed by regulating the concerned duty
cycle. All the particles meet to the utmost value within very
short iterations (i.e., 2-3 iterations) and maximum power we
received from the PV module.

Drones, like the man-made undersea machines or the
well-known fying vehicles like balloons, aeroplanes, heli-
copters, and quad-copters, have sensors, can communicate
over long distances, and can manoeuvre independently or
remotely.

It is important to note that solar energy has the ca-
pability to be improved or upgraded not only in terms of
physical hardware but also in terms of its software
(frmware). As a result, researchers have the opportunity
to incorporate mechanisms into the algorithm as common
software updates since the artifcially constructed ma-
chine has a programming program (frmware) that gov-
erns its behavior, which is easier than searching for
a natural phenomenon to justify the change. A compar-
ison between MPPT and the cuckoo search algorithm
(CUSA) [42–45], a comparison between MPPT and par-
ticle swarm optimization (PSO), and a comparison be-
tween MPPT and grey wolf optimization are presented in
order to demonstrate its viability under PSCS. Figure 6
displays the P-V curve and I-V curve for the diferent
irradiance circumstances used in the investigation. In
order to analyse the P-V and I-V natures, three shading
structures, PSCS 1, PSCS 2, and PSCS 3, are used. Table 1
displays the comparable MPP for each of the PSCS cir-
cumstances taken into consideration. Table 2 compares
the efectiveness of DSO-based MPPTwith other MPPT in
terms of maximum overshoot, tracking speed, steady state
error, and accuracy. Especially in PSCS 2 and PSCS 3,
power tracking by the proposed method is noticeably high
compared to others. Te fowchart of DSO-based MPPT
has been shown in Figure 7.

Table 3 provides a performance comparison analysis of
the DSO with GWO and PSO for benchmark function
named Langerman-5. In this case study, the objective
function, or minimization issue, is taken into consideration
in order to obtain the benchmark functions’ comparative
statistical search performance outcomes over a 100-iteration
period. Table 3 shows that the DSO algorithm produced
results that were superior to PSO in terms of mean, standard
deviation (SD), and best value (fmin).

Te curve in Figure 8 represents the convergence
characteristic for benchmark functions: Langerman-5.
Compared to PSO and GWO, Figure 8 demonstrates that the
DSO algorithm requires less iterations to reach its global
minimal solution.

6. Simulation Results and Outcomes

Simulations performed in MATLAB/SIMULINK software
and the performance of DSO-based MPPT are investigated.
MATLAB 2018 version was employed to investigate the
superior performance of DSO-based MPPT in tracking of
GMPP under both normal as well as partial shading con-
ditions. Later, a comprehensive comparison has been made
among DSO-based MPPT and other three algorithm-based
MPPT like PSO, cuckoo search algorithm (CUSA), and grey
wolf optimization (GWO). 1Soltech 1STH-250-WH 250W
panels are utilized. Te module specs mentioned above are
listed in Table 4. Two alternative modes, including standard
test conditions and partial shading conditions, were
simulated.

Te whole photovoltaic arrangement consists of an
MPPT controller along with a boost converter connected
with resistive load. Parameters of the boost converter are
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stated as CIN � 100 μF, COUT � 100 μF, and L� 3mH. Te
resistive load used here has a value of 30Ω. Te switching
frequency is set as 10KHz.

6.1.PerformanceunderStandardTestConditionsandVariable
Atmospheric Conditions while Temperature Remains Fixed.
Total four conditions have been created which are examined
for the performance of the proposed MPPTmethod: frstly,
simulation was done under uniform irradiance conditions,
and in this case, the irradiance level is set to 1000W/m2, and
total four panels have been used. Later, three diferent cases
have been used as an input parameter of PV panels, and the
number of PV panels also varies, whereas climate temper-
ature is fxed at 25°C. Te primary estimate for duty cycles is
so chosen that is equally disperse within the search space
range of duty cycle between 0 and 1. Parameters are used for
every algorithm chosen depending upon high MPPT ef-
ciency as stated PSO: w � 0.1, C1� 1.2, C2�1.2., and CUSA:
beta� 3/2, k coefcient� 0.8.

Te simulation outputs of photovoltaic power and load
power of aforesaid algorithms for uniform irradiance
conditions are given in Figure 9. Power harvested from
DSO, CUSA, GWO, and PSO-based MPPTs is shown in
graph for total four cases. Tere are total two types of case
studies done here. Firstly, constant irradiance which is
1000W/m2 given as an input parameter to solar photo-
voltaic panel keeping temperature fxed at 25°C and after
that performance under three partial shading cases also.
For all the cases, the DSO-based MPPT algorithm estab-
lished its supremacy under various atmospheric condi-
tions. Te corresponding comparison is also shown is
Table 5.

In the second case, four PV panels have been used where
irradiance is maintained at 580-620-860-790W/m2. A
comprehensive result has been shown in Figure 10. Here
also, the power received from DSO-based MPPT is higher
among other three methods. Table 6 discusses four MPPT
performances when four PV panels are used.
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Figure 6: PV panel (a) I-V and (b) P-V characteristics in STC and PSCS conditions.

Table 1: Summarization of irradiances cases used in simulation.

Shading pattern Types Module-1 Module-2 Module-3 Module-4
Pattern-1 at 25°C Uniform shading 1000 1000 1000 1000
Pattern-2 at 25°C Partial shading 1000 800 600 400
Pattern-3 at 25°C Partial shading 800 600 400 200
Pattern-4 at 20°C Uniform shading 1000 1000 1000 1000
Pattern-5 at 20°C Partial shading 800 600 400 200
Pattern-6 at 50°C Uniform shading 1000 1000 1000 1000

Table 2: Comprehensive performance analysis with other techniques.

Method Complexity Max. overshoot Performance Tracking speed Accuracy Steady state
error

CUSA Low Low Average Average Average Average
PSO Low Low Average Average Average Average
GWO Low Average Average Average High Average
DSO High Low Very good Excellent Very high Less
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In the third case again, four PV panels have been used
where irradiance is maintained at 700-800-900-1000W/m2.
A comparative result has been shown in Figure 11. Again,
the power received from DSO-based MPPT is the highest
among other three methods. Table 7 discusses four MPPT
performances under this special PSCS condition.

Lastly, in the PSCS-3 case again, four PV panels have
been utilized, where the irradiance level was kept fxed at
[835-725-635-750] W/m2. Comparison in simulation results
has been shown in Figure 12. DSO-based MPPT showed its
supremacy here also by drawing maximum power from the
PV module. Table 8 discusses four MPPT performances
under this PSCS condition.

6.2.PerformanceunderChanges inTemperature. Tis section
has looked at the impact of temperature fuctuation on the
operational point of the photovoltaic system, under the

assumption that the isolation value is constant at
1000W/m2. Temperature is maintained for 25–30-30–35°C,
respectively, for four solar panels. Table 9 shows various
temperature conditions along with efciency comparison for
diferent soft computing techniques, while Figure 13 shows
PV power and load power comparison with time for various
algorithms.

6.3. Performance under Changes in Both Temperature and
Irradiance. Tis section has looked at the impact of tem-
perature fuctuation on the operational point of the pho-
tovoltaic system, under the assumption that the irradiance
value is also changing at certain intervals of time, taking
temperature and irradiance readings every 0.3 seconds. Te
authors of the case study chose a time range of 0 to 2.0 sec,
which denotes irradiance variations at 0.3, 0.6, 0.9, 1.2, 1.5,
1.8, and 2.0 sec. As previously discussed, the corresponding
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Figure 7: Flow chart of DSO-based MPPT.

Table 3: Comparative performance index of test function: Langerman-5.

Function name DD Search space Statistical value PSO GWO Proposed method
(DSO)

Langerman-5 5 [−300, 300]
Best (fmin) 4.62×10−7 4.72×10−7 2.74×10−7

Mean 4.52×10−7 3.69×10−7 2.79×10−7

SD 0.57×10−9 0.59×10−9 0.52×10−9

Here, DD: number of design variables or dimension, SD: standard deviation, DSO: drone squadron optimization.
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Figure 9: (a) Comparison of PV power; (b) load power in uniform irradiance.

Table 4: Specifcation of PV module used in simulation.

Specifcation Value
Open circuit voltage; Voc 37.30Volt
Short circuit current; ISCN 8.66 Amp
Coefcient of temperature at VOC −0.36901 (V/°C)
Coefcient of temperature at Isc 0.086998 (A/°C)
Cells per module (Ncell) 60
Maximum power 250.205 (W)
Series connected module per string 1
Parallel strings 1

Table 5: Result analysis under uniform irradiance.

Cases Algorithm Power at
GMPP (W)

Power received
(W)

Settling time
(sec) Efciency

Uniform irradiance (1000W/m2)

DSO

998.1

998.0 0.81 99.98
CUSA 995.4 0.98 99.72
GWO 769.1 1.11 77.05
PSO 833.9 0.92 83.54
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temperature changes from 25°C to 40°C every 0.3 seconds,
and it then instantly returns to 25°C after 2.0 seconds.
Similarly, irradiance values also change at every 0.3 sec in-
terval, starting from 1000W/m2 its low down up to 400W/
m2 at the end of 2.0 sec it settles down at 700W/m2. Tat

means this section looks into the dynamic condition of the
atmospheric conditions where both solar irradiance as well
as temperature are fuctuating. Figure 14(a) depicts the
respected PV power output, and 14(b) illustrates a com-
parative analysis of load power. Tis fgure shows that, in
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Figure 10: (a) PV power; (b) load power comparison for PSCS-1.

Table 6: Result analysis under PSCS-1.

Case Algorithm Power at
GMPP (W)

Power received
(W)

Settling time
(sec) Efciency (%)

PSCS-1 irradiance (580-620-860-790W/m2)

DSO

627.12

570 0.80 90.90
CUSA 495.2 0.92 78.96
GWO 396.2 1.05 63.18
PSO 394.0 0.83 62.83
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Figure 11: (a) PV power comparison; (b) load power comparison for PSCS-2.

Table 7: Result analysis under PSCS-2.

Case Algorithm Power at
GMPP (W)

Power received
(W)

Settling time
(sec) Efciency (%)

PSCS-2 irradiance (700-800-900-1000W/m2)

DSO

760.77

756.5 0.76 99.43
CUSA 726.8 0.82 95.53
GWO 504.0 1.22 66.24
PSO 546.6 0.80 71.84
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comparison to other techniques, the suggested method
employing the drone squadron optimization (DSO) algo-
rithm performs better, is more efcient, has less fuctuation,
and has the lowest settling time.

6.4. Performance Evaluation under Presence of Noise and
Variation of Load. In this instance, noise and fuctuations in
the PV system’s load resistance (R) are examined to de-
termine the efcacy and resilience of the suggested DSO
algorithm. When voltage and current are measured, as well
as when temperature and sun irradiance fuctuations are
unpredictable, noise is injected into the system. Figure 15
compares the PV output powers for DSO with PSO and
GWO algorithms in the presence of noise/uncertainties and
fuctuations in load. Figure 14 shows that compared to PSO
and GWO, the DSO-based approach performs better. Te
technique is still able to achieve the correct MPP in DSO
even when the output load is changed. To demonstrate the
robustness and dependability of the system, the DSO al-
gorithm is evaluated and compared with PSO, GWO, and
CUSA schemes under various PCSs, variations in load, and
the existence of uncertainties.

So, in the abovementioned four conditions, where frstly
we are fxing the atmospheric temperature and changing the
solar irradiance, and secondly, we have changed the tem-
perature while maintaining solar irradiance at 1000W/m2

later under dynamic condition both irradiance and atmo-
spheric temperature is changing. Lastly, the performance of
DSO-based approach is scrutinized by load variation also. It
has been proven from simulation results that the proposed
MPPTmethods aremuch superior to other conventional soft

computing algorithms in terms of the lowest settling time,
adequate amount of PV power, and efciency consideration.

7. DC Microgrid System Analysis

DC microgrid is an energy booster which consists of
nonconventional resources with storage systems [46, 47].
Being regionally operated, this microgrid is able to supply
energy to the local grid and may be utilized in standalone
demands. Here, in this section, it is shown that the DSO-
controlledMPPTsystem has been interfaced with microgrid.
For that, the PV panel used for microgrid connection has
specifcations which are given in Table 10. DC microgrid
topology connected with a solar MPPTcontroller along with
a boost converter is shown in Figure 16.

Partial PV irradiance in these circumstances after every
0.3 sec has been changed in the MATLAB/SIMULINK
model, and correspondence PV voltage has been manifested
in Figure 17, whereas Figures 18(a) and 18(b) illustrated DC
bus voltage and power. Corresponding battery voltage and
current graph with time have been displayed in Figures 19(a)
and 19(b).

In the proposed system, the battery voltage is con-
sistently maintained at 250 Volts. When the PV voltage
exceeds the load voltage, the system facilitates charging of
the lithium-ion battery. Conversely, during instances
where the PV voltage is not signifcantly higher than the
load voltage, the system ensures the seamless supply of
power to the load. Te graphical representations in Fig-
ures 17 to 19 illustrate a comprehensive comparison
between the DSO-based MPPT system integrated with
a DC microgrid and alternative algorithms such as CUSA
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Figure 12: (a) PV power comparison; (b) Load Power comparison for PSCS-3.

Table 8: Result analysis under PSCS-3.

Case Algorithm Power at
GMPP (W)

Power received
(W)

Settling time
(sec) Efciency (%)

PSCS-3 irradiance (835-725-650-750W/m2)

DSO

696.04

695.0 0.62 99.85
CUSA 194.4 1.45 27.92
GWO 161.5 1.80 23.02
PSO 139.6 0.85 20.56
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Figure 13: (a) PV power comparison; (b) load power comparison under temperature variation.
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Figure 14: (a) PV power comparison; (b) load power comparison in dynamic condition.
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and fying squirrel search algorithm. Figure 17 shows the
PV voltage comparison of the proposed MPPT technique
with two well-known and established soft computing-
based MPPT algorithms, i.e., cuckoo search algorithm
(CUSA) and fying squirrel search algorithm (FSSO). It is
worthwhile to say that newly developed MPPT algorithms
are much more stable even in partial shading conditions
also in contrast with the other two techniques. Te DC bus
voltage comparison among the three techniques is clearly
shown in Figure 18(a) whether Figure 18(b) represents PV
power comparison while being connected with DC
microgrid. Power oscillation in CUSA and FSSO-based

techniques is quite larger whether the proposed drone
squadron-based MPPT controller contrasted with DC
microgrid gives much lesser power oscillation. In
Figure 19(a), battery voltage has been represented. A
stable and constant voltage can be seen here in this fgure.
Te battery current of the DSO-based technique with the
other two metaheuristic algorithms is well shown in
Figure 19(b). A discernible observation indicates that the
DSO-based MPPT system, when connected to a DC
microgrid, demonstrates superior capabilities in har-
vesting stable power, current, and voltages compared to
other soft computing-based algorithms.

Table 10: Specifcations of the PV module used in simulation with microgrid interfacing.

Specifcation Value
Open circuit voltage (Voc) 37.30 (V)
Short circuit current (ISCN) 8.66 (A)
Coefcient of temperature at (VOC) −0.36901 (V/°C)
Coefcient of temperature at (Isc) 0.086991 (A/°C)
Cells per module (Ncell) 60
Maximum power 250.205 (W)
Series connected module per string 8
Parallel strings 1

Solar Panel

Controller

Algo PWM

Solar Energy

I

V

DC LOAD

BATTERY
BIDIRECTIONAL

BUCK-BOOST
CONVERTER

DC-DC Converter

Figure 16: DC microgrid topology with the solar MPPT system.
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8. Conclusion

Tis work presents a novel maximum power point tracking
(MPPT) technique that has the advantages of less setup time,
less computing overhead, and less system knowledge re-
quirements. Te simulation results are compared with those
of three widely used algorithms, PSO, GWO, and CUSA,
which are well known in the literature. Te efectiveness of
the proposed method is validated as well as its performance
under various partial shading scenarios. Performance

measures include the time it takes to reach the maximum
power point (MPP) and the corresponding output power
under various partial shading scenarios. After a compre-
hensive analysis of the data, it is concluded that the sug-
gested method routinely beats current methods in both
partial and uniform shading circumstances. Performance
measures include the time it takes to reach the maximum
power point (MPP) and the corresponding output power
under various partial shading scenarios. Increased efciency,
dependability, and sustainability in solar photovoltaic PV
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systems are achieved through the integration of the recently
created drone squadron algorithm with a DC microgrid
platform. Tis methodology is validated using MATLAB/
SIMULINK, and the results show that it performs better
than conventional MPPT methods.

In addition to showing a noticeable improvement, the
DSO-based MPPT has a bidirectional power fow control
technique that can be adjusted to diferent weather situa-
tions. Tis study also highlights the possibility of a PV-based
energy storage system incorporated into a small-scale DC
microgrid, which might lead to the production and distri-
bution of power in a more sustainable manner in the future.
Te next stage of this research is to create a microgrid that is
solar-powered and intended to charge electric vehicles. Te
increasing number of electric vehicles on the road highlights
how crucial it is to handle EV charging issues in the context
of a microgrid, furthering the shift toward a more sus-
tainable energy environment. Tere is a great deal of space
for this research to be expanded upon in the future [48, 49].

(a) Real-time analysis with hardware confguration of
the DSO-based MPPTmethod is the prime concern
of the authors.

(b) Integration of the developed MPPT method with
three phase grids.

Nomenclature

ABC: Artifcial bee colony
ACO: Ant colony optimization
BC: Boost converter
CUSA: Cuckoo search algorithm
DSO: Drone squadron optimization
FLCR: Fuzzy logic controller
FPA: Flower pollination algorithm
FSSO: Flying squirrel search algorithm
GA: Genetic algorithm
GHO: Grasshopper optimization
GMPP: Global maximum power point
GWO: Grey wolf optimization
HCA: Hill-climbing algorithm
LMPP: Local maximum power point
MPPT: Maximum power point tracking
NNK: Neural network
PSCS: Partial shading condition
PSO: Particle swarm optimization
PV: Photovoltaic
P&O: Perturb and observation
RERS: Renewable energy resources
SSO: Slap swarm optimization
STC: Standard test conditions
TLBO: Teaching-learning-based optimization.
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