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EVs sufer from short driving range because of limited capacity of the battery. An advantage of EVs over internal-combustion
vehicles is the ability of regenerative braking (RB). By this advantage, EVs can develop energy by RB which can be stored in the
battery for later use to increase the driving range of EVs.Tere are diferent motors that can be used in EVs, and the control during
RB mode is dedicated for certain motor types. However, the previous studies for EV-based IM drives consider the motor-speed
control without considering its RB. Tis paper proposes a robust control of induction motor (IM) during RB mode of EVs. Te
proposed control system is simple and depends only on mathematical calculations. Te obtained results confrm the efectiveness
and accuracy of the suggested control strategy with a good dynamic behavior under diferent operating conditions. Also, the
results assure the robustness of control capabilities under parameters uncertainties during the RB mode of EV-based IM drives.

1. Introduction

Electric vehicles (EVs) play a pivotal role in mitigating
carbon emissions and fostering a low-carbon future. By
relying on electricity as a power source, EVs signifcantly
reduce reliance on traditional fossil fuels, thereby lowering
the carbon footprint associated with transportation [1]. Te
integration of renewable energy sources for electricity
generation further enhances the environmental benefts of
EVs. As the grid becomes increasingly powered by renew-
able energy, the overall lifecycle emissions of electric vehicles
continue to decrease [2, 3]. Tis symbiotic relationship
between electric vehicles and a low-carbon future un-
derscores the transformative potential of clean trans-
portation in the global efort to combat climate change. Te
adoption and advancement of electric vehicles represent
a crucial step towards achieving sustainable, low-carbon
mobility on a large scale.

Te integration of autonomous driving technology in
electric vehicles represents a signifcant leap forward in
enhancing overall efciency and sustainability in the auto-
motive industry. By combining the advancements in electric
propulsion with autonomous capabilities, these vehicles
ofer a seamless and intelligent transportation solution [4].
Autonomous electric vehicles (AEVs) have the potential to
optimize energy consumption, improve trafc fow, and
reduce environmental impact [5, 6]. Te efciency gains
stem from the ability of autonomous systems to optimize
route planning, adapt driving behavior to real-time trafc
conditions, and maximize energy recovery through re-
generative braking. Moreover, autonomous driving can
enhance safety by mitigating human errors, leading to
a reduction in accidents. Tis synergy between autonomy
and electric propulsion not only redefnes the driving ex-
perience but also contributes to a more sustainable and
efcient future for urban mobility.
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Eforts to replace internal-combustion-engine vehicles
with electric vehicles (EVs) are motivated by environmental
concerns which encourage increasing of renewable energy
usage and decreasing of fossil fuel consumption [7, 8]. EVs
can depend on renewable energy sources, and propulsion of
EVs is through powertrains of higher efciency [9, 10]. A
weakness of EVs is the relatively short driving range because
of limited capacity of the battery [11, 12]. Tis weakness can
be alleviated by increasing the efciency of EVs using re-
generative braking (RB), which is an advantage of EV over
internal-combustion vehicle. Using RB, the kinetic energy of
the vehicle can be converted to electrical energy, instead of
wasted as heat by friction braking, and this energy is stored
in the battery for later use [9]. During braking of EVs, the
braking force is applied on both the front axle and rear axle
of the vehicle [13, 14]. Te division of the braking force
between the two axles may be according to the ideal braking-
force-distribution curve for best stability, or other braking-
force distribution methods for improved recovered braking
energy [15, 16].

In general, braking systems include both the friction
braking and RB. Tis is because RB is insufcient at high
braking requirements and at low ability of the battery to
store the generated energy, where the regeneration is in-
appropriate once the battery is fully charged [17, 18]. For
emergency braking, only the friction braking is used to
obtain a safe braking, and there is no recovered energy
[17, 18]. Also, the regeneration is inappropriate at low-speed
values because the power is supplied by the battery instead of
stored in it. Te low-speed cutof point (LSCP), below which
RB is disabled, may be taken as a fxed value, or a varied
value according to the operating conditions.

For a front-wheel drive EV, the rear braking force is only
exerted by friction braking, and the front-braking force is
shared between the friction barking and RB, where the
demanded RB force is bounded according to the maximum
value of the motor-braking torque.Te general confguration
of regenerative-braking strategies of the front-wheel drive EV
can be as shown in Figure 1 [19, 20]. By pressing the braking
pedal, the value of so-called barking intensity (z) is de-
termined, and this value is used to determine the braking-
force distribution between the front axle and rear axle of the
vehicle. Te rear braking force (fr) is a friction force, while
the front-braking force (ff) is divided into friction-front-
braking force (ff,f) and regenerative-braking force (ff,reg) by
a front-braking-force distribution controller. Te operation
of this controller is depending on braking situation (emer-
gency braking or not), and the values of the speed, state of
charge and maximummotor-braking torque (Tmax), which is
corresponding to the force value Fmax. Te operation of this
controller can be as shown in Figure 2. Te force ff,reg is used
to estimate regenerative-braking torque which is the refer-
ence torque (Tref ) used by the motor control. Te motor
control is a regenerative-braking control that is dedicated for
a certain motor. In [21], the motor-regenerative-braking
control is optimized for switched reluctance motor (SRM).
In [7, 20], the control is enhanced for brushless dc (BLDC)
motor, and in [22], it is enhanced for permanent-magnet
synchronous motor (PMSM). However, it seems that there

are no thoughtful attempts to obtain dedicated control for
induction motor during regenerative braking, although there
is dedicated speed control such as in [13, 23].

Tis paper proposes a control scheme of three-phase
induction motor (IM) for the regenerative-braking opera-
tion of EVs. Te adopted control scheme is simple, which
leads to easy implementation. Also, there is no need of core
machine parameters in the control procedure, and this will
increase the robustness of the control performance during
the regenerative-braking mode. Moreover, the control of
induction motor during the regenerative-braking mode has
not been considered in the previous studies for EV-based IM
drives.

2. Mechanical System

Te mechanical equation can be given by [24, 25]

Td � TLq + Bmωm + Jeq

dωm

dt
, (1)

where ωm is the mechanical angular speed, Td is the driving
torque, TLeq is the equivalent load torque, Jeq is the equiv-
alent inertia of the vehicle, and Bm is the friction coefcient.

In RB operation, Td is a negative value equal to the
equivalent total braking torque (Tbrake), corresponding to
total braking force (ff +fr), where

Tbrake � Tf + Tr, (2)

Tf � Tf,f + Tf,reg, (3)

where Tf is the front-braking torque (corresponding to ff),
Tr is the rear braking torque (corresponding to fr), Tf,f is
the friction-front-braking torque (corresponding to Tf,f),
and Tf,reg is the regenerative-front-braking torque (analo-
gous to ff,reg).

Te value of Tf,reg is taken as a reference value for the
motor control (Tref ). Tus,

Tref � Tf,reg, (4)

Tref � Tbrake − Tr − Tf,f. (5)

3. Proposed Regenerative-Braking
Control System

Many control loops were used for enhancing the electric
motor drive and the vehicle efciency. Te major of these
researchers were exposed a standard control loops as it is in
[26, 27]. Other intelligent control topologies were exposed in
[28, 29], where deep learning is used for enhancing the
efciency of the electrical motor generator.

Predictive control and sliding mode control forms were
also exposed in many applications for enhancing the overall
system as it is in [30, 31]

From the other side, Kalman flter was used in many
applications in order to enhance the system control loop and
this reference can give an example [32].
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In the proposed control system, the regenerative-braking
operation of the induction motor is obtained according to
the reference values Tref and λs,ref. Te outputs of the control
system are the reference stator voltages (uqs(λ),ref and
uds(λ),ref ), where the subscript (λ) is used to indicate the

stator-fux frame. Te low-speed cutof point (LSCP) con-
sidered here is taken as a fxed value. Once this speed is
reached, the reference values Tref and λs,ref are taken equal to
zero. Te complete motor control system is shown in
Figure 3.

3.1. Calculation of Reference D-Axis Voltage (uds(λ),ref ).
Te d-axis component of the stator voltage (uds(λ)) can be
given by

uds(λ) � Rs ids(λ) +
dλs

dt
, (6)

where Rs is the stator resistance, ids(λ) is the d-axis com-
ponent of stator current in the stator-fux frame, and λs is the
stator fux.

Te proposed reference voltage uds(λ),ref, appropriate to
obtain the reference stator fux λs,ref, is obtained by

uds(λ),ref � uRs +
λs,ref − λs

Δt
, (7)

where

uRs � sign λs,ref − λs 
λs,ref

λs

uRsO


, (8)

uRsO � uds(λ),refO −
λs,refO − λsO

Δt
, (9)

where Δt is the time step of estimation, uRs is the voltage
drop across the resistance Rs, uRsO is the voltage drop across
the resistance Rs at time (t-Δt), uds(λ),refO is the reference d-
axis voltage at time (t-Δt), λs,refO is the reference stator fux at
time (t-Δt), and λsO is the stator fux at time (t-Δt).

Te stator fux (λs) and its angle (θλ), in the stationary
reference frame, can be obtained as follows:
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λqs �  uqs − Rs iqs  dt, (10)

λds �  uds − Rs ids(  dt, (11)

λs �

���������

λqs
2

+ λds
2



, (12)

θλ � tan− 1 λqs

λds

 , (13)

where λ, u, and i mean stator fux, voltage, and current,
respectively, and the subscripts mean q-axis and d-axis
components.

It should be noted that the integration is applied in the
implementation process using the discrete calculations.

3.2. Calculation of Reference Q-Axis Voltage (uqs(λ),ref ).
Te q-axis component of the stator voltage (uqs(λ)) can be
given by

uqs(λ) � Rs iqs(λ) + ωeλs, (14)

where iqs(λ) is the q-axis component of stator current and ωe

is the angular speed of the stator-fux reference frame.
Te proposed reference voltage uqs(λ),ref, appropriate to

obtain the reference torque Tref, is obtained by

uqs(λ),ref � Rs iqs(λ),ref + Pωm + ωsl( λs, (15)

where

iqs(λ),ref �
2

3P λs,ref
Tref , (16)

ωsl � −
Tref

Te

ωslO


, Te < 0 asTref( ,

ωsl � −
Tref


 + Te

Te

  ωslO


, Te > 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(17)

ωslO �
uqs(λ),refO − Rs iqs(λ),refO

λsO

− PωmO , (18)

Te �
3
2

P λs iqs(λ), (19)
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where P is the number of pole pairs, iqs(λ) is the q-axis
component of stator current, ωsl is the angular slip speed,
ωslO is the angular slip speed at time (t-Δt), uqs(λ),refO is the
reference q-axis voltage at time (t-Δt), and ωmO is the an-
gular speed at time (t-Δt).

In the second expression of equation (17), the numerator
is increased by the value Te because when the sign of Te is
changed from negative to positive, the diference between
Tref (negative value) and Te is increased by the value Te.

4. Results and Discussion

In order to ensure the efectiveness of the proposed control
system, 100 hp induction motor is used with the complete
parameters given in Table 1. Results are obtained when the
total braking torque (Tbrake) is equal to −1.0 pu, the
equivalent load torque (TLeq) is equal to 1.0 pu, and the low-
speed cutof point (LSCP) is taken equal to 90 rpm.Tere are
diferent values of the reference torque (Tref ), which is a part

Table 1: Data of three-phase induction motor: star-connected, 100 hp, 460V, 107A, 1764 rpm, and 60Hz.

Stator resistance (Rs) 0.06Ω
Rotor resistance (Rr) 0.05Ω
Stator leakage inductance (Lls) 0.435mH
Rotor leakage inductance (Llr) 0.435mH
Magnetizing inductance (Lm) 22.6mH
Equivalent inertia of the vehicle at full load 44 kg m2

Total friction coefcient 0.011Nms/rad
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of Tbrake. Te remaining part of Tbrake is a friction braking
torque. Te values of Tref are taken equal to −1.0 pu, −0.5 pu,
−0.25 pu, and −0.1 pu, and the corresponding friction
braking torque is equal to zero, −0.5 pu, −0.75 pu, and
−0.9 pu, respectively.

Figure 4 shows the motor speed, where the braking is
started at time equal to 4.0 s, and Figure 5 shows a fast and an
accurate tracking of Tref. Tis accurate tracking leads to
nearly constant value of Tbrake, equal to −1.0 pu, and
therefore independent of deceleration on Tref, as shown by
Figure 4. Figure 6 shows the charging current of the battery,

where the negative current is proportional to Tref. When the
LSCP is reached during deceleration of the motor, the
reference values Tref and λs,ref are taken by the control and
equal to zero, as shown in Figures 5 and 7. Te corre-
sponding motor currents are shown in Figures 8–12.

To show the efect of parameters uncertainty on the
robustness of the control system, the results are obtained
again when the stator resistance (Rs) is increased and de-
creased by 30%, where Rs is the only parameter which is
involved in the calculations of the proposed control system.
Te obtained results related to Tref equals to 1.0 pu are given
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in Figures 13–16. Furthermore, to show insignifcant vari-
ation of the performance of the system, the results illustrated
in Figures 17–20 are corresponding to Tref equals to 0.1 pu.

5. Conclusion

Electric vehicles (EVs) need regenerative braking (RB) be-
cause it increases the efciency of the vehicle and therefore
extends the vehicle driving range. In the front-wheel drive
EV, the rear braking force is only exerted by friction braking
and the front-braking force is shared between the friction
barking and RB, where the motor control scheme receives
the appropriate reference torque (Tref ) signal, during RB,
from a front-braking-force distribution controller. Te
establishing of the motor control scheme depends on the
type of electrical motor used in EV. However, in EV-based
IM drives, the interest was only for motor-speed control, and
RB control of induction motors was absent. Tis paper has
proposed a motor control scheme dedicated to induction
motors for RB mode. Te implementation of the proposed
control scheme has assured a simplicity and controllability
under various operating states. Moreover, the presented
results have confrmed the robust behavior of the proposed
control system for induction motor drives under RB mode
of EVs.

6. Future Perspectives

Te future of electric vehicles (EVs) holds tremendous
promise, and integrating more intelligent control topology
stands as a key catalyst for their advancement [33]. In-
telligent control systems, encompassing sophisticated al-
gorithms and machine learning, have the potential to
optimize various aspects of EV performance. Enhanced
energy management, predictive maintenance, and adaptive
charging strategies are among the many benefts of in-
telligent control topology [34, 35]. Tese systems can dy-
namically adjust power distribution, manage battery health,
and optimize charging based on real-time data and user
behavior. Furthermore, intelligent control facilitates seam-
less communication between vehicles and infrastructure,
enabling smart grid integration and grid-friendly charging.
Tis not only enhances the overall efciency of EVs but also
contributes to grid stability and resilience. Te future of
electric vehicles is intricately tied to the evolution of in-
telligent control systems, promising a smarter, more sus-
tainable, and user-friendly transportation landscape [36, 37].
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