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Te dynamics of the permanent magnet synchronous motor (PMSM) are described by nonlinear equations, which present
challenges. Variations in external factors such as unidentifed disturbances (loads) and evolving motor properties add complexity
to control eforts. To tackle these intricacies and limitations, a nonlinear control approach is essential. Recent attention has turned
to employing predictive control techniques for nonlinear multivariable systems, ofering an intriguing avenue for research. In this
context, this study introduces a novel hybrid control approach that addresses nonlinearity, parametric fuctuations, and external
disturbances. Te method combines two essential components: frst, the outer loop utilizes high-order sliding mode control
(HSMC) to optimize torque and trajectory speed, mitigating chattering phenomena while preserving the PMSM’s convergence
and robustness traits. Te inner loop, known as the current control, employs the newly developed nonlinear robust generalized
predictive control (RNGPC) technique. Importantly, this strategy circumvents the need for direct measurement and observation
of external disturbances and parameter uncertainties. Te proposed strategy follows a two-phase process. Initially, the reference
quadratic current is designed using the electromagnetic torque computed via HSMC, subsequently determining the necessary
current to achieve the desired torque. Te second phase involves computing the controller law through the robust generalized
nonlinear predictive control technique. Te approach’s strength lies in its ability to maintain stability and convergence in the face
of external disturbances and parameter fuctuations, without necessitating precise measurements or knowledge of the distur-
bances. To validate the proposed control approach, simulation and experimental tests have been conducted across various
operational scenarios. Te obtained results demonstrate the method’s robustness against external disturbances and parameter
changes while ensuring rapid convergence and reliable performance.

1. Introduction

In the modern industrial world, permanent magnet syn-
chronous motors (PMSMs) play a signifcant position in the
regulation of processes, automation systems, and the de-
velopment of renewable energy sources [1]. All of this is
attributable to their superior performance in terms of ef-
ciency, torque, and power density as well as their de-
pendability and reduced bulk. In addition, their construction
is simpler because they lack mechanical switches, which

extends their lifespan and reduces the need for ongoing
maintenance [1, 2]. Additionally, these engines have the
beneft of releasing zero greenhouse emissions, which is
particularly advantageous for environmental conservation
[3]. Te PMSM, on the other hand, operates like a nonlinear
system with quick dynamics, variable operating parameters,
and unidentifed disturbances [4, 5]. Te machine’s control
is made more difcult by these features. Numerous studies
on the control of PMSM have been published in the liter-
ature and the business sector as solutions to the
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aforementioned issues. Te current research indicates that
the controls based on linear and nonlinear techniques are
controls that are both highly common and useful.

Te widely utilized proportional-integral (PI) control is
a linear control technique. It generates a continuous ref-
erence output, which subsequently undergoes conversion
into a digital format via pulse width modulation (PWM)—
a fundamental control strategy. Yet, when striving for
heightened performance and precision in speed regulation,
PI controllers fall short. Alternative methods gaining pop-
ularity include state feedback control [6] and impulse
control [7]. Remarkably, these approaches share a common
requirement: the integration of PWM. Conventional linear
control system design typically assumes operation within
a linear region. However, the complexities and constraints
within power electronics and drive systems, often un-
reported, introduce numerous limitations and nonlinearities
[8]. Such traditional control paradigms might prove in-
sufcient for systems featuring nonlinearity or variable
parameters. Teir susceptibility to fragility becomes pro-
nounced, especially when stringent demands for accuracy
and dynamic system attributes are at play. Consequently, the
need arises for control strategies capable of resilience against
parameter variations, disturbances, and nonlinearities.

Many methods have been tried to account for the per-
manent magnet synchronous machine’s nonlinearities. In
[9], direct control of the speed associated with a state-
dependent Riccati equation is described; two explicit limi-
tations are the feld-weakening curve and the current am-
plitude. Te cost function at the controller arrival is known,
and the problem is, therefore, formulated as a quadratic
program with a quadratic constraint. A new extended state
observer using sliding mode is proposed in [10] to enhance
the disturbance compensation and rejection as well as the
dynamical efciency of PMSM control systems. For a more
precise comparison, an extended observer that is based on
the fast terminal sliding mode control strategy is described.
It has the beneft of greater robustness against load dis-
turbances, fnite time integration, and a considerable re-
duction of the “chattering” phenomenon. An improved
nonlinear fux observer is put forth in [11]. Studying the
method of rotor position estimate from fux monitoring
comes frst. Te limitations of classic rotor fux variation
estimation methods are then investigated, including classical
integrator saturation, low-pass flter amplitude decreasing,
and phase change. A fuzzy adaptive controller is provided in
[12]. Te Takagi–Sugeno fuzzy membership criterion allows
you to convert the nonlinear PMSM model into equivalent
linear submodels. Ten, in collaboration with a fractional
sliding surface that has an integral criterion, an adaptive
controller is developed in order to regulate the PMSM. Te
authors of [13] expose a sliding mode control (SMC) based
on an adaptive speed controller. Using a nonlinear distur-
bance observer (DO), the hybrid controller SMC is con-
structed in [14]. Te most efective strategy for enhancing
the drive systems’ ability to reject disturbances is DO-based
control. Its performance in dynamic control and load torque
disturbance rejection capabilities is weak in the middle. As
a result, although the sliding mode occasionally results in

high-frequency shifts (chattering), these switches instead
produce unwanted behaviors that have the potential to
destabilize, harm, or even destroy the system under con-
sideration. Another control strategy that is applied to PMSM
control called the “passivity-based control (PBC)” strategy
emerges as a distinctive approach that takes into account the
intricate interplay between the motor’s electrical and me-
chanical components, subject to specifc conditions [1]. PBC
manifests in several variants, such as passivity-based current
control [15], voltage control [16], and interconnection and
damping assignment PBC [17], each catering to precise
control objectives within the PMSM system. Moreover,
recent strides in PMSM control have introduced pioneering
methodologies to elevate performance and resilience. For
instance, a robust backstepping compensator, coupled with
a nonlinear disturbance observer, fortifes the system against
disturbances [18]. Tis compensator ofers improved dis-
turbance rejection capabilities, bolstering the motor’s sta-
bility and robustness in the presence of external
perturbations. Additionally, sensorless control strategies
built upon a nonlinear fux observer [19] have gained
prominence. Tese sensorless techniques enable accurate
estimation of crucial rotor parameters, such as position and
speed, without the need for additional sensors. While these
advancements hold promise for simplifying system design
and reducing hardware costs, they are not without their
challenges. Implementing robust compensators may require
careful tuning, and sensorless techniques are often sensitive
to parameter variations and may have limitations in rapidly
changing operating conditions. Nonetheless, these pio-
neering methodologies represent valuable contributions to
the feld of PMSM control, addressing the need for improved
performance and resilience in various applications.

Model predictive control (MPC), presently considered
one of the most trustworthy control strategies by many
researchers, is garnering a lot of interest due to its
straightforward implementation, its capacity for direct
management of constraints and nonlinearities of the sys-
tems, which guarantees satisfactory system performances
[20]. MPC is a feedback control algorithm that makes use of
a model to forecast outputs over a given period of time.
Tese forecasts are then used to choose the best control by
solving a particular optimization problem while adhering to
a predefned constraint (cost function) [21]. Te three steps
of the MPC approach are the feedback structure, the re-
gressive optimization, and the predictive model.

Many composite algorithms based on MPC have been
put out in recent years to improve PMSM control per-
formance due to the rapid development of microcontrollers
and advances in MPC research [22, 23]. In [24], a cascaded
MPC structure with speed control as the outer loop and
current control as the inner loop is presented for the
PMSM. Te external-loop MPC design incorporates
a disturbance model with signal generators for zero-
frequency and frst-frequency modes to lessen the im-
pact of periodic perturbation brought on by current sensor
ofset inaccuracies in the velocity regulator of a PMSM.Te
established torque-ripple models, however, are frequently
erroneous and complex [23]. To get a good estimate of the
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torque, a hybrid approach employing FCS-MPC with
a lookup table is suggested [22]. Duty cycle control [25, 26]
and quantitative search [27] are two more enhancements
that have been suggested. Many of the aforementioned
modifcations can lessen current ripple and torque. Ad-
ditionally, some researchers [28] have put a control strategy
that combines MPC and observer forth [29]. Te authors of
[30] study the use of continuous model-time predictive
control (CTMPC) to train a PMSM. Te MPC problem
with a nonlinear perturbation observer and an unknown
load torque is solved by the CTMPC using an expansion of
the Taylor series. Tese tests demonstrate the method’s
efectiveness. However, it is impossible to see ripples
brought on by a mechanical component (such as cogging
torque and load oscillations) [31]. Te construction of
a disturbance observer is not straightforward in the case of
a PMSM, which makes the analysis of the closed-loop
system extremely difcult [32].

Tis research introduces an innovative hybrid control
approach that capitalizes on high-order slidingmode control
(HSMC) to attain optimal torque and trajectory speed for
the outer loop. Tis design choice not only enables efective
suppression or elimination of the chattering phenomenon
but also preserves the system’s convergence and robustness
attributes. Complementing this, the inner loop employs the
robust generalized nonlinear predictive control technique to
manage the current control aspect. Te proposed control
strategy is designed with a holistic understanding of the
complete dynamics of the permanent magnet synchronous
motor (PMSM). Te development of the nonlinear gener-
alized predictive control law is achieved by fne-tuning
a newly formulated cost function. To enhance disturbance
mitigation, the controller incorporates an integral action. A
noteworthy aspect of this novel method is its inherent ca-
pacity to enhance system robustness without necessitating
detailed knowledge of external disturbances or uncertainties
in system parameters.

In this paper, a new design process of continuous model-
time predictive control is studied, and a robust nonlinear
generalized predictive control law is formulated by opti-
mizing a new cost function, where integral action is added to
the controller to enhance disturbance rejection. Tis novel
control strategy ofers an analytical solution for the control
of multivariable nonlinear systems, eliminating the need for
computationally intensive online calculations. An essential
characteristic of this proposed control method is its ro-
bustness, as it does not depend on prior knowledge of ex-
ternal disturbances or uncertainties in system parameters to
achieve superior performance.

Te following succinctly expresses this work’s contri-
bution and originality:

(i) New nonlinear generalized model predictive-based
high-order sliding mode control for permanent

magnet synchronous machine with a new optimized
cost function is proposed

(ii) Te proposed controller guarantees setpoint
tracking performance and robustness against sud-
den load torque variations (external disturbance) as
well as parametric variations and eliminates the
efects of disturbances without the need for a dis-
turbance observer making it easy to implement

(iii) Numerous numerical simulations are carried out to
demonstrate the suggested technique’s resistance to
parameter changes and outside disruptions where
the simulation results demonstrate the efciency of
this control, which enables the system to maintain
its stability in a closed loop

Te structure of this document is as follows: Section 2
describes the permanent magnet motor system. Te calcu-
lation of the classical and proposed control strategy for the
PMSM is discussed in Section 3. In Section 4, the simulation
tests of the suggested approach are presented. Section 5
depicts the experimental results using OPAL-RT. Section 6
concludes with the key fndings.

2. Permanent Magnet Synchronous Motor
Dynamic Description

Dynamic modeling of PMSM is an indispensable step for
control design engineering. It involves the rigorous for-
mulation of mathematical equations that encapsulate the
intricate electromagnetic and mechanical dynamics in-
herent in PMSM. Tese models serve as a foundational
framework for predictive analysis, afording us the ca-
pacity to prognosticate the system’s response across
a spectrum of operational parameters, such as load var-
iations and diverse control algorithms. Te paramount
utility of dynamic modeling manifests in its role as an
enabling instrument for optimizing motor efciency,
architecting high-fdelity control algorithms, and imple-
menting robust fault detection mechanisms. Nevertheless,
confronting the nonlinearities intrinsic to PMSM and
iteratively refning parameter estimations remain formi-
dable tasks. In spite of these complexities, dynamic
modeling persists as a cornerstone of contemporary
electric machines and drives research, propelling the
frontier of energy-efcient and fault-tolerant motor sys-
tems [33, 34]. Assuming the rotor’s position has no efect
on the inductance and that the rotor’s fux axis is parallel
to the machine’s d-axis. Te mathematical model of the
PMSM is constructed by transforming the three-phase
variables in the stator reference frame into two-phase
variables in the rotor d-q reference frame [6]. In this
case, the nonlinear mathematical model of the PMSM is
given by
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vd � Rsid + Ld

did

dt
− PwrLqiq,

vq � Rsiq + Lq

diq

dt
+ PwrLdid + Pwrφf,

d

dt
wr �

1
J

Tem − Cr − fwr( ,

Tem �
3p

2
φfiq + Ld − Lq idiq ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where Rs, Ld, and Lq are the stator per phase (Ohm) and
direct and quadrature axis stator self-inductances in the
rotor reference frame (H), respectively. P is a number of
poles-pairs, φf is links between armatures fux created by
rotor magnets (Wb), and J is the inertia moment (kg.m2).
Tem is the electromagnetic torque (N-m), J is the inertia
moment (kg.m2), wr is mechanical rotor speed (rad/sec),
and f represents the coefcient of viscous friction (N.m.s/
rad).

Te synchronous machine model can be expressed as
follows:

Vdq � Rdqidq + Ldq

didq

dt
+ pwrI Ldqidq + ψf ,

J
dwr

dt
+ fwr � Tem − Cr,

(2)

where idq �
id
iq

  is the stator currents vector in the dq-

frame, Ldq �
Ld 0
0 Lq

  is the stator inductions matrix in dq-

frame, ψf �
φf

0  is the fux linkages’ vector in the dq-

frame, Vdq �
vd

vq
  is the voltage stator’s vector in the dq-

frame, Rdq �
Rs 0
0 Rs

  is the stator resistance matrix in the

dq-frame, I �
0 −1
1 0 , and Tem can be written as follows:

Tem �
3
2

pψdqIidq, (3)

ψdq �
ψd

ψq

  � Ldqidq + ψf . (4)

Te dynamics of the current-controlled PMSM can be
reduced to the following model:

ψ.
dq + pwrIψdq � −Rdqidq, (5)

Jw
.
r + fwr �

3
2

pψT
dqidq − Cr, (6)

Tem �
3
2

pψT
dqidq. (7)

3. Design of the Proposed Control Approach

Figure 1 illustrates the computational process of the ex-
plored strategy, which has two distinct components: the frst
phase is to design the reference quadratic current using the
electromagnetic torque calculated by the HSMC technique,
and the required current is then calculated using the re-
quired torque. In the second part, the controller law is
calculated using the robust generalized nonlinear predictive
control technique.

If the direct current id is zero, PMSM runs at its
maximum torque. Ten, in light of the relationship (4), the
d-q axis desired fux is selected as follows [8]:

ψ∗d � φf, (8)

ψ∗q � Lqi
∗
q . (9)

Te desired torque is determined by the following re-
lationship from equations (4) and (5):

T
∗
em �

3
2

pψ∗Tdq I(ψ∗dq−ψf. (10)

Tis results in

T
∗
em �

3
2

pφfi
∗
q . (11)

Te desired fux along the quadratic axis q, according to
equations (9) and (11), is defned by

ψ∗q �
2Lq

3pφf

T
∗
em. (12)

3.1. Calculation of the Desired Torque. According to equa-
tion (12), the reference torque is formulated as follows:

T
∗
em � J

dw
∗
r

dt
− fε, (13)

where ε � (w∗r − wr) represents the speed error between the
reference and the PMSM velocity. Te appropriate dynamic
is to reduce this velocity tracking error as much as possible.
According to equation (12), the desired torque T∗em has two
drawbacks: the dependence of its convergence on the me-
chanical parameters of the PMSM (J, f ) and it is open loop.
To address these issues, in [35], the (f ) term was removed
and T∗em was calculated by a PID controller. However, the
authors mentioned that this strategy still has a drawback
with the change of J due to the fxed gains of the PID. To
address this drawback, SMC is proposed given its high
stability, fast dynamic response, and robustness ability to
replace PI loop [36]. However, in reality, the sliding ap-
proach results in “chattering,” which is a sort of high-
switching frequency that leads to unintended dynamics,
which can destabilize, deteriorate, or even destruct the
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system under investigation. To overcome the chattering
challenge, a high-order SMC is established, which operates
on the assumption of avoiding singularities in the scheme’s
higher derivatives, in order to overcome the chattering
challenge and compensate for the disturbance of the resistive
torque in the speed response, and we propose to control the
machine using the HSMC strategy to replace the PID and
calculate the required torque as shown in the following
equation:

T
∗
em � J

dw
∗
r

dt
− a1|ε|

0.5sign(ε) − a2 
t

0
sign(ε)dτ, (14)

where a1 > 0, a2 > 0, and ε� (w∗r − wr) represent the speed
error. Referring to a classic cascade control, the input
quantity of the system is the reference speed which is
compared to the real speed, to generate the setpoint of the
transverse component of the current, using the HSMC
control law described by the equation (14) and using
equation (11), and the setpoint of the transverse component
of the current is given by

i
∗
q �

3
2pφf

J
dw
∗
r

dt
− a1|ε|

0.5sign(ε) − a2 
t

0
sign(ε)dτ .

(15)

3.2. Model Predictive Control Teory. Model predictive
control (MPC) is an advanced control strategy employed in
various engineering applications, including the control of
permanent magnet synchronous motors (PMSMs). MPC
ofers a predictive approach to managing the operation of
PMSMs by utilizing a dynamic model of the motor system.
Here is a detailed explanation of model predictive control in
the context of PMSMs: model predictive control starts with
a detailed mathematical model of the PMSM, which in-
corporates the electrical, mechanical, and magnetic dy-
namics of the motor. Tis model is used to predict how the
motor will behave over a defned prediction horizon into the
future. Te control objective is to optimize control inputs,
typically voltage or current, over this prediction horizon
while considering constraints on variables such as current
limits, voltage limits, and motor speed. MPC continuously
reevaluates and adjusts the control inputs at each control
step, ensuring that the system closely follows desired tra-
jectories and minimizes a predefned cost function [35, 36].

One of the key advantages of MPC for PMSM control is
its ability to handle complex and nonlinear dynamics,
making it suitable for high-performance applications. MPC
also accounts for constraints, ensuring that the motor
operates safely within its specifed limits, which can be
crucial in real-world applications. However, MPC does come
with some challenges. It requires an accurate dynamic model

Proposed Control of PMSM
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Figure 1: Overall diagram of new proposed strategy HSMC-RNGPC.
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of the motor, which may be difcult to obtain in practice due
to uncertainties or parameter variations. Additionally, the
computational demands of MPC can be signifcant, espe-
cially for high-speed control loops, although advances in
hardware and algorithms have helped mitigate this issue. In
summary, model predictive control is a powerful strategy for
achieving precise and dynamic control of permanent
magnet synchronous motors, but its efectiveness
depends on the quality of the dynamic model and the
computational resources available [37]. For more details
about the theory of MPC and its applications, the reader is
referred to [38, 39].

Te cost function in MPC for PMSMs serves as a cor-
nerstone in achieving optimal motor control. It acts as the
guiding criterion for the MPC controller, defning the
performance goals and constraints for the system. By for-
mulating a well-designed cost function, engineers can
precisely specify the desired trade-ofs among various as-
pects of motor performance, including speed regulation,
torque accuracy, energy efciency, and system stability.
Additionally, the cost function plays a crucial role in han-
dling operational constraints, ensuring that control inputs
remain within safe limits while striving for optimal per-
formance. MPC’s ability to incorporate multiobjective op-
timization within the cost function enables engineers to
balance conficting goals efectively. Furthermore, the
adaptability of the cost function allows MPC to respond to
changing operating conditions and disturbances, making it
a valuable tool for achieving precise and robust control of
PMSMs in diverse applications [40].

3.3. ClassicalNonlinearGeneralizedPredictiveControlDesign
(NGPC). Te control approach proposed in this study is
based on MPC, and it is currently regarded by many sci-
entists as one of the most reliable control strategies and
attracts a lot of attention due to its simple implementation
and its ability to directly handle system constraints and
nonlinearities, thus ensuring satisfactory system perfor-
mance [15]. MPC is a feedback control algorithm that uses
a model to predict future outputs over a specifed period of
time, and these predictions are then used to select the op-
timal control by solving a specifc optimization problem
while satisfying a predefned constraint (cost function)
[16, 24]. Te MPC method consists of three steps: the
predictive model, the regressive optimization, and the
feedback structure. In this paper, the robustness of the
classical nonlinear generalized predictive control (NGPC),
based on Taylor series expansion, is improved by revising its
cost function.

In order to accommodate for the modularization errors
and external disturbances comprehensively, the subsequent
conditions have been delineated:

Rs � Rs + ΔRs,

Ld � Ld + ΔLd,

Lq � Lq + ΔLq,

ϕf � ϕf + Δϕf,

J � J + ΔJ,

f � f + Δf.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

Te electrical subsystem model for the synchronous
machine, considering the infuence of (16), may be articu-
lated in the following manner:

did

dt
�

1
Ld

vd − Rsid + PwrLqiq  −
1

Ld

Fd,

diq

dt
�

1
Lq

vq − Rsiq − PwrLdid − Pwrϕf  −
1
Lq

Fq.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(17)

Te components Fd and Fq correspond to fuctuations in
parameters and are expounded as follows:

Fd � ΔLd

did
dt

− ΔLqPwriq + ΔRsid,

Fq � ΔLq

diq

dt
+ ΔLdPwrid + ΔRsiq + ΔϕfPwr.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(18)

In the absence of a precise understanding of the dy-
namics underlying various uncertainties, it is postulated that
their progression occurs at a comparatively gradual pace in
relation to the system’s time constants. Consequently, we
may express it as follows:

dFd

dt
� 0,

dFq

dt
� 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(19)

Te bilinear system that represents the electrical sub-
system could be written in the following form:

_x(t) � f x,ωr(  + g1u(t) + g2F(t), yi(t) � hi(x), i � 1,2,

(20)

with: x(t)�
id
iq

  is the vector of states; y(t) �
y1(t)

y2(t)
  �

h1(x)

h2(x)
  �

id
iq

  is the output vector; the controlling vector

is u(t) �
Vd

Vq
 ; g1 � [gdgq]�

1/Ld 0
0 1/Lq

 , g2
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�
−1/Ld 0
0 −1/Lq

 ; the vector feld f is given by

f( x,ωr ) �
f1(x)

f2(x)
  �

−RS/Ldid + Lq/Ldpωriq
−RS/Lqiq − Ld/Lqpωrid − φfpωr/Lq

 ;

the vector of disturbances caused by the parameter varia-

tions is F(t) �
Fd

Fq
 . Te objective of the controller is the

regulation of the current components, which means that the

output vector is y(t) �
y1(t)

y2(t)
  �

h1(x)

h2(x)
  �

id(t)

iq(t)
 .

To surmount the challenge of real-time computation
and attain a closed-form optimal nonlinear generalized
predictive control (NGPC), a novel approach has been

posited. Tis method involves the constraint of control
order to zero, thereby ensuring the constancy of control
efort within the prediction interval. An analytical solution
can be derived by setting the prediction horizon to zero.
Predictive control’s fundamental objective lies in the
computation of control u(t) such that the forthcoming
motor outputs, denoted as y(t + τ) for 0≤ τ ≤Tr, converge
towards yr(t + τ), all while taking into account the pres-
ence of perturbations. Tis objective is realized through the
minimization of the cost function J over a prediction
horizon of time Tr [37].

I(x, u) �
1
2


Tr

0
yr(t + τ) − y(t + τ)( 

T
yr(t + τ) − y(t + τ)( dτ, (21)

with: yr(t) �
y1r(t)

y2r(t)
  �

idr

iqr
 , y(t) �

y1(t)

y2(t)
  �

h1(t)

h2(t)
  �

id
iq

 , and Tr signifes the prediction time ho-

rizon, wherein yr(t + τ) signifes the envisioned future

reference trajectory, while y(t + τ) signifes the anticipated
value of the system’s output τ steps ahead. Consequently, the
quadratic performance index embodied in the cost function
J undergoes a modifcation as follows:

I(x, u) �
1
2


Tr1

0
y1r(t + τ) − y1(t + τ)( 

2
dτ +

1
2


Tr2

0
y2r(t + τ) − y2(t + τ)( 

2
dτ. (22)

Te prediction of the output is computed through the
utilization of a Taylor series expansion:

yi(t + τ) � hi(x) + τLfhi(x) +
τ2

2!
L
2
fhi(x) + . . . +

τρi

ρi!
L
ρi

f hi(x) +
τρi

ρi!
LgL

ρi−1
f hi(x)u(t). (23)

Let us denote ρi the relative degree of each output yi(t):
i � 1, 2, which determines the number of times the output
must be diferentiated before the input u appears. Te Lie
derivative of the functions hk(x) along a vector feld is
denoted using the following notation:
f(x) � (f1(x) . . . fn(x)) [32].

We allow ρi to represent the relative degree associated
with each output yi(t): i � 1, 2, a parameter that signifes the
number of diferentiations the output y_i(t) must undergo
prior to the input u becoming apparent:

Lfhk(x) � 
n

i�1

zhk(x)

zxi

fi(x), L
k
fhk(x) � Lf L

k−1
f hk(x) , LgLfhk(x) �

zLfhk(x)

zx
g(x). (24)

Employing equation (20):
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y1
.

(t) � Lfh1(x) + Lg1
h1(x)u(t) + Lg2

h1(x)F(t),

y2
.

(t) � Lfh2(x) + Lg1
h2(x)u(t) + Lg2

h2(x)F(t).

⎧⎨

⎩

(25)

Te relative degree of the outputs y1(t) and y2(t) is
denoted as ρ1,2 � 1. Tis signifes that the Lie derivatives of
the functions hk(x) are nonzero and may be articulated as
follows:

y1(t + τ) � h1(x) + τ Lfh1(x) + Lg1
h1(x)u(t) + Lg2

h1(x)F(t) , (26)

y2(t + τ) � h2(x) + τ Lfh2(x) + Lg1
h2(x)u(t) + Lg2

h2(x)F(t) . (27)

In order to ascertain the optimal order, it is imperative to
satisfy the following prerequisite conditions:

zI(x, u)

zu
� 0. (28)

By integrating equations (26) and (27) into equation (22)
and subsequently minimizing the cost function (22), the
resultant optimal nonlinear control can be elucidated as
follows:

u(t) � H1(x)
− 1



1

i�0
Z
1
i y

(i)
1r (t) − L

(i)
f h1(x)  − K1F(t) 

1

i�0
Z
2
i y

(i)
2r (t) − L

(i)
f h2(x)  − K2F(t)⎡⎣ ⎤⎦. (29)

With:

Z
1
0 �

3
2Tr1

; Z
1
1 � 1,

Z
2
0 �

3
2Tr2

; Z
2
1 � 1.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(30)

Te matrixes K1, K2, and H1(x) are presented as
follows:

K1 � Lg2
h1(x) �

−1
Ld

0 ,

K2 � Lg2
h2(x) � 0

−1
Lq

 ,

H1(x) �

Lg1
h1(x)

Lg1
h2(x)

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ �

1
Ld

0

0
1
Lq

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(31)

3.4. Stability Analysis. To analyze the stability of the closed-
loop system, it is necessary to determine the tracking errors
at the origin. Tis can be achieved by obtaining the char-
acteristic equation of the closed-loop system, which is de-
rived by substituting equation (29) into equation (25):

Z
1
1s + Z

1
0 � 0,

Z
2
1s + Z

2
0 � 0.

⎧⎨

⎩ (32)

Te poles of the characteristic equation are as follows:
sd � −3/2Tr1; sq � −3/2Tr2. Te closed-loop system attains
asymptotic stability owing to the presence of negative real
parts in all of its poles.When knowledge of the disturbance is
available, the dynamics of the tracking error are solely
dictated by the prediction time, with a quicker response
corresponding to a shorter prediction time. Nevertheless,
even when the resistive torque is known, the identifcation of
uncertainties and model variations remains a challenging
task, necessitating the intervention of an observer. Te in-
corporation of disturbance compensation in the controller is
intricate due to the relative degree of the disturbance being
lower than that of the input [32]. Furthermore, if the dis-
turbance is neglected within the controller, it leads to
a steady-state error in the closed-loop system, as delineated
in the ensuing equation:

lim
t⟶∞+

e1(t) � lim
t⟶∞+

−K1F(t)

Z
1
0

,

lim
t⟶∞+

e2(t) � lim
t⟶∞+

−K2F(t)

Z
2
0

.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(33)

3.5. Robust Nonlinear Generalized Predictive Control Design
(RNGPC). Te principal limitation of the aforementioned
classical predictive control resides in its reliance upon ac-
quiring knowledge about disturbances, a task that proves
challenging to procure and must be estimated through the
expertise of an observer. Tis challenge escalates
in situations where the perturbation rate lags behind that of
the primary source, as exemplifed in the context of PMSM.
In such instances, crafting a precise disturbance observation
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becomes an undertaking, leading to a heightened level of
complexity in the design of the closed-loop system.

To improve disturbance mitigation, we have introduced
an integral action within the controller. Te noteworthy
attribute of this proposed control scheme is its capability to
enhance robustness without the need for explicit knowledge
of external disturbances and parameter uncertainties. Te
research methodology employed comprises fve principal
steps, as depicted in Figure 2.

Te quadrature criterion translating the objective of the
internal loop that is proposed is written in the following
form:

J(x, u) �
1
2


Tr1

0
Id(t + τ)

2
dτ +

1
2


Tr2

0
Iq(t + τ)

2
dτ, (34)

where Tr1, Tr2 are the prediction time for output 1 and 2,
respectively. Te integral of the sortie error is
Ii(t) � 

t

0 ei(τ)dτ i� d, q. Te sortie error with yri the de-
sired trajectory and yi the system output is
ei(τ) � (yri(τ ) − yi(τ))i� d, q, with y(t + τ), yr(t + τ) are
the prediction at τ steps ahead of the system output and that
of the desired trajectory in the future, respectively.

Te predicted value of Ii(t + τ) in this case is obtained by
a Taylor series expansion with (ρi + 1).

Ii(t + τ) � 

ρi+1

j�0

τj

j!
I

(j)
i (t). (35)

If we disregard the disturbance, the expression (25) leads
to the following equation:

_y1(t) � Lfh1(x) + Lg1
h1(x)u(t),

_y2(t) � Lfh2(x) + Lg1
h2(x)u(t).

⎧⎪⎨

⎪⎩
(36)

Te predicted Ii(t + τ) term is calculated by the fol-
lowing equation:

I(t + τ) �
Id(t + τ)

Iq(t + τ)
⎡⎣ ⎤⎦ � Τ(τ)Y(t), (37)

with:

Τ(τ) �

1 0 τ 0
τ2

2!
0

0 1 0 τ 0
τ2

2!

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

ℸ1(τ)

ℸ2(τ)

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

Y(t) � 
t

0
e1(τ)dτ 

t

0
e2(τ)dτ e1(t) e2(t) e1

.(t) e2
.(t) 

T

.

(38)

Using the equation (37) in the cost function (34), we will
have the following equation:

J(x, u) �
1
2

Y (t )
T∇ Tr1, Tr2(  Y (t) , (39)

with:

∇ Tr1, Tr2(  � 
Tr1

0
ℸ1(τ)

Tℸ1(τ)dτ + 
Tr2

0
ℸ2(τ)

Tℸ2(τ)dτ.

(40)

In order to fnd the optimal order, we must satisfy the
following necessary conditions:

zJ(x, u)

zu
� 0. (41)

By directly applying the control law defned by (39), we
obtain the following optimal control law in the sense of the
criterion (41):

u(t) � Lg1
h(x) 

− 1
Z
1
0 

t

0
ed(τ)dτ + 

2

i�1
Z
1
i ydr

(i−1)
(t) − Lf

(i−1)
h1(x) Z

2
0 

t

0
eq(τ)dτ + 

2

i�1
Z
2
i yqr

(i−1)
(t) − Lf

(i−1)
h2(x) ⎡⎣ ⎤⎦,

(42)

with:
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Z
1
0 �

10
3T

2
r1

; Z
1
1 �

5
2Tr1

; Z
1
2 � 1,

Z
2
0 �

10
3T

2
r2

; Z
2
1 �

5
2Tr2

; Z
2
2 � 1,

Lg1
h(x) �

Lg1
h1(x)

Lg1
h2(x)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

1
Ld

0

0
1
Lq

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Lfh1(x) �
−RS

Ld

id +
Lq

Ld

pωriq,

Lfh2(x) �
−RS

Lq

iq −
Ld

Lq

pωrid −
φfpωr

Lq

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(43)

Te control design methodology encompasses several key
steps as shown in Figure 2. First, a state model is established
for the PMSM in accordance with equation (1). Next,
leveraging high-order sliding mode control, the optimal
torque is calculated as outlined in equation (14). To address
the infuence of unknown disturbances, a crucial step involves
the selection of a suitable cost function that incorporates
integral action within the optimal control expression, as
described by equation (34). Employing Taylor series devel-
opment, the integral of error outputs and their corresponding

references are predicted, as detailed in equations (39)–(42).
Te culmination of these eforts involves the computation of
optimal predictive control, achieved by optimizing the per-
formance criterion articulated in equation (14).

Te proposed new controller incorporates integral ac-
tion; therefore, if the closed-loop system is stable, the steady-
state error is eliminated despite the unknown disturbances.
Terefore, it is simple to construct the controller provided by
(42) since no disturbances are included.

3.6.TeClosed-Loop System’s Stability. To assess the stability
of the closed-loop system, it is necessary to look at the
stability of the output tracking errors at the origin. Te
following characteristic equation of the closed-loop system
of the outer loop is produced by substituting (42) into (36):

Z
1
2 s

2
+ Z

1
1s + Z

1
0 � 0,

Z
2
2 s

2
+ Z

2
1s + Z

2
0 � 0.

⎧⎪⎨

⎪⎩
(44)

Te poles of the characteristic equation are as follows:

sd �
−1.25∓ 1.3307i

Tr1
;

sq �
−1.25∓ 1.3307i

Tr2
.

(45)

Because every poll has a negative real portion, the closed-
loop system is asymptotically stable. In the case where the
disturbance is known, the dynamics of the tracking error
depend only on prediction time. Te smaller the prediction
time, the faster the response.

In order to efectively mitigate the impact of
unforeseen disturbances, a pivotal aspect

involves the careful choice of a cost
function that integrates integral action into

the optimal control formulation, as
elucidated by Equation (37). Tis objective
is realized through the minimization of the
cost function over a prediction horizon of

time.

By employing the Taylor series expansion
technique, we forecast the integral of error

outputs and their respective reference
values, as comprehensively elaborated in

Equations (44) through (47). Tis approach
involves a systematic mathematical

procedure that facilitates the prediction of
these integral components, enhancing our
understanding and control of the system

dynamics.

Te culmination of these endeavors entails
the calculation of optimal predictive control.

Tis is accomplished through the
meticulous optimization of the performance

criterion as defned in Equation (15).

First, create a state model is established
for the PMSM in accordance with

Equation (1)

Utilizing advanced high-order SMC
techniques, we compute the optimal
torque according to Equation (15).

Step 5
Step 1

Step 2

Step 3

Step 4

Figure 2: Control design methodology.
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4. Simulation results

Simulations were run using theMatlab/Simulink program to
assess the efectiveness and performance of the suggested
control. Te predictive times Tr1 and Tr2 are taken 0.7ms.
Te sampling time of the controller TC and the sampling
time in the mathematical model of the PMSM TS are chosen
equal to 10−5s. Te pole placement approach is used to
determine the HSMC gains a1 and a2. Te values used are
a1 � 13 and a2 � 2000. Te reference trajectory tracking
performances are studied under unknown load torque and
parameter uncertainties. Te reference velocity passes
through a flter so that the dynamics of the reference tra-
jectory are adequate, and this avoids a strong phase current.
Te motor is driven by a voltage inverter under PWM
control, and the parameters of the investigated PMSM are
specifed in Table 1.

4.1. Performance Evaluation for Constants Parameter Values.
Within the dedicated section, we engage in a comprehensive
assessment of the proposed controller’s performance while
the PMSM operates with fxed parameters under varying
load torque conditions. Tis rigorous evaluation is a critical
component of our research, aiming to provide a deep un-
derstanding of how the controller responds to diferent load
scenarios.

Troughout this section, we meticulously investigate the
system’s behavior across specifc time intervals, each rep-
resenting a distinct phase of our analysis. Tese time in-
tervals are denoted as tϵ [0 1] s, [1 3] s, [3 6] s, [7 9] s, and [9
12] s, and they play a pivotal role in our evaluation
framework. Within each interval, we precisely defne the
magnitude of the resistive torque applied to the PMSM. Te
resistive torque profles are as follows:

(i) In the initial time interval [0 1] s, the system
operates under a constant resistive torque of 0Nm

(ii) Moving to the interval [1 3] s, the resistive torque is
elevated to 0.5Nm

(iii) During the subsequent phase of [3 6] s, the resistive
torque returns to 0Nm

(iv) As we progress to [7 9] s, the system experiences
another episode of resistive torque, set at 0.5Nm

(v) Finally, in the concluding interval of [9 12] s, the
resistive torque is once again reduced to 0Nm

Tis meticulous approach to performance evaluation
enables us to gain in-depth insights into how the proposed
controller reacts to varying load torque conditions. It em-
powers us to draw meaningful conclusions regarding the
controller’s efectiveness, stability, and adaptability across
a spectrum of real-world operational scenarios. Tese
fndings contribute signifcantly to the broader un-
derstanding of our research outcomes and the controller’s
potential applications.

Figure 3 showcases the simulation outcomes for the
velocity trajectory tracking of RNGPC and the proposed
control while accounting for varying load torque. Notably,

the proposed controller efectively neutralizes the infuence
exerted by the resistive torque. Remarkably, the speed signal
demonstrates an impressively prompt response time,
seamlessly maintaining its reference point with an excep-
tionally brief latency.

Figure 4 shows the simulation outcomes for the speed
trajectory tracking error, measured in (pu), of both
RNGPC and the proposed control, while accounting for
varying load torque. As depicted in the graphs, in both
control strategies, the error swiftly converges to 0 within
a remarkably short timeframe and attains a steady state of
zero for every change in load torque. However, it is worth
noting that the proposed control exhibits superior error
convergence to 0 compared to RNGPC across all varia-
tions in load torque. Figure 5 shows the simulation
outcomes for the electromagnetic torque and load torque,
comparing the performance of RNGPC and the proposed
control under varying resistive torque conditions. From
the depicted plots, it is evident that the electromagnetic
torque progressively rises until it reaches a magnitude
equivalent to the combined load torque and friction,
thereby precisely tracking their values.

Figure 6 illustrates the simulation outcomes for the
stator current components, iq and id, under the infuence
of varying load torque, specifcally with the imple-
mentation of the proposed control. Te fgure highlights
that, with the proposed control, the id component re-
mains consistently aligned with its reference value of
zero across all load torque variations. Additionally, the iq
component aligns itself with its reference value, denoted
as iqref, and impeccably tracks it for every change in load
torque. It is worth noting that the oscillations observed in
the signals are attributed to the motor supply inverter,
while the peaks are a consequence of the form of the
setpoint speed. Notably, the proposed method delivers
commendable performance, ensuring stability across all
signals.

Figure 7 exhibits the simulation outcomes depicting the
evolution of the current ia for both RNGPC and the pro-
posed control, considering variations in load torque. No-
tably, the proposed control demonstrates commendable
performance, ensuring stability across all signals. Conse-
quently, the observed peaks can be attributed to the specifc
shape or form of the input.

Table 1: System parameters.

PMSM parameter Value
Nominal power (Pn) 250w
Rated current (In) 5.7 A
Rated voltage (Vn) 42V
Rated speed (N) 4000 rad/min
Stator inductance (Ld) 0.00025H
Stator inductance (Lq) 0.00025H
Pole pairs number (p) 5
Flux linkage (φf) 0.015921Wb
Total inertia (J) 2.9127 × 10−4 kg.m2

Stator resistance (Rs) 0.1811Ω
Coefcient of friction (f) 3.6345 × 10−4N.m.s/rad
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4.2. Robustness Tests. To comprehensively examine the
mathematical model of the PMSM, a series of simulations
were conducted, encompassing various parameter

variations. In each simulation, a single parameter was
modifed within the time interval t ϵ [5 7] s. Specifcally, the
robustness tests involved altering the stator resistance Rs by
+100%, decreasing the magnet fux by −20%, and increasing
the coefcient of viscous friction f by +5%. Furthermore, the
load torque was set to 1Nm within the time range of t ϵ [2 7]
s, while a setpoint step of 120 rads/s was applied for each test.

Figure 8 presents the simulation results for the velocity
trajectory tracking of both RNGPC and the proposed
control, considering fuctuations in both load torque and
machine parameters. Te visual representations within
Figure 8 lead to the conclusion that the motor speed adeptly
tracks its desired trajectory, demonstrating a rapid response
and efective rejection of disturbances for both control al-
gorithms. Nonetheless, it is evident that the proposed al-
gorithm exhibits enhanced stability attributes, characterized
by a robust response and profcient disturbance rejection
capabilities.
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Figure 9 depicts the simulation results for the speed
trajectory tracking error, measured in (pu), comparing the
performance of RNGPC and the proposed control across

variations in resistive torque and machine parameters. Te
results clearly indicate that the proposed control exhibits
signifcantly lower speed tracking errors compared to

RNGPC with +5%magnet f lux at t=5 s
Proposed controlwith +5%magnet f lux at t=5 s
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Figure 9: Te evolution of the speed error with the RNGPC and the proposed control. (a) +50% of Rs, (b) +20% of the fux, and (c) +5% of
the coefcient of the viscous friction.
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Figure 10: Te evolution of Cr and Tem with RNGPC and the proposed control. (a) +50% of Rs, (b) +20% of the fux, and (c) +5% of the
coefcient of the viscous friction.
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RNGPC. Furthermore, the error converges rapidly to zero
and eventually achieves a steady state. Figure 10 presents the
simulation results for the electromagnetic torque and load
torque of the machine under the infuence of variations in
resistive torque and machine parameters. Both the proposed
control and RNGPC are displayed in the graphs. As ob-
served, the electromagnetic torque gradually increases until
it reaches a magnitude equivalent to the combined load
torque and friction, precisely aligning with these values.

Figure 11 shows the armature current components, id
and iq axis, for diferent variations in resistive torque and
machine parameters, as observed in both RNGPC and the
proposed control. Upon careful examination, it is evident
that the id axis component remains consistently at zero for
all variations in load torque and machine parameters.
However, it is noteworthy that the iq axis component fails to

accurately track its reference value under these conditions.
To assess the quality of the controlled responses, two
commonly used metrics, namely, the integral time-weighted
absolute error (ITAE) and integral squared error (ISE), were
employed in conjunction with diferent control strategies.
Te corresponding results are presented in Figures 12 and
13. Tese fndings clearly demonstrate that the responses
obtained through the proposed strategy generally out-
perform those obtained by other techniques, including
NGPC with observer and RNGPC.

Te fndings presented in this study support the ob-
jectives outlined in the introduction section, confrming the
efcacy of the proposed technique. Specifcally, the sug-
gested approach successfully achieves the goals of main-
taining the motor speed at its designated reference value and
ensuring the efcient, secure, and reliable operation of the
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Figure 11: Te components of the id and iq axes. (a) +50% of Rs, (b) +20% of the fux, and (c) +5% of the coefcient of the viscous friction.
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PMSM, even in the presence of potential electrical power
disruptions.

5. Experimental Results

Te OPAL-RT system employs hardware-in-the-loop (HIL)
simulation, bridging software-based simulations and real-
world hardware. It integrates the OP 4510 board and related
components into a real-time simulation environment. Tis
board incorporates powerful feld-programmable gate array
(FPGA) blocks for emulating and interacting with simulated
systems. Te RT-Lab interface links MATLAB/Simulink to
real-time hardware, enabling interactive feedback between
virtual models and physical components. HIL simulation
with OPAL-RT is valuable for testing control algorithms,
validating designs, analyzing complex systems, and reducing
the need for costly real-world testing [41, 42].

Te confguration of the real-time simulator setup is
depicted in Figure 14. It involves several integral compo-
nents, namely, (1) the MATLAB/Simulink software and RT-
Lab platform for execution, (2) a host PC, (3) the OPAL-RT
4510 equipment, and (4) a digital oscilloscope. Te process
unfolded with the decomposition and adaptation of the
PMSM simulation system for integration into the RT-Lab
platform, eventually culminating in the execution of real-
time simulations.

Te experimental framework was further manifested
through Figures 15–17, which show the results obtained
from the proposed technique when subjected to perturba-
tions in load torque. Remarkably, the outcomes derived
from the discrete real-time simulator, RT-LAB, exhibit
a remarkable proximity to the results anticipated from the
simulation. Tis underscores the fdelity and accuracy of the
real-time simulation process facilitated by the OPAL-RT
system.

Figure 15 shows the simulation results pertaining to
rotor speed trajectory tracking. Te plot clearly demon-
strates the remarkable fdelity between the actual rotor speed
and the reference trajectory. Even in the presence of load
torque, the control system efectively eliminates steady-state
errors, ensuring precise tracking. Moving to Figure 16, we
delve into the evolution of electromagnetic torque. Here, the

measured torque exhibits an impressive performance by
closely tracking its reference with minimal ripple, even when
dealing with abrupt trajectory changes. Tis observation
underscores the robustness and accuracy of the control
approach in maintaining torque control objectives. Te
simulation results for the d-axis component of the armature
current are presented in Figure 17. Notably, the d-axis
current component remains consistently aligned with its
prescribed reference, demonstrating the controller’s ability
to maintain desired current values accurately.
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Tus, these experimental fndings serve as compelling
evidence of the validity and efectiveness of the proposed
control approach. Te close agreement between simulation
and experimental results attests to the robustness and real-
time applicability of the control strategy, reafrming its
potential for practical implementation in various motor
control applications.

6. Conclusion

Tis paper introduces an innovative control approach that
combines HSMC with generalized nonlinear robust pre-
dictive control (RNGPC) for the PMSM. Te primary
control objective is to achieve accurate speed tracking and
ensure robustness against external disturbances and pa-
rameter uncertainties. To accomplish this, the HSMC
controller is frst employed to determine the current ref-
erence (iqref ), followed by the utilization of the RNGPC
controller to determine the reference voltage. A key con-
tribution of this work is the introduction of a novel fnite
horizon cost function for RNGPC, which incorporates in-
tegral action in the control loop, thereby enhancing ro-
bustness against parametric uncertainties and external
disturbances.

One notable feature of this method is its independence
from a disturbance observer, yet it signifcantly enhances
disturbance rejection and robustness against parameter vari-
ations. Tis unique aspect of the proposed approach sets it
apart in the realm of motor control strategies. To thoroughly
assess the efectiveness of the proposed controller, compre-
hensive testing is conducted under diverse operating condi-
tions, including scenarios with mismatched parameters and
external disturbances. To provide a clearer analysis and dis-
cussion of the presented results, we introduce performance
indices and metrics that highlight the controller’s capabilities:

(i) Tracking Performance: Te tracking error, repre-
sented as the deviation between the actual speed and
the reference trajectory, is a critical metric. Te
results demonstrate that the proposed control ap-
proach exhibits minimal tracking errors, signifying
its ability to accurately track desired speed profles.

(ii) Robustness Evaluation∗∗: Robustness is evaluated
by introducing external disturbances and parameter
uncertainties. Metrics such as disturbance rejection
ratios and parameter sensitivity analysis provide
insights into how well the controller maintains
performance in the presence of these challenges.

(iii) Convergence Rate: Te speed at which the con-
troller converges to the desired setpoints is a vital
aspect of control performance. Convergence indices
are used to evaluate the controller’s speed of
response.

(iv) Simplicity of Implementation∗∗: Te ease of
implementing the proposed control approach is
considered. Tis aspect is discussed in terms of
computational complexity and practical feasibility
using OPAL-RT.

Evaluating these performance indices allows for a more
detailed and comprehensive analysis of the presented results.
It provides a clearer understanding of the controller’s
strengths in terms of speed tracking, reactive power opti-
mization, disturbance rejection, and robustness against
parameter uncertainties, ultimately afrming its suitability
for a wide range of practical motor control applications. Te
simulation results provide clear evidence of the controller’s
robustness, demonstrating its ability to handle parameter
modifcations and changes in load torque. Te proposed
control approach exhibits quick convergence, high stability,
and minimal tracking errors while remaining simple to
implement.
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