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Accurate PV power forecasting is becoming a mandatory task to integrate the PV system into the power grid, schedule it, and
ensure the safety of the power grid. In this paper, a novel model for PV power prediction using AP-LSTNet has been proposed. It
consists of a combination of afnity propagation clustering and long-term and short-term time series network models. First, the
afnity propagation algorithm is used to divide the regionally distributed photovoltaic station clusters into diferent seasons. Te
Pearson correlation coefcient is used to determine the strong correlation between meteorological factors of photovoltaic power,
and the bilinear interpolation method is used to encrypt the meteorological data of the corresponding photovoltaic station cluster.
Furthermore, LSTNet is used to mine the long-term and short-term temporal and spatial dependence of photovoltaic power, and
meteorological factor series and linear components of auto-regression are superimposed to realize the simultaneous prediction of
multiple photovoltaic stations in the group. Finally, PV power plants in fve cities, Wuwei, Jinchang, Zhangye, Jiuquan, and
Jiayuguan in the Hexi region of Gansu Province, China, will be selected to test the proposed model. Te experimental comparison
shows that the prediction model achieves high prediction accuracy and robustness.

1. Introduction

In recent years, PV power generation has developed rapidly,
relying on the advantages of clean energy. In China, PV power
plants include centralized and distributed two categories;
centralized power plants are large-scale PV power plant clusters
constructed in desert areas, making full use of abundant and
relatively stable solar energy resources and accessing high-
voltage transmission systems to supply long-distance loads.
Distributed power stations are mainly built on the surface of
scattered buildings, solving the power consumption problems
of users in the vicinity, realizing the compensation of power
supply diference, and sending out through grid connection.
Self-generation and self-consumption surplus power on-grid is
the main mode of distributed photovoltaic power generation,
users of photovoltaic power stations issued by the power to
meet their load frst and the excess can be sold to the power

company; if the power generated by the energy does not meet
their load, the grid power supply to supplement it. Te power
company only collects daily power generation data but lacks
monitoring of the operating conditions of the power genera-
tion equipment and is unable to carry out routine maintenance
and repair. With the continuous improvement of the pene-
tration rate of distributed PV, its volatility and randomness
have become uncontrollable factors in grid-coordinated dis-
patch. Terefore, accurate short-term power forecasting of
distributed PV is of great importance to optimize power system
dispatching and ensure safe operation of the power system [1].

Short-term PV power forecasting methods can be divided
into statistical methods and machine learning methods. Sta-
tistical methods mainly include grey theory [2], regression
analysis [3], time series [4], and so on. Tese methods have
simple models but relatively poor prediction accuracy and
stability. Machine learning methods mainly include support
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vector machine [5], random forest [6], extreme learning ma-
chine, neural network [7], and so on. In recent years, deep
neural networks such as convolutional neural networks (CNN)
[8, 9] and long short-term memory (LSTM) networks [10, 11]
have also been introduced to improve the ftting ability of
models. Combining the advantages of diferent neural networks,
hybrid network prediction models such as CNN-LSTM [12, 13]
and recurrent neural network (RNN)-LSTM [14, 15] further
improve the prediction accuracy of the model by capturing the
time series and spatial correlation between PV power generation
power sequence and related infuencing factors. Since the at-
tention mechanism can measure the importance of input fea-
tures, it is introduced into various neural network units to
improve the generalization ability of the model [16, 17].

Te above power prediction method is mainly applicable to
PV power stations with meteorological acquisition systems and
complete power information, while the distributed PV power
stations with low-voltage access are small and scattered, and the
investment cost of separately confguring meteorological
measurement equipment is too high [18]. In [19, 20], by an-
alyzing the spatial correlation of PV power between the
neighboring power station and the power station to be pre-
dicted, the decision tree and neural network model are, re-
spectively, established to construct the nonlinear mapping
relationship between them. In [21, 22], the BP neural network
model is established to improve the PV prediction accuracy of
the slave station by studying the correlation between the “PV
master station—PV slave station” clustered in the same cate-
gory. In [23, 24], spatial correlation cluster analysis is performed
on historical sample groups of weather types, the deployment of
weather stations is optimized, and a multi-PV user power
prediction model based on “space-time correlation” is pro-
posed. In [25, 26], missing power data are reconstructed based
on space-time correlation, and an irradiance encryption model
is established by using a 3D convolutional neural network to
achieve full grid coverage of power and meteorological data. In
[27], an improved version of the PV2-state model is introduced
for intra-hour PV power prediction. Reference [28] proposes
a new model for predicting photovoltaic power generation
using LSTM-TCN. In [29], LSTM-based predictive models are
used to control solar PV systems and efectively prepare for
future battery system consumption. Reference [30] proposes
a new two-stage deep learning method for photovoltaic power
generation prediction, which has signifcant improvement and
robustness in point prediction and probabilistic prediction
tasks. In [31], a graph-based multisite daytime PV generation
prediction model is presented. It is possible to interpret which
PV stations and time steps infuence the prediction. Reference
[32] analyses the performance of 12 diferent models that
predict day-ahead generation in line with market conditions.

Te current short-term photovoltaic power prediction
technology has achieved certain results, but it still needs to
solve the following aspects: (1) all of the above solutions
efectively improve the power prediction accuracy of dis-
tributed PV, but the high economic cost makes it impossible
to carry out large-scale engineering practice. (2) Te power
output of distributed PV has strong randomness and vol-
atility, and has obvious daily periodicity [33]. Te power
prediction of a single distributed PV power plant not only

has low accuracy but also has little impact on power system
planning and scheduling. Te model adaptability between
diferent power plants is poor and cannot be shared.

Te traditional single model cannot efectively solve the
above problems. Regarding the photovoltaic power prediction
technology for the multivariable time series prediction sce-
nario, this paper proposes a short-term power forecasting
model for regional distributed PV power plants based on af-
fnity propagation (AP) clustering and a long short-term time
series network (LSTNet). Te regional forecasting of multiple
distributed PV power plants can efectively improve the ac-
curacy and applicability. According to the local climate
characteristics of the PV power plant, the PV output data are
identifed in seasons, and the distributed PV power plant
groups in diferent seasons in the region are divided by AP
clustering so that the weather in each power plant group is
consistent. Due to the geographic dispersion of distributed PV
power stations, it is impossible to set up a meteorological
station for each station and only the meteorological data of
centralized PV power stations that are far away can be shared.
Terefore, the Pearson correlation coefcient is frst used to
determine the strong correlation between meteorological fac-
tors of PV output power and then the corresponding mete-
orological data are encrypted by bilinear interpolation so that
each station group has its meteorological data, thus realizing
the full-area coverage of key meteorological data. Finally, the
LSTNet is used to forecast multiple PV power plants in the
cluster simultaneously to improve the short-term power
forecast accuracy of the large-scale distributed PV power plant
cluster. Combined with the measured data, the results show
that the power prediction model has excellent generalization,
high accuracy, and strong robustness.

2. Distributed PVPower Plant Cluster Partition
Based on AP Clustering

2.1. Correlation between PV Power and Meteorological
Factors. PV performance is related to many factors, such as
external meteorological factors like light intensity, temperature,
humidity, cloudmovement, wind speed and direction, etc. [34],
and internal technical parameters such as installed location and
capacity, PV conversion efciency, and PV panels. However,
large-scale distributed PV users not only seriously lack tech-
nical parameters such as installation location but also do not
provide public weather stations information, such as illumi-
nation and other meteorological data, and cannot obtain strict
geographical zoning information in accordance with meteo-
rological associations. Terefore, it is necessary to fnd the
space-time distribution rule equivalent irradiance, which de-
scribes the nature of PV power from the existing PV data.

As shown in Figure 1, since there is an approximately
linear relationship between the power plant output power
and the solar irradiance, the PV power curve of the large-
scale distributed PV power plant can be used as the
equivalent irradiance to refect the change process of me-
teorological information such as light intensity and tem-
perature of the location. According to the spatial correlation
of the historical data of PV power, the PV power plant
cluster is divided so that the data characteristics of each
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power plant in the cluster are similar and have meteoro-
logical consistency. On the one hand, this provides a basis
for the subsequent reconstruction of regional meteorological
data as the meteorological data of each distributed power
plant. On the other hand, regional forecasting of distributed
PV power plants can simplify the tedious modelling of each
individual station and reduce the difculty of forecasting.

2.2. Classifcation of PV Power Station Group by AP Clustering.
AP clustering is an unsupervised clustering algorithm for
clustering based on information transfer [35, 36]. Compared
with traditional clustering algorithms such as K-means clus-
tering, this algorithm is insensitive to outliers, and the clus-
tering results are more stable [37, 38]. In this paper, AP
clustering is used to cluster the PV power of PV power plants in
the region, and power plants with the same fuctuation trend
are divided into the same group of power plants.Te algorithm
frst takes all distributed PV power stations as potential cluster
centers, and then iteratively competes for cluster centers based
on “mutual information transmission” among power stations.
As shown in Figure 2, there are two information exchange
mechanisms between the power plant data points: attraction
information r (i, k) and assignment information a (i, k), where
the attraction information r (i, k) represents the degree to
which plant k is suitable as the cluster center of the candidate
central plant i. Te assignment information a (i, k) represents
the suitability of plant i to select plant k as the cluster center.

As an unsupervised algorithm, AP clustering cannot
directly evaluate the clustering efect. In order to obtain
accurate and stable clustering results, this paper chooses the
silhouette coefcient [39, 40] to evaluate the clustering re-
sults, and its formula is as follows:

s(i) �
n(i) − m(i)

max m(i), n(i){ }
, (1)

where s (i) is the profle coefcient of power plant i; m (i) is
the average distance between sample xi of power plant i and
other samples in the same cluster, which is called cohesion; n
(i) is the average distance between xi and all samples in other

clusters, which is called separation degree; the average
contour coefcient is the average value of all sample contour
coefcients and the value range is [− 1, 1]. Te larger the
value, the smaller the intracluster distance, and the larger the
intercluster distance, the better the clustering efect.

Te steps for dividing PV power plant groups by AP
clustering are as follows:

Step 1: Divide the PV power data into four seasons and
standardize each season.
Step 2: Calculate the similarity s (i, k) between the power
samples of the distributed PV power plants as shown in
(2) to obtain the similarity matrix S, and its diagonal
element s (k, k) is the evaluation standard for whether the
power plant k sample xk can become the cluster center of
the power plant cluster, which is called the reference
value, and its size will afect the number of clusters.

s(i, k) � − ‖xi − xk‖
2
. (2)

Where ‖·‖2 means to fnd the Euclidean distance.
Step 3: Calculate the element r (i, k) of the attractiveness
matrix r and the element a (i, k) of the attributionmatrix a.

r(i, k)⟵ s(i, k) − max
k′≠k

a i, k′( 􏼁 + s i, k′( 􏼁􏼈 􏼉, (3)

a(i, k)⟵ min 0, r(k, k) + 􏽘max
i′∉ i,k{ }

0, r′ i′, k( 􏼁􏼈 􏼉􏼨 􏼩, (4)

a(k, k)⟵ max
i′≠k

0, r i′, k( 􏼁􏼈 􏼉. (5)

Step 4: Update r (i, k) and a (i, k), and introduce
a damping coefcient λ to adjust the convergence speed
and the iterative stability.

r
(d+1)

(i, k) � λr
(d)

(i, k) +(1 − λ)r
(d+1)

(i, k),

a
(d+1)

(i, k) � λa
(d)

(i, k) +(1 − λ)a
(d+1)

(i, k).

⎧⎨

⎩ (6)
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Figure 1: Relationship between output power and irradiance.
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Where d represents the number of iterations.
Step 5: If the number of iterations exceeds the preset
number or the clustering distance is not changed, go to
step 6. Otherwise, repeat steps 3 and 4 to continue the
calculation.
Step 6: Calculate the profle coefcient according to the
clustering result under the current reference value, de-
termine the clustering center and diferent PV power
plant clusters, go to step 2 and change the reference value.
Step 7: Analyze the contour coefcients under diferent
clustering numbers, select the best clustering result, and
complete the division of the PV power station group.

3. Selection and Encryption of
Meteorological Factors

Considering that after the PV power plant group is divided,
the meteorological consistency exists in the region of the
same PV power plant group, the most relevant cluster center
power plant of each type of PV power plant group can be
selected as the representative power plant, and the meteo-
rological data of the representative power plant is used as the
overall meteorological data of the region.

Since most distributed PV power plants only have
meteorological data from central PV power plants located
far away and coarse-grained weather forecast, the bilinear
interpolation method can be used to encrypt meteorological
data of representative power plants of diferent station
groups when there is no corresponding meteorological
station for representative power plants, so that each station
group has its meteorological data. In this way, the coverage
of key meteorological data for the whole region by station
groups can be achieved. Terefore, this paper frst uses the
Pearson correlation coefcient to determine the strong
correlation between meteorological factors of PV output
power, and then uses the bilinear interpolation method to
encrypt the corresponding meteorological data for the
subsequent prediction of neural network models.

3.1. Selection of Meteorological Factors. Assuming that the
internal technical parameters of the PV power plant remain
basically unchanged, it is very important to isolate the main

factors infuencing the PV output power from the external
meteorological factors (irradiance, temperature, humidity,
etc.). Te Pearson correlation coefcient R (X, Y) is used to
measure the degree of correlation between the PV output
power and each infuencing factor, namely.

R(X, Y) �
􏽐

C
c�1 Xc − �X􏼐 􏼑 Yc − �Y􏼐 􏼑

������������������������

􏽐
C
c�1 Xc − �X􏼐 􏼑

2
􏽐

C
c�1 Yc − �Y􏼐 􏼑

2
􏽱 , (7)

where Xc and Yc are the output power and meteorological
factor sample points of the standardized PV plant sample c,
respectively. X and Y are matrices consisting of Xc and Yc,
respectively. X and Y are the mean values of Xc and Yc,
respectively. C is the number of samples. Te value range of
the correlation coefcient is [− 1, 1], and the larger the ab-
solute value, the stronger the correlation.

3.2. Densifcation of Meteorological Factors Based on Bilinear
Interpolation. Bilinear interpolation, as a classical statistical
encryption method, is widely used in signal processing, digital
image processing, and so on [41]. Te core idea is to perform
a linear interpolation in two directions, respectively. Te basic
principle is shown in Figure 3. In weather data encryption, the
two directions of the interpolation function are the east-west
and north-south distances between weather stations, as shown
on the x and y axes. P is themeteorological station to be sought,
and Q11, Q12, Q21, and Q22 are the four known meteorological
stations closest to them. Q11 and Q21 obtain the meteorological
data f(R1) of the point R1 by linear interpolation in the x-axis
direction, as shown in (8), and similarly obtain the meteoro-
logical data f(R2) of the point R2. By interpolation in the y-
axis direction from points R1 and R2, the meteorological data f
(P) of point P can be obtained, as shown in equation (9):

f R1( 􏼁 ≈
x2 − x0

x2 − x1
f Q11( 􏼁 +

x0 − x1

x2 − x1
f Q21( 􏼁,

f R2( 􏼁 ≈
x2 − x0

x2 − x1
f Q12( 􏼁 +

x0 − x1

x2 − x1
f Q22( 􏼁.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

f(P) ≈
y2 − y0

y2 − y1
f R1( 􏼁 +

y2 − y1

y2 − y1
f R2( 􏼁, (9)
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Figure 2: AP messaging mechanism.
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where x1 and y1 are the abscissa and ordinate of weather
station Q11, respectively. x2 and y2 are the abscissa and
ordinate of weather station Q22, respectively. x0 and y0 are
the abscissa and ordinate of point P, respectively.

4. Prediction Model Based on LSTNet

Te LSTNet model [42, 43] needs to keep the input and
output dimensions consistent, and it is impossible to input
only meteorological data as the characteristic variable of
multistation PV power. In this paper, the original LSTNet
model is modifed.Te PV power and meteorological factors
are taken as the input of the model. Te output dimensions
of the fully connected layer of the nonlinear branch and the
autoregressive layer of the linear branch are modifed to be
the same as the quantity dimension of the PV power plant.
Te fnal prediction result is obtained by superimposing the
prediction results of the two branches. In this way, the model
can extract the meteorological characteristics without in-
creasing the output dimension, so as to better extract the
long-term trend and short-term fuctuation characteristics
of the time series of multistation PV output and related
meteorological factors, and combine the robustness of linear
and nonlinear branch addition models to efectively predict
the PV power generation output in the future. Te structure
of LSTNet is shown in Figure 4, which consists of a nonlinear
branch composed of convolutional layers, loops, loop-skip
layers, and fully connected layers, and a linear branch
composed of autoregressive layers.

4.1. Convolution Layer. Te frst layer of LSTNet is a con-
volutional layer, which extracts short-term patterns and
local dependencies between variables from time series of PV
power and meteorological data, and mines correlations
between multiple features.

Te convolutional layer uses the convolutional kernel to
traverse the input layer and complete the data trans-
formation to the input layer. Te output obtained by
extracting the time series features by one-dimensional
convolution is

hν � f Wν ∗Xt + bv( 􏼁, (10)

where Xt is the input time series. ∗ denotes convolution
operation. W] and b] are the weight matrix and bias vector
of the ]th flter, respectively. h] is the output feature. f (·)
denotes the ReLU activation function.

4.2. Loop and Loop-Skip Layer. Te output of the con-
volutional layer is input to both the recurrent layer and the
loop-skip layer. Te recurrent layer uses LSTM network
units to selectively remember or forget sequence in-
formation, which can capture relatively long-term de-
pendencies in historical information while reducing the risk
of gradient explosion during model training. Te state of the
cycle unit at time t is calculated according to the following
formula:

rt � σ xtWxr + ht− pWhr + br􏼐 􏼑,

ut � σ xtWxu + ht− pWhu + bu􏼐 􏼑,

ot � σ xtWxo + ht− pWho + bo􏼐 􏼑,

􏽥ct � f xtWxc + ht− pWhc + bc􏼐 􏼑,

ct � ut · ct− 1 + rt · 􏽥ct,

ht � ot · f ct( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

where rt, ut, ot, 􏽥ct, ct, and ht are input gate, forget gate,
output gate, input node, memory unit, and hidden layer
output, respectively. p is the number of hidden units that are
skipped, where p� 1. xt is the input at time t.Wxr,Whr,Wxu,
Whu, Wxo, Who, Wxc, and Whc are weight matrices. br, bu,
bo, and bc are the corresponding bias vectors. σ (·) is the
Sigmoid function.

Te PV power sequence has an obvious periodic pattern,
while the LSTM network cannot capture the long-term
repetitive pattern in the sequence, which can be solved by
adding the loop-skip layer. In this paper, a recurrent RNN
with cycle skipping is used to extend the time span of the
information fow and simplify the optimization process of
the model. In particular, the currently hidden unit is con-
catenated with hidden units of the same historical period in
the adjacent time period, thus exploiting a periodic pattern
that combines short- and long-term repetitive patterns of the
partial sequence data. Te cell state update procedure for the
loop-skip layer is the same as (11), and the value of p (24N,N
is a positive integer) can be easily determined for a PV power
dataset with a clear periodic pattern.

4.3. Fully Connected Layer. Te cycle unit state of the cycle
layer at time t is connected to the fully connected layer, the
cycle skip layer has multiple connections to the fully con-
nected layer, and the number of connections is related to the
number of data points with skip length p as the period in the
time window. Te fully connected layer integrates the
outputs of the loop layer and the loop-skip layer to obtain the
prediction result of the nonlinear branch.

x x2x1
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y2

Q12 Q22R2

Q11 Q21R1

P
y

Figure 3: Principle of bilinear interpolation.
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h
D
t � W

R
h

R
t + 􏽘

p− 1

r�0
W

S
τh

S
t− τ + b, (12)

where WR and WS
τ are weight matrices. b is the bias vector.

hR
t is the output of the loop layer at time t.

hS
t− p+1, hS

t− p+2, · · · , hS
t are the outputs of the cyclic skip layers

at time instants t − p+ 1 to t.

4.4. Autoregressive Layer. LSTNet adds a linear branch
prediction module consisting of an autoregressive model
that uses the values of previous time points of the same
variable to predict the value of the current time point. Te
linear branch is predicted as follows:

h
L
t,l � 􏽘

qar− 1

φ�0
W

ar
φ yt− k,l + b

ar
, (13)

where hL
t,l is the prediction result of prediction autoregressive

component l at time t. yt− k,l is the value matrix at each
previous time point. qar is the size of the input window. War

φ
and bar are autoregressive model coefcients.

Finally, the prediction results of the linear branch and
the nonlinear branch are superimposed to obtain the fnal
prediction result 􏽢Yt:

􏽢Yt � h
D
t + h

L
t , (14)

where hD
t is the prediction result of the autoregressive model

at time t.
For the PV power sequence, the value at a given time is

highly dependent on the power value of previous time steps,
and there is a nonperiodic change in a short time range with
autocorrelation, as shown in Figure 5. Te use of an
autoregressive model can well capture the linear charac-
teristics in the PV sequence and improve the prediction
accuracy.

To sum up, the overall framework of the AP-LSTNet
model proposed in this paper is shown in Figure 6.

5. Example Analysis

In this paper, measured power data and meteorological data
of 48 distributed PV power plants in fve cities, namely,
Wuwei, Jinchang, Zhangye, Jiuquan, and Jiayuguan, in the
Hexi region of Gansu Province, China, from January to
December 2021 are selected for simulation experiments. Te
installed capacity of each PV system ranges from 30MW to
200MW.

5.1. Division of PV Power Plant Group. Due to the rotation
of the earth, the illumination time and the angle of the sun
will change with the seasons, and the power generation of
the PV power station will change seasonally. Terefore, it is
necessary to divide the group of stations into diferent
seasons and establish the prediction model. Annual PV
power data are used, frst divided into four seasonal pre-
diction units, the diferent clusters of distributed PV plants
in each season are divided by the step of dividing the clusters
of PV plants using AP clustering in Section 2.2, where the
damping coefcient λ= 0.5, the maximum number of iter-
ations is 200, and the initial value is the median of the
nondiagonal elements in the matrix S. Figure 7 shows the
four seasons of the standing group of classifcation results.

Obviously, the station group divided according to PV
power characteristics basically belongs to the same geo-
graphical area, that is, the power station in this area can be
equivalent to a small-scale PV power station group with
meteorological consistency. Tere are some diferences in
the division results of the same station group in diferent
seasons, so it is necessary to divide the station group into
four seasons before modelling. Te division results are
shown in Table 1.
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Predictive output

Autoregressive layer
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Figure 4: Structure of the LSTNet network model.
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To verify the superiority of AP clustering over traditional
clustering algorithms, taking spring as an example, diferent
clustering algorithms are used to partition the PV power of
56 power plants in this season. Te corresponding contour
coefcients under diferent classifcations K are shown in
Table 2. Obviously, when the number of classes is the same,
AP clustering has a better clustering efect and a larger
contour coefcient.

5.2. Selection of Meteorological Factors and Encryption Results.
Considering the distribution of meteorological stations and
the results of station clustering in diferent seasons, the PV
power station cluster located at 38.9∼39.5°N latitude and
96.8∼97.4°E longitude is selected as the typical station
cluster in each season. Te cluster results of nine power
plants in the power plant group in four seasons all belong to
the same power plant group, which has a strong correlation.
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Figure 6: Framework of AP-LSTNet model.
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Te installed capacity of the stations ranges from 43MW to
104MW. A suitable weather station was selected as the
representative weather station for the cluster center site. It
can be seen from Figure 8 that there is no meteorological
station that completely matches the cluster center station.
First, the nearest weather station is selected to determine the
strong correlation between meteorological factors of PV
power and Pearson correlation coefcient. Ten, the me-
teorological data of the four nearby weather stations are
encoded by bilinear interpolation, and the encoded

meteorological data of the representative power plant are
used as the meteorological data of the whole area for the
subsequent model prediction.

Te Pearson correlation coefcient between the output
power of a representative power plant of a typical distributed
PV power plant cluster and meteorological factors in dif-
ferent seasons is shown in Table 3. It can be seen that al-
though the Pearson correlation coefcients between
meteorological factors and PV power in diferent seasons are
diferent, ultraviolet index (UVI), global horizontal
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Figure 7: Division results of distributed PV clusters. (a) Spring; (b) summer; (c) autumn; (d) winter.

Table 1: Forecast seasonal unit data.

Season Spring Summer Autumn Winter
Time span 2021.4.1–2021.6.30 2021.7.1–2021.9.30 2021.10.1–2021.12.31 2021.1.1–2021.3.31
Optimal classifcation K 2 4 3 3
Contour coefcient 0.443 0.240 0.222 0.195

Table 2: Contour coefcients of diferent clustering algorithms.

Classifcation K 2 3 4 5
AP 0.443 0.435 0.178 0.155
K-means 0.443 0.150 0.153 0.129
AHC 0.443 0.410 0.162 0.149
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irradiance (GHI), direct normal irradiance (DNI), and PV
power have strong correlations. Secondly, relative humidity,
solar zenith angle, difuse horizontal irradiance (DHI), and
ambient temperature have some correlation, while dew
point and pressure have little correlation. In this paper, four
meteorological characteristics with high correlation, namely,
UVI, GHI, relative humidity, and DNI, are selected as the
main meteorological input parameters afecting PV power
generation.

Encryption based on bilinear interpolation of meteo-
rological factors of meteorological data operator site analysis
of the meteorological condition validation is shown in
Figure 9.

5.3. Short-Term Power Prediction Results

5.3.1. Evaluation Index. Te robustness of the model was
verifed using three indicators: mean absolute error (MAE)
eMAE, mean absolute percentage error (MAPE) eMAPE, and
degree of ft (RS) eRS. Te specifc expression of evaluation
indicators is as follows:

eMAE �
1

M
| ym − ym

′ | , (15)

eMAPE �
1

M
􏽘

M

m�1

| ym − ym
′ |

ym

× 100%, (16)

eRS � 1 −
􏽐

M
m�1 ym − ym

′( 􏼁
2

􏽐
M
m�1 ym − y)

2
􏼐 􏽩 × 100%,

⎡⎢⎣ (17)

where ym is the actual value of sample m (only the part
greater than 0 is calculated in eMAPE). ym

′ is the predicted
value of sample m. y is the average of the actual values.M is
the number of samples.

5.3.2. Experimental Setup. Regarding the original LSTNet
model, the search range of neurons and parameters of
each layer are set, the set of values of the number of hidden
neurons of the convolutional layer and the recurrent layer
is {48, 64, 96, 128}, the set of values of the number of
hidden neurons of the recurrent skip layer is {10, 20, 30,

Power station
Cluster center of typical PV stations
Weather station

-96 -95.4
40.3

40.9

-95.7-95.9 -95.6 -95.5-95.8

40.4

40.5

40.6

40.7

40.8

Figure 8: Distribution of distributed PV clusters and meteorological stations.

Table 3: Pearson correlation coefcient of PV and weather factors.

Meteorological factor Spring Summer Autumn Winter
UV irradiance 0.96 0.95 0.9 0.89
GHI 0.9 0.86 0.79 0.78
DNI 0.82 0.78 0.79 0.77
Relative humidity − 0.81 − 0.87 − 0.64 − 0.71
Solar zenith angle − 0.8 − 0.75 − 0.6 − 0.63
DHI 0.59 0.64 0.59 0.68
Ambient temperature 0.74 0.6 0.36 0.35
Wind speed − 0.44 − 0.36 − 0.31 − 0.22
Dew point 0.003 0.083 0 − 0.1
Intensity of pressure − 0.003 0.12 0.12 0.091
Wind direction 0.067 0.003 0.001 − 0.11
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Figure 9: Continued.
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40}, and the set of values of the regularization coefcient is
{0.1, 1, 10}. Te value set of the sliding window size is {48,
48 × 2, 48 × 3, 48 × 4, 48 × 5, 48 × 6, 48 × 7}, and the value
set of the dropout layer coefcients is {0.1, 0.2}. Te
number of neurons in each layer is traversed using a grid

search method within this threshold range; the model
prediction loss corresponding to the number of neurons
in each group is calculated, and the model parameter with
the minimum loss is selected as the fnal number of
neurons; the number of hidden neurons in the
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Figure 9: Relationship between PV and weather factors at each station. (a) UV Irradiance; (b) GHI; (c) DNI; (d) relative humidity.
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convolutional layer, the cyclic layer, and the loop-skip
layer is set to 64, 64, and 20, respectively; the regulari-
zation coefcient of the autoregressive layer is 1, the
sliding window size is 48 × 7, the skip length p is 48, and

the coefcient of the dropout layer is 0.2. Te experi-
mental batch size is 64, the training rounds are 100, and
the Adam algorithm [44, 45] is adopted as the optimi-
zation algorithm.

Table 4: eMAE results of single-station forecasting and multistation simultaneous forecasting.

Prediction
model Season

eMAE (MWh) Training
time1# 2# 3# 4# 5# 6# 7# 8# 9#

LSTNet

Spring 1.54 3.43 3.76 3.03 3.27 2.60 3.22 2.20 2.29 1357.97
Summer 1.28 2.92 2.77 2.60 2.74 1.53 2.67 1.63 1.48 1427.37
Autumn 1.27 2.39 2.74 1.96 2.62 1.72 2.42 1.54 1.81 1305.85
Winter 1.42 3.01 3.03 3.51 3.22 2.07 3.50 1.82 2.08 1341.89

AP-LSTNet

Spring 1.24 2.65 2.56 2.43 2.55 1.98 2.44 1.71 1.88 200.81
Summer 0.81 1.93 1.59 1.74 1.75 1.09 1.86 1.18 1.13 209.39
Autumn 0.93 1.96 2.24 1.65 2.04 1.30 1.99 1.16 1.38 212.98
Winter 1.14 2.64 2.43 2.69 2.55 1.50 2.76 1.55 1.61 206.23
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Figure 10: eMAPE comparison between single-station prediction and multistation simultaneous prediction in four seasons. (a) Spring;
(b) summer; (c) autumn; (d) winter.
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Table 5: Forecasting results of diferent models.

Prediction
model

Average value eMAE (MWh) Average value eMAPE (%) Average value eRS (%)
Spr. Sum. Fal. Win. Spr. Sum. Fal. Win. Spr. Sum. Fal. Win.

AP-LSTM 2.26 1.79 1.96 2.33 26.09 21.10 43.98 31.17 95.99 97.86 95.79 97.21
AP-ALSTM 2.27 1.73 1.90 2.33 25.57 19.04 40.78 29.64 95.79 97.89 95.85 97.08
AP-CNN-LSTM 2.43 2.04 1.95 2.63 26.63 21.80 38.79 32.61 95.33 97.36 95.67 96.56
AP-A-CNN-LSTM 2.43 2.00 1.90 2.53 25.49 21.65 36.09 34.43 95.59 97.27 95.82 96.63
AP-LSTNet 2.16 1.45 1.63 2.10 21.50 15.42 35.66 22.79 96.56 98.47 96.84 97.50
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Figure 11: Comparison of forecasting results in diferent seasons. (a) Spring; (b) summer; (c) autumn; (d) winter.
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Table 6: Prediction results under diferent weather types.

Forecasting method
eMAE (MWh)

Sunny Cloudy Clear to overcast Shower

AP-LSTM 0.91 2.22 2.27 2.49
AP-ALSTM 0.70 1.96 2.14 2.30
AP-CNN-LSTM 1.48 2.03 2.86 2.51
AP-A-CNN-LSTM 0.74 1.88 2.34 2.90
AP-LSTNet 0.62 1.36 1.59 1.40
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Figure 12: Comparison of forecasting results with diferent weather types. (a) Sunny; (b) cloudy; (c) clear to overcast; (d) shower.
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5.3.3. Performance Evaluation and Error Analysis of the
Prediction Model

(1) Comparative analysis of single-station prediction
and multistation simultaneous prediction

To verify the efectiveness of using AP clustering to
predict the output power of multiple PV power
plants in a typical cluster, one AP-LSTNet model and
nine LSTNet models are built. Te AP-LSTNet
model simultaneously predicts nine PV power
plants in the cluster, and its inputs are the PV power
of nine power plants and the meteorological data of
typical meteorological stations. Te nine LSTNet
models each predict the nine PV stations in the
cluster, and the input is the PV power of each station
and the meteorological data of typical meteorological
stations. Te prediction results of the two types of
models are compared and analyzed, and the pre-
diction results are shown in Table 4 and Figure 10.

It can be seen that the multistation simultaneous
prediction in spring, summer, autumn, and winter
has lower error indexes eMAE and eMAPE than that of
single-station prediction, and the average training
time is greatly reduced. It can be seen that the
prediction accuracy and speed can be efectively
improved by using AP clustering to divide the PV
power plant group and simultaneously predict the
power plants in the power plant group.

(2) Comparative analysis of diferent prediction models
To verify the validity and reliability of the LSTNet
model, the prediction results of the AP-LSTNet
model were compared with those of the AP-LSTM
model, the APCNN-LSTM model, the AP-ALSTM
model with attention mechanism, and the AP-A-
CNN-LSTM model. To ensure the objectivity and
fairness of the control experiment, all models use AP
clustering to divide the station group and predict the
nine stations of the typical station group simulta-
neously. Te parameter selection method of the
comparison model is the same as that of the LSTNet
model, and the grid search method is used to op-
timize the parameters of the comparison model.

Te experimental results are shown in Table 5 and
Figure 11. Te PV power prediction curves of power
station 1 from 5:00 to 20:00 in spring, summer,
autumn, and winter are randomly selected for dis-
play. Table 5 shows the average eMAE, eMAPE, and eRS
of nine power stations in each season.

As shown in Table 5, AP-LSTNet has a lower prediction
error than each comparison model in diferent seasons, and
the eRS of the model is above 96%. Te accuracy of eMAE and
eMAPE of AP-A-LSTM and AP-A-CNN-LSTM models with
attention mechanism is improved compared with the
original model, indicating that the attention mechanism can
improve the ability to extract key feature information.
Compared with the suboptimal AP-A-LSTM model, the

eMAE and eMAPE of the AP-LSTNet model in four seasons are
further reduced by more than 4%, and the eRS is the optimal
value in four seasons, indicating that the loop-skip layer in
this model can extract the time series characteristics of ultra-
long time series more efectively.

To further verify the prediction efectiveness of the AP-
LSTNet model under diferent weather types, the prediction
results and measured power generation data of six pre-
diction models of typical days under diferent weather types
of Power Plant 1 are shown in Table 6 and Figure 12. When
comparing the prediction results under diferent weather
types, AP-A-LSTM and AP-CNN-LSTM, the prediction
error eMAE of the AP-LSTNet model is signifcantly lower
than that of the other models under the four weather types.
Te prediction error of the model is the lowest in sunny
weather with an eMAE of 0.62MWh. Te prediction error of
the model is the highest in sunny to cloudy conditions, and
the eMAE is 1.59MWh. Compared to the contrast model, the
model has a signifcant improvement in accuracy in cloudy
and showery weather.

6. Conclusions

In this paper, a short-term PV power plant group forecasting
model, the AP-LSTNet model, is proposed. According to the
seasonal variation, four forecasting units are constructed to
simultaneously predict the output power of multiple power
plants in the group. Simulation results show that the pre-
diction results of the AP-LSTNet model are closest to the
actual output. Te main conclusions are as follows:

(1) AP clustering is used to divide multiple distributed
PV power plants into small power plant clusters so
that the meteorological data in each power plant
cluster is consistent. Te meteorological data are
encrypted by the linear interpolation method, and
the coverage of key meteorological data in the whole
region is realized.

(2) Meteorological features were added to the LSTNet
model, and the short-term dependence and cycle
repetition patterns between PV sequence and me-
teorological factors were considered. Te nonlinear
branches composed of diferent neural networks and
linear branches composed of autoregressions were
integrated to perform feature mining, and more
accurate prediction results were obtained.

(3) In the same PV power station group, the PV power of
multiple stations has a strong coupling. Compared
with single-station prediction, the LSTNet model can
better learn the dependence of multistation PV
output power, improve the accuracy of regional PV
prediction, and reduce the training cost.

It is necessary to further improve the clustering algo-
rithm to accurately partition the distributed PV by in-
tegrating geographical location information, meteorological
characteristics, and other factors; improve the accuracy of
regional PV power plant group prediction; and explore the
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use of high-precision data enhancement technology to solve
the problems of distributed PV power data and lack of key
weather elements at low cost.
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