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Accurate fault detection in high-voltage direct current (HVDC) transmission lines plays a pivotal role in enhancing operational
efciency, reducing costs, and ensuring grid reliability. Tis research aims to develop a cost-efective and high-performance fault
detection solution for HVDC systems. Te primary objective is to accurately identify and localize faults within the power system.
In pursuit of this goal, the paper presents a comparative analysis of current and voltage characteristics between the rectifer and
inverter sides of the HVDC transmission system and their associated alternating current (AC) counterparts under various fault
conditions. Voltage and current features are extracted and optimized using a metaheuristic approach, specifcally Harris Hawk’s
optimization method. Leveraging machine learning (ML) and artifcial neural networks (ANN), this technique demonstrates its
efectiveness in generating a fault locator with exceptional accuracy. With a substantial volume of data employed for learning and
training, the Harris Hawks optimization method exhibits faster convergence compared to other metaheuristic methods examined
in this study. Te research fndings are applied to simulate diverse fault types and unknown fault locations at multiple system
points. Evaluating the fault detection system’s efectiveness, quantifed through metrics such as specifcity, accuracy, F1 score, and
sensitivity, yields remarkable results, with percentages of 99.01%, 98.69%, 98.64%, and 98.67%, respectively. Tis research
underscores the critical role of accurate fault detection in HVDC systems, ofering valuable insights into optimizing grid
performance and reliability.

1. Introduction

Electric power is generated in the power plant as alternating
current (AC), and most loads are designed to operate with
AC power. Hence, it leads to the transmission of power
through HVAC transmission lines within a transmission
system. However, this transmission method comes with
several disadvantages, and because of the emergence of
power electronic technologies, a high-voltage direct current
(HVDC) transmission line has been introduced. Tese lines
efectively transmit signifcant amounts of electricity power

using direct current (DC) over long distances by overhead
transmission lines, underground cables, or submarine ca-
bles. Within a power system, electricity is generated,
transmitted, and distributed [1–3]. Transmission lines are
used to supply electricity to distant users. Since the 1970s,
the number of lines in use has increased dramatically, as has
their cumulative length.

Various factors, including lightning, short circuits,
equipment failure, human error, overload, and aging, can all
cause issues. Preventing electrical failures by repairing
mechanical damage is a typical practice. Faster repair is
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possible with an early diagnosis of the defect. Consumers
may experience brief or extended power outages because of
faults, which can result in severe fnancial losses, particularly
for businesses. Tese defects must be immediately located to
maintain a stable power system. Finding a faw is a challenge
that engineers and researchers focus on. Te majority of
study to date has been on identifying transmission line faws.
Transmission line faws signifcantly impact power systems
more than distribution systems and subtransmission faws,
mainly because physically inspecting transmission lines
requires more time [4, 5]. Achieving precise fault location is
crucial to identifying issues accurately. Engineers use fault
location algorithms to locate faults. Temporary or perma-
nent problems are common occurrences in transmission
lines, often identifed as self-clearing transient faults in
overhead lines. As a result, there is no long-term disruption
to the power supply and circuit breakers play a role in
detecting and de-energizing permanent failures; in addition,
it is possible to turn back the power supply. Te entire line
must be inspected until the issue is precisely identifed. A
defect must be known, or at least partly known, for an ef-
fective investigation. Improved service and lower inspection
and maintenance cost efectively eliminate power outages.
Tis means no power outages. Temporary defects are sig-
nifcant since they self-correct and do not impact supply in
the long term. By identifying vulnerabilities in cables
through fault location techniques, preventive maintenance
plans can be formulated [6–8].

AC and DC can be carried on transmission lines, each
with benefts. Using AC TL reduces the cost of inverters and
rectifers because both the electricity utilized by customers
and the distribution networks are AC. DC TL becomes
necessary whenever the power demand or transmission
distances grow because it links two AC systems with dif-
ferent resonant frequencies. For long-distance network
communication and power transmission, MMC-HVDC
technology is a potential alternative to AC, and besides, it
moves electricity between nonsynchronized AC networks.
Because of the skin efect of DC transmission lines, the
MMC-HVDC systems’ inductive and capacitive character-
istics remain unafected. In connected AC power grids, the
control system of anMMC-HVDC project can reduce power
oscillations by quickly modulating DC power. System
transient stability is enhanced as a result [9, 10]. Naturally,
faws can be found through foot patrols or patrols using
other mobility techniques and binoculars. It takes a while to
look into a faulty line [10–14].

Te HVDC system is preferable to the AC system at high
voltages for the following reasons:

(1) For long transmission lines with high
transmission power.
HVDC requires additional converter station
equipment for transmitting high power over long
distances; the DC system’s total loss is less than the
AC system. In this context, decisions are made based
on afordability or economic feasibility. HVDC lines
do not need intermediate stations for balancing, but
extra high voltage (EHV)-AC lines need these

stations, and under the same conditions, station
losses in HVDC lines are less than EHV-AC lines.

(2) To connect two AC systems (networks) that have
a load-frequency control system.
HVDC system has several advantages over AC
system. HVDC systems synchronize two AC sys-
tems, which do not need other systems for syn-
chronization. With HVDC, the transmission power
is controlled, there are no disturbances in the fre-
quency, and the transients in the AC network on
both sides can be improved to the desired extent.

(3) For back-to-back synchronization stations.
An HVDC converter station can be used when
someone wants to link several of AC systems with
varying frequencies. It also controls power transfer
and exchange between them.

(4) Connection of several high-pressure alternating
current networks.
Te new HVDC system can implement this possi-
bility, and three or more AC networks can be
connected synchronously by using it. Te current
power in each connected AC system can be con-
trolled, and many infuences can be transferred.

(5) For underground and submarine transmission cables
Tese cables are used for medium distances, high
voltages, and power transmission in the ocean.

Modular multilevel converter-based HVDC (MMC-
HVDC) systems’ reliability is crucial to maintain the power
systems’ security and dependability. Using extra switches
(semiconductor devices) in redundant SMs in the arm sub-
module or a submodule is an efective way to increase re-
liability in fault-tolerant systems [15–17]. In order to assure
continuous converter service, a fault-tolerant operation must
be a prerequisite for defect detection, which must be as quick
and precise as possible. Because many power electronic SMs
exist in theMMC circuit, and each of them has the potential to
fail, it is difcult to detect a fault and classify it [15, 17–20].

Tree fundamental approaches—AI-based, mechanism-
based, and signal processing-based—can detect and classify
faults in MMC-HVDC systems [21].

Tis research suggests a new hybrid method based on
current and voltage features obtained from the fault and
nonfault signals and the Harris Hawks optimization technique
to diferentiate the fault types in the MMC-HVDC systems.
Te ANN is a powerful classifying method for identifying the
error type by calculating the similarity probability between
training and experimental data. Based on the current and
voltage signal characteristics retrieved from aDC line, theANN
algorithm predicts the behavior of the components. In this
study, we choose the best features from the current and voltage
data using the Harris Hawks optimization technique. Te
Harris Hawks optimization method selects the distinctive
properties from the voltage and current signals for faster ANN
computation and better detection accuracy. Tis new char-
acteristic shows diferent behaviors in diferent error condi-
tions. Te Harris Hawks optimization algorithm reduces the
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volume of training data, improves training, and solves the
divergence problem. In thismethod, the benchmark function is
a comparison among several probabilities. Tis function can
detect the error state from the normal state. Another advantage
of this approach is that the error detection algorithm does not
need to select threshold values. Since it is based on the error
signals’ statistical characteristics and does not require a specifc
criterion function, this method will be evaluated by simulating
diferent error modes.

Te proposed method uses the ofine systems, which has
the disadvantage of being inefective with online systems.

Te MMC-HVDC sample network will be modeled
using the MATLAB-Simulink simulation package. Te
evaluation’s fndings will show specifcity, accuracy, F1
score, and sensitivity in identifying various MMC-HVDC
system problems. Te confusion matrix (with examples of
specifcity, accuracy, F1 score, and sensitivity) was used to
evaluate the results.

So far, several algorithms have successfully identifed
problems in power systems, enabling more protection and
simplifed maintenance. For example, traveling wave
methods record the refected signals at both ends after
sending an electrical pulse in the line. Tey are as follows:

(1) An analytical method is used based on frequency
measurements, like impedance. Te return time of
the pulse after traveling through the fault location
tells how far away it is. Tis method collects the
signals at the line’s ends and identifes its periodic
fundamental component after and before a fault by
applying electrical magnitudes. Handling such cru-
cial elements leads to problem identifcation.

(2) Knowledge-based techniques (AI tools) investigate
how machines can mimic human thoughts and
behaviors. Tey include numerical and symbolic
calculations.

Making rational decisions is only one aspect of artifcial
intelligence; it also includes the capacity to deal with in-
complete data and change course in response to changing
conditions.

Tree prominent families of artifcial intelligence (AI)
approaches are believed to be used in the automation and
control of modern power systems:

(1) Fuzzy logics
(2) Expert systems
(3) Synthetic neuronal systems.

In areas like load forecasting, control systems, defect
detection, and pattern categorization, neural network re-
search has much potential. It may be employed in a net-
worked environment and can learn, generalize, and tolerate
errors.

Using an ANN and the Harris Hawks Optimization
algorithm, faults can be localized, identifed, or categorized
in MMC-HVDC transmission lines.

For this study, a bipolar overhead MMC-HVDC TL type
with a length of 1200 km and a rating of 70 kV has been
chosen. Postfault MMC-HVDC TL values are coupled to

prefault DC and AC (current and voltage) at the inverter
stations and rectifer as inputs to the mentioned algorithm
and ANN. Te most frequent bipolar MMC-HVDC TL
power faults may be reliably identifed and characterized in
this study, and their locations can be specifed with a tol-
erable level of imprecision. To analyze neural networks,
neurons per hidden layer and numbers of hidden layers
validate the HHO’s selection based on features of the voltage
and current signals and ANN at each stage. According to
simulation data, ANN-based techniques help detect, classify,
and locate faults in MMC-HVDC transmission lines [22].

In previous research studies [23–29], the wavelet feature
has been used to detect errors in HVDC. Tis study uses
signal processing features and metaheuristic methods to fnd
optimal signals, and then uses a support vector machine
(SVM) machine learning model to achieve high-
performance results in detecting faults in HVDC.

Te main contribution of this research is the application
of a novel technique for fault identifcation and classifcation
in MMC-HVDC systems utilizing the Harris Hawks Opti-
mization algorithm based on ANN. With this method, the
features of the voltage and current signals are recovered
from the signal over a signifcantly shorter amount of time
using faulted and nonfaulted signals.

2. Material and Method

Te faulty and nonfawed signals were developed in this
study to assess the MMC-HVDC fault detection. Multiple
signals were constructed for this purpose, each with a unique
set of AC and DC faults. From these signals, the charac-
teristics that depend on voltage, current, and their con-
stituents are derived. Some of these traits are inappropriate
for ANN training, and when included, the accuracy of
detection and classifcation will be decreased. Te best and
most accurate features should be chosen as a result. So, for
feature selection, the Harris Hawks Optimization approach
is employed. As mentioned, Harris Hawk’s optimization has
been applied for the best feature selection from the feature
matrix from the voltage and current signals obtained from
the faulty and standard signals. Te selected feature trains
the ANN for high accuracy and fault detection performance
[30, 31]. Tis optimization algorithm is a group intelligence
method that enables the population members to take ad-
vantage of the group’s information and the situation and try
to solve an optimization problem. Metaheuristic algorithms
mainly utilize a group intelligence method to show the
group’s hunting behavior. Individuals of the population
circle the prey or the current ideal position and try search
around it, and attack the victim at its weakest point. Group
hunting is a habit many creatures display in nature, for
example, arthropods, mammals, and insects. Harris Hawks
Optimization method was developed in 2019 [32] and
modeled as an example of this type of system. Group in-
telligence systems can incorporate the behavior of numerous
creatures that cooperate, and their number may not be
signifcant. Usually, groups of up to 6 birds fy around the
prey and engage in cooperative hunting of an animal.
Figure 1 depicts this tendency.
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It is evident from these animals’ behavior that a small
number of them went hunting frst, and then other group
members joined them. Tey all cooperated and participated
in the group hunt. In this form of hunting, the prey or ideal
solution is surrounded by all the hawks or issue resolutions,
and one of the birds hunts it.Tis method demonstrates how
the prey is initially detected before being surrounded and

attacked. Each hawk in this algorithm represents a potential
solution to a problem, and the hawks fy toward the rabbit,
where the current best answer is located. Tese algorithms
start by searching the problem space for the target before
attacking it. Te falcon’s random and initial search activity
can be modeled using equation (1) [32]:

X(t + 1) �
Xrand(t) − r1 Xrand(t) − 2r2.X(t)


 rand≥ 0.5,

Xrabbit(t) − XM(t)(  − r3 LB + r4(UB − LB)(  rand < 0.5.

⎧⎨

⎩ (1)

Here, X(t) is the hawk’s current position, X(t + 1) is the
position of a hawk in the new iteration, Xrand(t) is a random
position, r1, r2, r3, and r4 are random numbers from 0 to 1,
Xrabbit(t) is the most optimal solution’s position, XM(t) is
the falcon population’s gravity point, and LB and UB are the
solution’s lower and upper limits, respectively. To calculate
XM(t), equation (2) is used, and there isN number of hawks
[32]:

XM(t) �
1
N



N

i�1
Xi(t). (2)

In this equation, XM(t) is considered the gravity point of
the population, and Xi(t) is the solution’s position (the i-th
falcon). Te energy coefcient in the falcon optimization
algorithm changes the falcons’ behaviors from searching to
hunting over time, and equation (3) shows this behavior.
Moreover, in this context, the parameter E value constantly
reduces (like 2 to 0). Figure 2 shows a change in parameter E
in terms of repetition.

Here, E0 is the initial energy value, T is the algorithm’s
maximum iteration, and t is the number of current iterations
[32]:

E � 2E0 1 −
t

T
 . (3)

Tese behaviors were used later for choosing the optimal
features for the feature matrix generated from the voltage
and current signals from the MMC-HVDC model. Shahin’s

optimization technique includes a collection of behaviors
used to solve the problem and direct the crowd.

Figure 3 depicts the fowchart of the process for choosing
and using the features in the ANN.

Te training of the ANN has been done by Lev-
enberg–Marquardt training algorithm. Tere are various
benefts to using the Levenberg–Marquardt algorithm. It is
more computationally efcient than the Gauss–Newton
approach and converges more quickly than the steepest
descent method.

2.1. Model. Te back-to-back MMC-HVDC modular mul-
tilevel converter that provides electricity to a passive network
serves as amodel.TeMMC rectifer and inverter, which have
51 levels, are similar in starting settings. 66 kV is the con-
nection voltage. For a steady statemodulation index of 0.8, the
DC voltage is 135 kV. Te converter has a 220 MVA rating.

Te model uses the modular multilevel converter’s ag-
gregated modeling technique to boost the model’s com-
putational efectiveness while preserving the critical
dynamics and details. For example, every submodule ca-
pacitor of an arm of the MMC is modeled as a standard
virtual capacitor, which implies that the model assumes
perfect capacitor voltage balancing. However, this is merely
a physical characteristic of practical design; it does not afect
the simulation’s outcomes.

Voltage source converters (VSCs) are employed in
modern HVDC, although thyristors are used in the model
for this study. Te literature has well-established and
established protection methods for thyristor-based two-

Figure 1: Hunting mechanism based on group intelligence in the HHO algorithm (source: fgure is reproduced from Heidari et al. [32]).
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Figure 2: Reduction of the E index according to the repetition of Shahin’s optimization algorithm (source: fgure is reproduced from
Heidari et al. [32]).

Start

Use the trained network in Simulink

Finish

Find accuracy, sensitivity, and specificity

Create both faulted as well as non-faulted signals in the MMC-
HVDC system

Extract features from these signals and put them in a feature
matrix

Use the HHO to select the important features based on their
efficiency

Train the ANN using the feature data based on the Levenberg-
Marquardt training algorithm

Evaluate the model for faulted and normal signals and their
classes

Are the test fault and non-
fault signal and their

classification finished?

Figure 3: Flowchart for the proposed method’s fault detection and classifcation.

International Transactions on Electrical Energy Systems 5



terminal HVDC systems [33–35]. VSC-based systems, and
specifcally multiterminal DC systems, are the subject of the
present protection problem. Te HHO approach is utilized
in this work to assess the features and choose the optimal
voltage and current signal, which is its key contribution. In
addition, authors advise employing HVDC systems based on
VSC in simulation experiments in future investigations.

Te importance of large training data in machine learning
is crucial for enhancing accuracy and resilience in protection
techniques, despite challenges like heightened computational
costs [36]. To overcome these challenges, strategies such as data
compression and distributed training algorithms are suggested
[37]. Te benefts of large training datasets include improved
accuracy and increased robustness to noise and outliers [38], as
models trained on such datasets can better comprehend in-
tricate data relationships [36]. Te neural network model and
Simulink model that were utilized to evaluate the system are
seen in Figures 4(a) and 4(b), respectively.

With a source of voltage harmonics on the DC side and
a source of current harmonics on the AC side, respectively,
the HVDC converter is used in both AC and DC systems.
Te output harmonics are arranged in accordance with the
number of converter valves (P), where k is an integer and
n� kP± 1 for AC current harmonics and n� kP for DC
voltage harmonics, respectively. For this reason, AC flters
are placed on either side of the rectifer and inverter to cancel
out the current harmonics on the AC side. Te equations for
the power system and the control/protection system were
solved during the simulation using a sampling time of
Ts� 50 μs. As additional primary controls for HVDC, power
control on the inverter side and rectifer control on the
rectifer side are used.

When a valve is operating normally, the diferences in
thyristors’ properties might put a lot of strain on it. Te
voltage on all of a valve’s thyristors will drop as a result of
each pole’s improper operation, abruptly reducing the
transmitting power. Te HVDC converter must therefore be
safeguarded as a standalone device.

Te start unit of the protection block is the fault de-
tection. Terefore, the MMC-HVDC protection systems’
faws must be found using a quick and accurate technique.
To acquire a quick response to fault detection in this study,
machine learning (ML) is applied. Te learning phase of the
ML method takes time, but once complete, the trained
network is ready for fault detection. ML is much faster than
logic algorithms at fault discovery during testing.

Te inverter and rectifer types of failures in
MMC-HVDC converters are introduced separately in this
paper. Te rectifer’s dynamic behavior, simulation, and
appropriate controller are then investigated using MATLAB
software. Te HHO is then used to identify the best features,
and the prospective ML is trained by stripping the fault
signal and the nonfault signal of the traits of the best features.

3. Results and Discussion

Tis section discusses fault detection, categorization, and
classifcation scenarios. Te signals have been separated into
faulty and nonfaulted signals for fault detection. Te voltage

and current signals yielded characteristics employed in the
ANN with 0 and 1 target numbers. In this case, “0” is used
for nonfault signals, and “1” is used for the faulted signals.

3.1. Fault Detection. Six inputs are given to the neural
network during the fault detection procedure.Tree voltages
from the corresponding three currents and phases are the
inputs. Te supplied voltage and current values are nor-
malized based on the prefault values. Te data set was
created considering the ten distinct errors and no-fault
conditions. Te training set consists of 8,712 input and
output samples, comprising 6 inputs and a single output for
every input-output pattern (means 792 for no-fault condi-
tions and 792 for each of the 10 faults). Te neural network’s
output, a yes or no form, or 1 or 0, tells us whether the defect
has occurred. Five layers make up the designed artifcial
neural network architecture. A 6-12-6-4-1 neural network
architecture was selected after running simulations, which
showed that it had three hidden layers with 14, 8, and 4
neurons, respectively. Figure 5 shows satisfactory neural
network training performance. Te trained neural network’s
total mean squared error (MSE) is less than 0.0001, but after
the network’s training, it was 5.8095e 005. As a result, the
ANN was trained using the fnal architecture for the pro-
vided input and output for this data set.

After training a neural network, a linear regression plot
was generated to evaluate its performance that links the
objectives and outputs, displayed in Figure 6.

Te correlation (R) shows the neural network targets’
ability to follow the output changes (0 depicts total corre-
lation, and 1 means no correlation). Tis study shows
a correlation coefcient of 0.99982, indicating an excellent
connection. Plotting the confusion matrices for the diferent
kinds of mistakes on the trained neural network encoun-
tered is another method of evaluating the neural network’s
performance. Figure 7 shows the confusion matrix (training,
testing, and validation).

Te successfully classifed and incorrectly classifed cases
of the neural network are indicated by green and red di-
agonal cells, respectively. Each matrix’s fnal dark gray cell
displays the successfully categorized cases in green and the
opposite in red. Obviously, the selected neural network
detects faults with 100% accuracy.

3.2. Fault Classifcation. Te classifer neural network’s
creation and development follow the procedure used in fault
detection. As previously described, the constructed network
accepts the six input sets (three-phase voltage and current
normalized based on prefault values). Te neural network
has four outputs: an output for the ground line and three
outputs for each of the three phases’ fault conditions.
Consequently, the outputs are either 0 or 1, indicating a fault
or no fault in any of theA, B,C, orG lines. Here,G represents
the ground, and A, B, and C stand for the transmission line’s
three phases. Because of this, each of the diferent faws can
be represented by one of the many possible permutations.
Te suggested neural network must accurately identify the

6 International Transactions on Electrical Energy Systems



ten potential error categories. Table 1 indicates the ideal
result for each faw.Te training set’s 7,920 input and output
patterns (792 for each type of fault out of 10 faults) have six
inputs and a single output in every input-output combi-
nation. Te number of neurons in each hidden layer and
combinations of hidden layers in back-propagation net-
works were examined. Te neural network (6-38-4) consists
of six neurons in the input layer, 38 in a hidden layer, and 4
in the output layer. It was only the one that operated sat-
isfactorily. Te trained neural network’s total mean square
error is 0.036043, and Figure 8 shows testing and validation
curves with similar properties, which shows the efectiveness
of training.

Two methods are used to gauge how well the trained
neural network performs. Te frst method involves a linear
regression among the targets and outputs, as displayed in

Figure 9. In this instance, the correlation coefcient was
0.93788, indicating an acceptable target-output connection.
Figure 10 demonstrates the trained neural network’s ability
to determine the fault type (78.1%). In addition, the neural
network can distinguish among the ten transmission line
defects.

Table 2 displays the ANN fault detection’s accuracy. Te
output network is split into fault and normal categories.
Table 2 shows a 100% detection accuracy for testing pro-
portions (0.1, 0.5, and 0.7). At a 0.9 testing proportion, the
detection accuracy is 99.7%, meaning that only 0.3% of fault
instances are mistakenly labeled as normal.

Table 3 contrasts the MMC-HVDC fault classifcation
system as a whole between the suggested approach and other
methods, as well as sensitivity, accuracy, Jaccard, precision,
and F1 score.

(a)

(b)

Figure 4: (a) Te Simulink model and (b) the neural network model.
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Te F1 score (machine learning evaluation metric) as-
sesses a model’s accuracy, combining the model’s precision
and recall ratings. Te accuracy statistic determines the
frequency of correct predictions throughout the entire
dataset.

Contrary to the simulated annealing (SA), genetic al-
gorithm (GA), particle swarm optimization (PSO), and
principal component analysis (PCA), the suggested method
uses the HHO to choose the best features from the currents,
voltages, and their derivatives. Te trials showed that, for
sensitivity, accuracy, Jaccard, precision, and F1 score, re-
spectively, GA, PCA, PSO, SA, and the suggested technique
(HHO) had accuracy values of 95.23%, 97.33%, 93.46%,
97.79%, and 99.26. Compared to other approaches, the
accuracy of the suggested method was the highest because,
when feature selection and HHO were applied, the accuracy
rose to 99.26%.

Te computational and hardware requirements of this
approach are not examined in this paper because of the
length of time needed to remove the fault. Te detection and
classifcation accuracy rate are the main aim of this study.
Te processing time of the training and testing and timing of
the MMC-HVDC systems protection is not considered in
this study.

Te accuracy, sensitivity, and specifcity of the fault
classifcation system are contrasted with alternative ap-
proaches in Table 4.

Te paper introduces an innovative fault detection
technique for HVDC systems, utilizing a fusion of com-
parative analysis, metaheuristic optimization, and machine
learning. A thorough evaluation of its efcacy necessitates
both quantitative and qualitative comparisons with estab-
lished techniques. Drawing from the details in the paper and
the data in Tables 5 and 6, let us provide a comprehensive
analysis:

3.3. Quantitative Comparison. Te quantitative assessment
reveals that the proposed technique outperforms existing
methods across various metrics. In comparison to Table 5, it
is evident that the new technique demonstrates superior
accuracy, sensitivity, precision, Jaccard, and F1 score. Tese
improvements highlight its quantitative edge over the
established techniques, suggesting a more precise and reli-
able fault detection capability.

3.4. Qualitative Comparison. Higher accuracy: the novel
technique uses metaheuristic optimization for feature se-
lection, achieving higher accuracy than traditional methods
(Table 6).

Simplifed design: integration of fault localization within
the model simplifes the overall system design, ofering
a more streamlined approach.

Adaptable and robust: the technique’s high adaptability
to unknown faults and robustness to noise makes it versatile
and reliable for real-world applications.

Te combined quantitative and qualitative comparison
highlights the promising nature of the novel fault detection
technique for HVDC systems. Its quantitative superiority,
coupled with qualitative strengths such as metaheuristic
optimization, fault localization integration, adaptability, and
robustness, positions it as a compelling choice for advancing
fault detection capabilities. However, the discussion also
recognizes the trade-ofs, urging further exploration into
practical feasibility and interpretability.

3.5. Analysis

(i) Te HHO technique achieves signifcantly better
performance across all metrics compared to existing
techniques.

Best Validation Performance is 0.0028111 at epoch 16
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Figure 5: Te network’s error performance.

8 International Transactions on Electrical Energy Systems



(ii) Te HHO technique utilizes a metaheuristic algo-
rithm for feature selection, which improves its ac-
curacy by focusing on themost informative features.

(iii) Te HHO technique integrates fault localization
within the model, simplifying the overall system
design.

(iv) Te HHO technique demonstrates high adaptability
to unknown faults and robustness to noise, making
it suitable for various real-world scenarios.

(v) Existing techniques, while less accurate, ofer lower
computational complexity and potentially lower
cost-efectiveness.

3.6. Summary. Te proposed HHO technique presents
a promising solution for accurate and efcient fault de-
tection in HVDC systems. Its superior performance,
adaptability, and robustness make it a valuable tool for
enhancing grid reliability and reducing maintenance costs.
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Table 1: Fault classifer ANN outputs for diferent faults (Table 1 is reproduced from Jamil et al. [39]).

Phases
Fault type A B C Ground
AG 1 0 0 1
BG 0 1 0 1
CG 0 0 1 1
AB 1 1 0 0
BC 0 1 1 0
AC 1 0 1 0
ABG 1 1 0 1
BCG 0 1 1 1
ACG 1 0 1 1
ABC 1 1 1 0
DC 1 1 1 1

Best Validation Performance is 0.0025311 at epoch 5
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However, further research is needed to evaluate its practical
feasibility and interpretability.

4. Future Research Direction

Future work can focus on the following areas to further
advance fault detection and localization in HVDC trans-
mission systems:

(i) Fusion of data from multiple sources: in addition to
traditional voltage and current measurements, fu-
ture fault detection systems could beneft from

fusing data from multiple sources, such as optical
sensors, acoustic sensors, and temperature sensors.
Tis would provide a more comprehensive and
nuanced view of the system, enabling more accurate
and reliable fault detection and localization.

(ii) Use of artifcial intelligence (AI): AI techniques like
deep learning can revolutionize fault detection and
localization in HVDC transmission systems. AI
algorithms can be trained on large datasets of
historical data to learn complex relationships be-
tween system parameters and fault signatures. Tis
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Figure 10: Confusion matrix (training, validation, and testing): (a) discriminant classifer, (b) Naive Bayes, (c) SVM, and (d) decision tree.

Table 2: Fault detection accuracy of ANNs.

Testing data proportion 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
Detection accuracy (%) 99.9 100 100 99.98 100 99.89 98.96 98.91 98.88

Table 3: Te suggested method’s accuracy, Jaccard, sensitivity, precision, and F1 scores.

Method Accuracy Sensitivity Precision Jaccard F1 score
GA 97.33 97.35 97.45 96.89 97.64
PCA 95.23 95.12 95.34 93.36 95.24
PSO 97.79 97.25 97.68 95.69 97.90
SA 93.46 93.11 93.78 88.24 93.79
HHO 99.26 99.48 99.89 98.56 98.68

Table 4: Comparison between proposed method and other studies.

Method Accuracy Sensitivity Precision
Gray wolf optimization [40] 99.00 99.24 98.74
Ant colony based on wavelet transform [41] 99.45 99.13 99.77
Particle swarm optimization [42] 98.74 98.5 97.85
Cat swarm optimization [42] 98.58 98.01 97.51
HHO 99.26 99.48 99.89
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knowledge can then be used to develop fault de-
tection systems that are more accurate, robust, and
scalable than traditional methods.

(iii) Cybersecurity: as HVDC transmission systems
become increasingly interconnected and digitized,
it is important to consider cybersecurity threats.
Future fault detection systems must be designed to
be resilient against cyberattacks and other mali-
cious activities. Tis includes implementing se-
curity measures to protect data confdentiality,
integrity, and availability.

 . Conclusion

Tis research examined how artifcial neural networks
can identify and categorize problems in three-phase
transmission line systems. Te established process uses
three-phase currents and voltages as inputs to neural
networks. Depending on their prefault values, the inputs
were normalized. Only the line with ground fault is the
subject of the results presented in this research. Te
development of ANN’s other fault types, such as double
line-to-ground, symmetrical three-phase, and line-to-l-
ine faults, can be investigated. Te back-propagation
neural network architecture has been used in all artif-
cial neural networks examined here. According to the
simulation results, all the suggested neural networks have
shown adequate performance and are practically
implementable. Tis work emphasizes the importance of
selecting the ideal ANN confguration to maximize
network performance. Tis study used a sampling fre-
quency of 1,000 Hz to sample the voltage and current
waveforms.
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