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Tis paper is concerned with the design of a dual-loop control system for permanent magnet synchronous motor (PMSM). An
improved linear extended state observer (LESO) with excellent estimation capability is employed to develop an improved linear
active disturbance rejection control (LADRC) suitable for PMSM speed regulation, achieving outstanding disturbance sup-
pression in PMSM speed control. Te use of an internal model control scheme to initialize the parameters of the proportional-
integral- (PI-) based current controller simplifes the search space of the control system parameter optimization. An improved
particle swarm optimization (PSO) algorithm is applied to optimize the controller parameters, thereby enhancing the overall
system performance. Finally, through a series of simulations and experiments, we validate that our proposed controller exhibits
superior performance compared to some other control methods.

1. Introduction

Te permanent magnet synchronous motor (PMSM) is
a type of electric motor that uses permanent magnets to
create a magnetic feld and achieve synchronous rotation.
Owing to the advantages of high efciency, compact size,
high power density, and excellent dynamic response,
PMSMs have been widely used in various applications [1, 2],
including industrial machinery, electric vehicles, robotics,
and renewable energy systems.

In practical engineering, proportional-integral-
derivative (PID) control is the most common control
technique used for regulating the speed or position of a servo
PMSM, but it still has some defciencies, e.g., limited ro-
bustness to parameter variations, restrictions in disturbance
rejection, and difculties in controller tuning, which would
limit its performance in many applications [3, 4]. To address
the aforementioned problems, many control schemes have
been employed to enhance the performance of PMSM
control systems in recent years, e.g., optimal control [5],
adaptive control [6], model predictive control [7], internal
model control [8], and sliding mode control [9]. Although

the abovementioned control methods can improve the
performance of PMSM servo systems, they still struggle to
deal with some of the inadequacies [10–12], such as the
instability caused by oscillation in the control system, the
need for accurate model information in the controller de-
sign, and the presence of internal and external uncertain
disturbances, among others.

To handle the problems mentioned above, active dis-
turbance rejection control (ADRC), which does not require
an accurate system model [13, 14], has attracted many re-
searchers to devote their attention to the disturbance-
tolerant control of PMSMs [15, 16]. For example, a non-
linear multi-input multi-output algorithm based on ADRC
has been developed for the decoupled vector control of
PMSMs [17]. Te simulation results can verify the algo-
rithm’s improved static and dynamic performance. In [18],
a hybrid algorithm combining sliding mode control and
ADRC has been developed to promote the disturbance-
rejection ability as well as the static and dynamic speed-
tracking performance of PMSMs. In [19], the nonlinear
ADRC has been utilized for the control of PMSMs, which
exhibits signifcant improvements in robustness and
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disturbance-rejection capabilities in comparison with the
traditional proportional-integral (PI) control. In [20], the
extended state observer (ESO) of the nonlinear ADRC has
been employed for estimating and compensating for the
total disturbance of the system, thereby achieving the
disturbance-tolerant decoupling control of PMSMs, which
can expand the speed regulation range and enhance the
precision of the controller. Tough ADRC is model in-
dependent and ofers strong disturbance-rejection capabil-
ities, it has to face the challenge of tuning many control
parameters, making it unfavorable in real applications.

To promote the practical application of ADRC in en-
gineering, the linear active disturbance rejection control
(LADRC) has been proposed in [21], which replaces the
nonlinear part of the ADRC controller with linear functions
and establishes a relationship between the controller’s pa-
rameter and desired bandwidth. LADRC can reduce the
number of parameters to regulate and make the tuning of
parameters easier to implement [22, 23]. Although LADRC
has shown its advantages in control systems, to the best of
our knowledge, only regular methods have been applied and
little efort has been made to enhance the observation ability
of the linear extended state observer (LESO), which is one of
the core functional modules of LADRC. As such, in this
paper, we are motivated to challenge the design problem of
LADRC based on an improved LESO (ILESO) for the PMSM
control system, thereby further improving the control
performance by accurately estimating the internal and ex-
ternal disturbances of the system.

Furthermore, PMSM control systems typically adopt
dual-loop controllers for the speed and current regulation of
PMSMs, which have many parameters to optimize. As such,
the parameter tuning of the control system is a time-
consuming and labor-intensive task for researchers. To
cope with this intractable issue, extensive research eforts
have been focused on exploiting heuristic algorithms to
alleviate the burden of the tedious task, e.g., the particle
swarm optimization (PSO) algorithm [24], genetic algo-
rithm (GA) [25], pigeon-inspired optimization (PIO) al-
gorithm [26], and diferential evolution (DE) algorithm [27].
Despite the considerable research eforts, it is still a complex
task to develop a reliable heuristic algorithm with strong
capabilities to avoid premature convergence and escape
from local optima, and this problem constitutes another
motivation for the current study.

Motivated by the abovementioned discussions, this
paper focuses on exploring the design of PMSM control
systems integrating LADRC and PI controllers via an im-
proved PSO algorithm. To design the speed controller for
PMSMs, a modifed LADRC (MLADRC) approach is
employed, incorporating an improved LESO methodology.
Subsequently, the PI controller for the current control of
PMSMs is devised by initializing the controller parameters
through the internal model scheme. Furthermore, the pa-
rameters of the speed and current controllers are fne-tuned
using an improved PSO algorithm simultaneously. Finally,
the efectiveness and superiority of the proposed method-
ology are validated through a series of simulations and
experiments.

Te main contributions of this paper can be summarized
as follows:

(1) Using an improved LESO as a foundation, we in-
troduce a modifed LADRC system for superior
disturbance rejection in PMSM speed control.

(2) For the current control of PMSMs, PI controllers are
devised with their parameters initialized through the
internal model scheme.

(3) To optimize both the speed and current controllers
within the PMSM control system, an improved PSO
algorithm is employed to tune the parameters of the
whole system simultaneously.

(4) Trough a series of simulations and experiments, we
validate the superior performance of our proposed
controller in comparison to other control methods.

Te remainder of this paper is arranged as follows.
Section 2 provides an overview of the preliminaries, covering
the mathematical model and vector control of PMSMs. In
Section 3, the design of the speed controller for PMSMs is
discussed, focusing on the utilization of a modifed LADRC
approach. Section 4 is dedicated to explaining the design of
the PI controller for the current control of PMSMs. Section 5
introduces an improved PSO algorithm employed for tuning
the parameters of the control system. Te results of simu-
lations and experiments are reported in Section 6. Finally,
Section 7 concludes the paper and outlines future research
directions.

2. Preliminaries

2.1. Mathematical Model of PMSMs. Te mathematical
model of PMSMs is usually established based on the fol-
lowing assumptions [28]:

(1) Te saturation of the motor’s core can be ignored.
(2) Te eddy current and hysteresis losses of the motor

can be neglected.
(3) Te current of the motor is in the ideal sinusoidal

waveform.

Keeping the abovementioned assumptions in mind, the
mathematical model of PMSMs in the d-q reference frame
can be described by the following equations [29].

Te voltage equations of PMSMs can be expressed as
follows:

ud � Rid − ωeLqiq + Ld

did

dt
,

uq � Riq + ωe Ldid + ψf􏼐 􏼑 + Lq

diq

dt
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where ud and uq represent the voltage components in d-q
axes, respectively; id and iq indicate, respectively, the current
components in d-q axes; Ld and Lq are the corresponding
inductance components; R denotes the stator resistance of
the motor; ωe denotes the electrical angular velocity of the
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motor; and ψf stands for the fux linkage of the rotor
magnet. It should be noted that the time t of the variables is
omitted in this paper, unless otherwise specifed.

Te electromagnetic torque equation of PMSMs can be
expressed as follows:

te � 1.5Pniq Ld − Lq􏼐 􏼑id + ψf􏽨 􏽩, (2)

where te and Pn are, respectively, the electromagnetic torque
and pole-pairs number of the motor.

Moreover, the motion equation of PMSMs can be
expressed as follows:

J
dωm

dt
� te − tl − Bωm, (3)

where J and ωm indicate, respectively, the rotational inertia
and mechanical angular velocity of the motor; tl and B

represent the motor’s load torque and friction coefcient,
respectively.

2.2. Vector Control of PMSMs. Te vector control of AC
motors can solve the problem of efcient torque control of
AC motors [30]. By regulating the excitation current id and
torque current iq in d-q axes, the decoupling control of fux
and torque can be realized for AC motors.

Till now, several vector control schemes have been de-
veloped for PMSMs in terms of diferent control methods on
the excitation and torque currents [31, 32], e.g., the exci-
tation current i∗d � 0 scheme, the power factor cos ϕ � 1
scheme, the constant fux scheme, and the scheme of the
maximum ratio of torque and current, to name a few. In this
paper, the i∗d � 0 scheme is applied for the vector control of
PMSMs since it is easier to achieve the efcient current
control of the motor [33].

Figure 1 describes a PMSM vector control system, where
ω∗m, i∗q , and i∗d are, respectively, the desired setpoint values for
the speed and current controllers; the Clark and Park trans-
forms are used for converting between the abc-αβ and αβ-dq

coordinate systems, respectively; and the automatic speed
regulator (ASR) and the automatic current regulator (ACR) are
utilized for the speed and current controllers of the PMSM,
which will be designed in the following sections of this paper.
For more details on the vector control of PMSMs, the in-
terested reader can refer to [34, 35] and the references therein.

3. Design of ASR Based on Modified LADRC

3.1. Speed Controller Design Based on LADRC. Te LADRC
consists of the linear tracking diferentiator (LTD), linear
extended state observer (LESO), and linear state error
feedback (LSEF) [36]. Figure 2 depicts the structure of
a LADRC system, where the role of LTD is to track the
desired setpoint signal for an arranging transition process,
thereby reducing the overshoot during the regulation of the
system; the LESO is used to observe the extended states used
for the state feedback and disturbance compensation of the
system, and the LSEF has the efect of generating a control
output to compensate for the total disturbance of the system

[21]. Te LADRC for the speed control of PMSMs in this
paper is designed as follows.

3.1.1. LTD. Te LTD utilized in this paper can be expressed
as follows:

e0 � ω0 − ω∗m,

_ω0 � − re0,
􏼨 (4)

where ω∗m is the input of LTD that denotes the desired
setpoint of the mechanical angular velocity of the PMSM; ω0
is the output of LTD that denotes the desired mechanical
angular velocity of the speed control; e0 denotes the error
between ω∗m and ω0; and r is the speed factor that afects the
tracking speed of LTD.

3.1.2. LESO. From equations (2) and (3), the speed difer-
ential equation of PMSMs can be expressed as follows:

dωm

dt
�
1.5
J

Pniq Ld − Lq􏼐 􏼑id + ψf􏽨 􏽩 −
1
J

tl + Bωm( 􏼁, (5)

which can be simplifed as follows:

dωm

dt
�
1.5
J

Pnψfiq + f, (6)

where f is called the total disturbance of the speed loop that
can be expressed as follows:

f �
1.5
J

Pniqid Ld − Lq􏼐 􏼑 −
1
J

tl + Bωm( 􏼁 + δ, (7)

where δ stands for the total uncertain dynamics owing to the
model inaccuracy and load disturbance of the system. Let
b0 � 1.5Pnψf/J, y � x1 � ωm, x2 � f, and u � iq, then
equation (14) can be formulated as follows:

_x1 � x2 + b0u, (8)

and the state-space equation of the system can be expressed
as follows:

_x � Ax + Bu + E _f,

y � Cx,

⎧⎨

⎩ (9)

where x � [x1, x2]
T, A �

0 1
0 0􏼢 􏼣, B � [b0, 0]T, E � [0, 1]T,

and C � [1, 0]. Ten, according to the design method
proposed in [21], the LESO for the extended state obser-
vation of the PMSM servo system can be designed as follows:

_z � [A − LC]z + B L􏼂 􏼃
u

y
􏼢 􏼣

�
− β1 1

− β2 0
􏼢 􏼣

z1

z2
􏼢 􏼣 +

b0 β1
0 β2

􏼢 􏼣
u

y
􏼢 􏼣,

(10)

where z � [z1, z2]
T is the extended state vector of the ob-

server, i.e., the estimation of x � [x1, x2]
T; L � [β1, β2]

T is
the gain of the observer, which can be designed by placing
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the poles of the characteristic equation to the stable pole − α,
i.e., the eigenvalue λ should satisfy the following equation:

|λI − (A − LC)| �
λ + β1 − 1

β2 λ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� λ2 + β1λ + β2
� (λ + α)

2
,

(11)

where I denotes the identity matrix. As such, the gain of the
observer can be calculated as follows:

L � β1, β2􏼂 􏼃
T

� 2α, α2􏽨 􏽩
T
, (12)

where α> 0 can be considered as the bandwidth of the LESO
system. By appropriately selecting the bandwidth, the LESO
can obtain an accurate estimation of the system’s extended
states, thereby achieving better control performance by
compensating for disturbances.

Remark 1. Te design of the bandwidth α is a tradeof
between the performance of tracking disturbances and the
tolerance of sampling noises. Generally, on one hand, a large
bandwidth can ensure the fast dynamics of the LESO in
tracking the total disturbance. On the other hand, the

heightened sensitivity to sampling noises will be an in-
evitable consequence of the large bandwidth.

3.1.3. LSEF. In this paper, the proportional control is used
for the LSEF, which can be expressed as follows:

u0 � Kp ω0 − z1( 􏼁, (13)

where Kp is the gain of the proportional controller; ω0 is the
output of LTD, i.e., the desired mechanical angular velocity
of the speed control loop; and z1 is the estimation of the
mechanical angular velocity ωm.

As depicted in Figure 2, to compensate for the total
disturbance of the speed control loop, the control output u,
which is also the desired q-axis current i∗q of the current
control loop, can be expressed as follows:

u �
u0 − z2

b0
, (14)

where z2 is the estimation of the total disturbance.

3.2. Modifed LADRC Based on an Improved LESO. Te
LESO expression in equation (10) can be rewritten as
follows:

e1 � z1 − x1,

_z1 � z2 − β1e1 + b0u,

_z2 � − β2e1.

⎧⎪⎪⎨

⎪⎪⎩
(15)

In the LADRC-based PMSM control system, the ob-
jective of LESO is to achieve convergence of observer out-
puts to the extended states, i.e., z1⟶ x1 and z2⟶ x2.
From the abovementioned equations, it can be found that
the dynamics of the observer are directly infuenced by the
observation error e1 � z1 − x1. When the error is
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approaching zero, it is necessary to choose larger observer
gains for accurate estimation of the total disturbance [37].
However, this choice would unfortunately come at the ex-
pense of deteriorating the observer’s dynamic performance.

To overcome the aforementioned limitations, a new error
formulation has been presented in [38] to improve the tra-
ditional LESO. Based on the new error concept, an improved
LESO has been designed in this paper for observing internal
and external disturbances of the PMSM control system.

From equation (15), we can derive that

z1 � e1 + x1,

z2 � _z1 + β1e1 − b0u.
􏼨 (16)

By combining equations (8) and (16), we can conclude that
z1 � e1 + x1,

z2 � x2 + _e1 + β1e1.
􏼨 (17)

Hence, the error between z2 and x2 is _e1 + β1e1, which
can be introduced into LESO, thereby obtaining the ILESO
as follows:

e1 � z1 − x1,

_z1 � z2 − β1e1 + b0u,

_z2 � − β2 _e1 + β1e1( 􏼁,

⎧⎪⎪⎨

⎪⎪⎩
(18)

and we can get the matrix equation of the ILESO as follows:

_z1

_z2
􏼢 􏼣 �

− β1 1

0 − β2
􏼢 􏼣

z1

z2
􏼢 􏼣 +

b0 β1 0

− b0β2 0 β2
􏼢 􏼣

u

y

_y

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (19)

Based on the theory of linear systems, the poles of the
system can be placed at point − α, i.e., the eigenvalue λ should
satisfy the following equation:

λ + β1 − 1,

0 λ + β2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� λ2 + β1 + β2( 􏼁λ + β1β2 � (λ + α)

2
. (20)

As such, the gain vector of the observer can be calculated
as follows:

L � β1, β2􏼂 􏼃
T

� [α, α]
T
. (21)

Finally, based on the abovementioned ILESO, the
modifed LADRC for the ASR of the PMSM control system
can be expressed as follows:

e0 � ω0 − ω∗m,

_ω0 � − re0,

_z1 � z2 + b0u − β1 z1 − y( 􏼁,

_z2 � − β2 _z1 − _y + β1 z1 − y( 􏼁􏼂 􏼃,

u0 � Kp ω0 − z1( 􏼁,

u �
u0 − z2

b0
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

where r, α(α � β1 � β2), and Kp are the three parameters
that should be tuned based on the control performance
criteria of PMSMs.

3.3. Error Analysis of the Improved LESO. In this section, the
error of the ILESO has been investigated based on the
transfer function method. In terms of the theory of linear
systems and the matrix equation of the ILESO in equation
(19), the transfer function of z � [z1, z2]

T can be calculated
as follows:

z(s) � (sI − A)
− 1

Bul(s), (23)

where A �
− β1 1
0 − β2

􏼢 􏼣, B �
b0 β1 0

− b0β2 0 β2
􏼢 􏼣, β1 � β2 � α,

ul(s) � [u(s), y(s), _y(s)]T, _y(s) � sy(s), and s is the Laplace
operator.

In accordance with equation (23), the transfer functions
of z1 and z2 can be calculated as follows:

z1(s) �
b0s

(s + α)
2 u(s) +

2αs + α2

(s + α)
2 y(s),

z2(s) �
− b0α
s + α

u(s) +
αs

s + α
y(s).

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(24)

Let e1 � z1 − y and e2 � z2 − f, then we can obtain the
transfer functions of e1 and e2 as follows:

e1(s) � z1(s) − y(s)

�
b0s

(s + α)
2 u(s) +

− s
2

(s + α)
2 y(s)

e2(s) � z2(s) − f(s)

� z2(s) − sy(s) + b0u(s)

�
b0s

s + α
u(s) +

− s
2

s + α
y(s),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

where f(s) � _y(s) − b0u(s) � sy(s) − b0u(s) can be ob-
tained from equation (8).

Considering equation (14) and without loss of generality,
we assume that u is a step signal and y is a ramp signal.Teir
transfer functions are, respectively, u(s) � Ku/s and
y(s) � Ky/s2, where Ku and Ky are signal amplitudes. Ten,
by utilizing the fnal value theorem, the steady-state error of
the ILESO can be calculated as follows:
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ess1 � lim
s⟶0

se1(s)

� lim
s⟶0

s
b0s

(s + α)
2 u(s) +

− s
2

(s + α)
2 y(s)􏼢 􏼣

� lim
s⟶0

s
b0s

(s + α)
2

Ku

s
+

− s
2

(s + α)
2

Ky

s
2􏼢 􏼣 � 0,

ess2 � lim
s⟶0

se2(s)

� lim
s⟶0

s
b0s

s + α
u(s) +

− s
2

s + α
y(s)􏼢 􏼣

� lim
s⟶0

s
b0s

s + α
Ku

s
+

− s
2

s + α
Ky

s
2􏼢 􏼣 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

Remark 2. It is worth noting that the u0 in u is the output of
a proportional controller, which means it is reasonable to
take u as a step signal whether the desired speed of PMSM is
a step signal or a ramp signal. It is also a logical idea to take y

as a ramp signal because the state estimation in the accel-
eration or deceleration of PMSM is the biggest challenge for
the state observer.

4. Design of ACR Based on PI Controllers

From the voltage equations in equation (1), it can be ob-
served that the stator current will generate the coupled
electromotive forces in d-q axes. Trough a simple formula
manipulation, the decoupled voltage equations can be
expressed as follows:

ud0 � ud + ωeLqiq � Rid + Ld

did

dt
,

uq0 � uq − ωe Ldid + ψf􏼐 􏼑 � Riq + Lq

diq

dt
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(27)

where ud0 and uq0 are the voltages in d-q axes after current
decoupling. Based on the abovementioned voltage equa-
tions, the transfer function of stator currents can be obtained
via the Laplace transform as follows:

I(s) � G(s)U(s), (28)

where I(s) � [Id(s), Iq(s)]T is the transfer functions of id

and iq; U(s) � [Ud0(s), Uq0(s)]T is the transfer functions of

ud0 and uq0; and G(s) �
R + sLd 0

0 R + sLq
􏼢 􏼣

− 1

is the model

of the ACR’s control object. In this paper, PI controllers are
chosen for the control of U(s), which can be expressed as
follows:

Ud0(s) � Kpd +
Kid

s
􏼒 􏼓 I

∗
d(s) − Id(s)( 􏼁,

Uq0(s) � Kpq +
Kiq

s
􏼠 􏼡 I

∗
q (s) − Iq(s)􏼐 􏼑,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(29)

where I∗d(s) and I∗q (s) are, respectively, the reference values
of Id(s) and Iq(s); Kpd and Kpq are the proportional gains of
the PI controllers; and Kid and Kiq are the corresponding
integral gains of the controllers.

In this paper, the initial gains of PI controllers are
designed based on the internal model control scheme [8].
Figure 3 describes a block diagram of the internal model
control (IMC) system, where G(s) is the control object; 􏽢G(s)

is the internal model of G(s); and C(s) is the internal model
controller. Trough an equivalent transformation, an
equivalent block diagram can be acquired as shown in
Figure 4, where F(s) is the equivalent internal model
controller that can be calculated as follows:

F(s) � [I − C(s)􏽢G(s)]
− 1

C(s). (30)

According to the theory of IMC [39], we can design the
internal model controller as follows:

C(s) � 􏽢G
− 1

(s)L(s), (31)

where L(s) � r/(s + r) and c is the bandwidth of the current
loop. Based on equation (31) and the model of the current
loop in equation (28), the equivalent internal model con-
troller in equation (30) can be calculated as follows:

F(s) � c

Ld +
R

s
0

0 Lq +
R

s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (32)

As such, by comparing equations (29) and (32), the gains
of the PI controllers can be determined as follows:

Kpd � cLd,

Kid � cR,

Kpq � cLq,

Kiq � cR,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(33)

where c � 2π/τ and τ is the time constant of the motor that
can be set as follows:

τ � min
Ld

R
,
Lq

R
􏼨 􏼩. (34)

Finally, by combining the feedforward decoupling
scheme, the ACR of the PMSM vector control system can be
designed as follows:

ud � ud0 − ωeLqiq,

uq � uq0 + ωe Ldid + ψf􏼐 􏼑.

⎧⎨

⎩ (35)
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Remark 3. It should be pointed out that due to the inevitable
modeling errors of the PMSM control system, the param-
eters of the PI controllers designed based on the internal
model control scheme can only serve as initial values and
require further optimization. Tese initial values provide
a magnitude range for the parameters to be tuned, which
ofers a reasonable search space for further parameter
optimization.

5. TuningofControllerParametersBasedonthe
PSO-AWDV Algorithm

In the abovementioned control system, several controller
parameters need to be adjusted to achieve optimal control
performance. Typically, controller parameter tuning is
a time-consuming and labor-intensive task. Especially, it is
a challenge to obtain the optimal solution due to the cou-
pling efect of the dual-loop control system of PMSMs.
Terefore, in this paper, we utilize an improved PSO variant,
PSO with adaptive weighted delay velocity (PSO-AWDV),
developed in our previous work to tune the speed and
current controllers of the PMSM control system
simultaneously.

5.1. PSO-AWDV Algorithm. Te PSO algorithm, developed
by Kennedy and Eberhart, is an intelligent optimization
algorithm simulating the behavior of biological populations,
such as bird focks and fsh schools [40, 41]. Since the
original PSO algorithm was proposed, numerous variants
have been developed to address its defciencies, such as local
trapping and premature convergence. Te schemes of the
variants include introducing diferent strategies, modifying
parameter settings, and combining them with other algo-
rithms, which are utilized to enhance the performance and
convergence speed of the PSO algorithm [42, 43].

In the PSO-AWDV algorithm [44], the velocity and
position vectors of the particles are updated as follows:

V
→k+1

i � wV
→k

i +(1 − w)V
→k− 1

i

+ c1r1 P
→k

i − X
→k

i􏼒 􏼓 + c2r2 G
→k

− X
→k

i􏼒 􏼓,

X
→k+1

i � X
→k

i + V
→k+1

i ,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(36)

where V
→k

i and X
→k

i are, respectively, the i-th particle’s velocity

and position vectors at the k-th iteration; P
→k

i and G
→k

in-
dicate the personal best position of the i-th particle and the
global best position of the swarm up to the k-th iteration,

respectively; w is the inertia weight of the velocity vector V
→k

i ;
and 1 − w is the inertia weight for the delayed velocity vector

V
→k− 1

i with 0<w< 1.
Te inertia weight w can be regulated adaptively

according to the evolutionary state of the swarm as follows:

w � 1 −
a

1 + exp b · E
k

􏼐 􏼑
, (37)

where a and b are the two parameters for adjusting the
convergence performance of the PSO-AWDV algorithm,
and Ek is the estimation of the evolutionary state of the
swarm at the k-th iteration, which is defned as follows:

E
k

�
f

k
max − f

k
min

f
k
max

, (38)

where fk
max and fk

min are the maximal and minimal ftness
values of the particles at the k-th iteration, respectively.
Besides, c1 and c2 in equation (36) are the acceleration
factors that can be calculated by

c1 � c1i − c1f􏼐 􏼑 ×
km − k

km
+ c1f,

c2 � c2i − c2f􏼐 􏼑 ×
km − k

km
+ c2f,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(39)

where c1i(c2i) and c1f(c2f) indicate the initial and fnal
values of the acceleration factors, respectively, and km is the
maximal iteration number for the optimization. r1 and r2 are
uniformly distributed random numbers between [0, 1] in the
PSO-AWDV algorithm. Te interested reader can refer to
[44, 45] for more details on the efectiveness and superiority
of the PSO-AWDV algorithm as well as its stability analysis.

5.2. Controller Parameter Tuning. Based on the above-
mentioned discussions, the controller parameter tuning in
this paper can be transformed into a parameter optimization
problem to minimize the following performance criteria:

C (s) U (s) I (s)G (s)

G (s)

* (s)I

Figure 3: Block diagram of the IMC system.

C (s)

F (s)
U (s) I (s)G (s)

G (s)

* (s)I

Figure 4: Equivalent block diagram of the IMC system.
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J K∗( 􏼁 � argmin
K

J(K), (40)

where K � [r, α, Kp, Kpd, Kid, Kpq, Kiq]T is the vector
composed of controller parameters to be tuned; K∗ repre-
sents the optimal values of the controller parameter vector;
and J(·) is the integral of time-weighted absolute error
(ITAE) optimization criterion, which can be expressed as
follows:

J(K) � 􏽚
Tf

0
t|e(t)|dt, (41)

where Tf is the terminal time for calculating the optimi-
zation criteria and e(t) represents the control deviation of
the system infuenced by the controller parameters.

Figure 5 describes the fowchart for the aforementioned
controller parameter optimization.Te optimization process
begins with the initialization of the particle swarm using
controller parameter vectors. Subsequently, the control
system’s parameters are confgured to evaluate the opti-
mization criteria following its operation. Once all particles
complete their respective routines, the particle swarm will be
updated according to the PSO-AWDV algorithm. Te op-
timal control parameters will ultimately be generated as the
output if the predefned stop criteria are met. Otherwise, the
abovementioned procedure will be iteratively repeated till
the end.

6. Performance Evaluations

To validate the performance of the designed control system,
we will conduct performance comparisons for diferent
speed-loop controllers including the PI controller, the
LADRC controller, and the MLADRC controller, through
both simulation and experiment, while maintaining the
current loop controller as a PI controller.

Te PMSM parameters for simulation and experiment
are given as follows: pole-pairs number Pn � 4; rotational
inertia J � 0.0000189 kg · m2; stator resistance Rs � 0.33 Ω;
d-axis stator inductance Ld � 0.9 mH; q-axis stator in-
ductance Lq � 0.9 mH; and rotor magnet fux linkage
ψf � 0.012 Wb.

6.1. Simulation Results. We use the MATLAB/Simulink
platform for the simulation study of the PMSM control
system. In the simulation, we start the motor under no-load
conditions with a given speed of 1000 rpm. Ten, we add
a 0.4 Nm load to the PMSM at the moment of 0.2 seconds
after the speed is stabilized. Te parameters of the current-
loop PI controller are set as 20 and 768 for the proportional
and integral gains, respectively. For the speed-loop PI
controller, the proportional and integral gains are set as 0.07
and 0.5, respectively. For LADRC andMLADRC controllers,
the parameters are set as α � 5000, r � 200, and Kp � 250.

Figure 6 shows the motor speed response curves in the
simulation, while Figure 7 illustrates the corresponding
motor electromagnetic torque variation curves. In the fg-
ures, the results for the three controllers are represented by

blue, black, and red dotted lines, respectively. Table 1
provides the specifc numerical values for speed overshoot
during the startup (denoted as overshoot), speed fuctuation
when the load changes (denoted as fuctuation), both of
them are expressed in percentage, and the time for the speed
to recover after fuctuations (denoted as recovery time).

It is evident that compared to the PI controller, the
LADRC and MLADRC approaches exhibit faster response
and zero overshoot during the motor startup thanks to the
arranging transition process of LTD. In comparison to the
other two controllers, the MLADRC presented in this study
demonstrates a smaller overshoot and shorter recovery time
in the case of load disturbances.

Start

Initialize the particle swarm composed of 
vector K for the PSO-AWDV algorithm

Set controller parameters of the system

Operate the control system

Calculate the optimization criteria

Update the particle swarm based on 
PSO-AWDV algorithm

Are stop criteria 
satisfied?

Output

Yes

No

Have all particles 
been finished?

Yes

No

Figure 5: Flowchart of controller parameter optimization.
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In the abovementioned simulation, the given reference
speed is a constant value, i.e., a step signal. To further
compare the performance ofMLADRC and LADRC, we also
study the case of the control system tracking a ramp signal.
As shown in Figure 8, both controllers can achieve a rela-
tively small speed control error. Comparatively, MLADRC
exhibits better tracking performance due to the more ac-
curate estimation results of ILESO for system states and
disturbances. Figures 9 and 10 depict, respectively, the re-
sults of speed estimation by LESO and ILESO, where y is the
measurement of speed, and z1 is the speed estimation.
Clearly, the estimation results of ILESO are closer to the
actual measured values.

As such, we can conclude that theMLADRC proposed in
this study exhibits better performance for load disturbance
resistance. Tis is mainly attributed to the enhanced accu-
racy of disturbance observation through the ILESO, allowing
the control system to promptly compensate for disturbances
and achieve a smoother control response.

6.2. Experiment Results. To further validate the performance
of the MLADRC controller, motor control experiments are
conducted using the multimotor drive control experimental
platform as shown in Figure 11. Te experimental platform
has a PMSM with a rated speed of 3000 rpm, a rated torque
of 0.637Nm, a rated voltage of 36V, a rated output power of
200W, and a switching frequency of 15 kHz. Te power
supply for the platform is AC 220V, which is rectifed to
provide a DC input for the inverter.Te PMSM is connected
to a DC motor through a coupling to create a load platform.
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Figure 6: Speed response for step signal in simulation.
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Figure 7: Electromagnetic torque response for step signal in
simulation.

Table 1: Performance comparison in simulation.

Controllers Overshot Fluctuation (%) Recovery time (s)
PI 10.4% 8.80 0.100
LADRC — 4.01 0.068
MLADRC — 3.97 0.062
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Figure 8: Speed response for ramp signal in simulation.
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Figure 9: Speed estimation by LESO in simulation.
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After designing the motor control algorithm in the MAT-
LAB/Simulink platform, it is downloaded to the DSP con-
troller on the lower-level device via a JTAG interface.
Information such as current, speed, and torque is collected
and sent back to the upper-level computer for display and
analysis.

During the experiment, identical PI controllers are
employed for current loop control to ensure a fair com-
parison of the performance among diferent speed-loop
controllers in a practical PMSM control system. Te pa-
rameters of the current-loop PI controller are set as 0.2 and
0.02 for the proportional and integral gains, respectively. For
the speed-loop PI controller, the proportional and integral
gains are set as 0.04 and 0.00008, respectively. For LADRC
and MLADRC controllers, the parameters are set as α � 100
and Kp � 6.

For each experiment, it has a total runtime of 30 seconds
with a sampling interval of 0.001 seconds. We frst start the
motor under no-load conditions with a given speed of
1000 rpm. To compare the startup performance of the
controllers, it should be mentioned that the LTD module is

not incorporated into the LADRC and MLADRC control-
lers. Figure 12 manifests the motor speed response curves in
the experiment. Table 2 presents the speed overshoot and
settling time during the startup. It can be observed that the
MLADRC controller can achieve zero overshoot and
a shorter settling time when compared to both PI and
LADRC controllers. Terefore, the experiment result in-
dicates that the MLADRC controller exhibits superior
performance during the motor startup process.

Furthermore, under the same conditions with a given
speed of 1000 rpm, the motor is started under no-load
conditions. Te parameters of the current-loop PI con-
troller are set as 0.2 and 0.02 for the proportional and in-
tegral gains, respectively. After the speed is stabilized, a load
fuctuation of ± 0.36 Nm is applied to the motor at diferent
time and the speed changes are recorded as shown in
Figure 13. Table 3 displays three controllers’ speed fuctu-
ations and recovery times in response to load changes. Te
experimental results also confrm that the MLADRC con-
troller is capable of recovering to the target speed in the
shortest time with minimal fuctuation during load varia-
tions, further highlighting its disturbance-rejection
capability.

To further validate the performance of the control al-
gorithm in the acceleration and deceleration control of
PMSM, we set the reference speed for the motor to 500 rpm
and 1000 rpm at the initial moment and then reversed the
reference speeds to 1000 rpm and 500 rpm at the moment of
7 seconds. Figures 14 and 15 illustrate the speed response
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Figure 10: Speed estimation by ILESO in simulation.
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Figure 11: Multimotor drive control experimental platform.
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Figure 12: Speed response for the startup.

Table 2: Performance comparison for the startup.

Controllers Overshot Settling time (s)
PI 6.8% 1.30
LADRC 2.2% 0.70
MLADRC — 0.58
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curves for the three controllers. Tables 4 and 5 provide
comparisons of the experimental results, which can reafrm
the superior performance of MLADRC compared to the
other two controllers.

7. Conclusion

In this paper, a PMSM dual-loop control system has been
devised by integrating LADRC and PI controllers. First, an
improved LESO with excellent observation capacities has
been introduced to serve as the foundation for the devel-
opment of a modifed LADRC approach tailored for regu-
lating the speed of PMSMs. Based on the improved LESO,
a modifed LADRC has been developed for the speed control
of PMSMs. Furthermore, we harnessed the internal model
control scheme to initialize the parameters of the PI-based
current controllers. To fne-tune the entire PMSM control
system, an improved PSO algorithm has been employed for
optimizing the controller parameters, contributing to the
system’s overall performance. Finally, a series of simulations
and experiments have been conducted to validate the ef-
fectiveness and superiority of our proposed approach, which
outperforms both the traditional PI controller and the
original LADRC controller.
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Figure 13: Speed response for load fuctuations.

Table 3: Performance comparison for load fuctuations.

Controllers Fluctuation (%) Recovery time (s)
PI 7.6 0.17
LADRC 5.8 0.10
MLADRC 4.1 0.05
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Figure 14: Speed response for acceleration.
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Figure 15: Speed response for deceleration.

Table 4: Performance comparison for acceleration.

Controllers Overshot Recovery time (s)
PI 2.4% 1.247
LADRC 2.5% 0.951
MLADRC — 0.668

Table 5: Performance comparison for deceleration.

Controllers Overshot Recovery time (s)
PI 6.8% 1.770
LADRC 2.2% 1.465
MLADRC — 0.731

International Transactions on Electrical Energy Systems 11



Over the past few years, the networked control of
multiple motors has emerged as a prominent area of re-
search [46, 47]. Consequently, we aim to extend our previous
accomplishments to enhance the control performance in the
synchronized networked control of multiple motors based
on some advanced control algorithms [48, 49].
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