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Frequency control, especially when incorporating distributed generation units such as wind and solar power plants, is crucial for
maintaining grid stability. To address this issue, a study proposes a method for controlling the connection status of electric vehicles
(EVs) to prevent frequency fuctuations. Te method utilizes an adaptive neural-fuzzy inference system (ANFIS) and a whale
optimization algorithm to regulate the charging or discharging of EV batteries based on frequency fuctuations.Te objective is to
minimize and adjust the frequency fuctuations to zero. Te proposed method is evaluated using a real microgrid composed of
a wind power plant, a solar power plant, a diesel generator, a large household load, an industrial load, and 711 electric vehicles.Te
ANFIS system serves as the primary controller, taking inputs such as electric vehicle and battery status and generating outputs that
determine the charging or discharging of the electric vehicles. Several investigations are conducted to assess the efectiveness of
this model, and the results obtained are compared with the normal state where electric vehicles only consume power. By
implementing this method, it is expected that the connection status of electric vehicles can be optimized to help stabilize the grid
and minimize frequency fuctuations caused by the integration of distributed renewable energy sources. Tis study highlights the
importance of automatic frequency control in smart grids and ofers a potential solution using ANFIS and the whale optimization
algorithm.

1. Introduction

New issues have been raised with the expansion of power
networks, attaching renewable sources, and the emergence
of new technologies, such as electric vehicles (EVs) con-
nected to the network. Due to environmental concerns and
the fossil fuel crisis, renewable energy sources have been
widely employed worldwide in countries’ energy baskets,
leading to many opportunities and challenges for power
system operators [1]. On the other hand, according to [2],
the number of electric cars in America will reach 35%, 51%,

and 62% of all cars in 2025, 2030, and 2050, respectively. Te
simultaneous connection of an enormous number of EVs
can impose a massive load on the network and change the
peak load and intervals [3]. However, considering EVs-
related power demand, they can be seen as an additional
consumer and a concern for network stability rooted in
disturbing grid frequency while, from a diverse perspective,
if the method and periods of charging/discharging EVs are
planned purposefully, the capabilities of these cars can be
used to improve the network undertaking [4], and the re-
liability of renewable power generation will increase when
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assuming EVs as a power storage section on the scale of
megawatts.

Notably, a minor imbalance between generated power
and demand in grids causes a signifcant change in fre-
quency; therefore, the system’s frequency is a perfect in-
dicator of the balance of the system [5]. Power system
frequency adjustment methods are aimed at providing
a balance between consumed and generated power and
power fows between lines [6]. Te main goal of constant
power system frequency adjustment methods is to keep the
system’s actual frequency in the power system’s reference
frequency [7]. Frequency response is one of the essential
parameters in power networks, and various methods, such as
using FACTS tools or other compensation methods, have
been proposed to enhance it [8]. According to the IEEE/
CIGRE standard, frequency stability depends on the actual
power balance of the load between production and con-
sumption [9]. In recent years, various methods have been
proposed to manage these loads to reduce their adverse
efects on the network and improve network characteristics,
such as reducing losses, reducing peak load, and improving
frequency stability [10] (see Table 1).

Tis study frst presents the introduction and the ne-
cessity of the research. In the second section, a review of the
literature is performed. In the third section, ANFIS and the
optimization algorithm are introduced. At the end of the
third section, the proposedmethod is introduced. In the next
section, the simulation results are presented. MATLAB
software is used for the simulations. Finally, the overall
conclusion and suggestions for future work are presented.

2. Literature Review

In recent years, various methods have been proposed to
manage the loads imposed on grids as EVs to reduce their
adverse efects on the network stability and to use them to
improve network characteristics, such as reducing losses and
reducing peak load. In [14], a new method is proposed to
improve frequency stability using the stored power of EVs
connected to a grid. Te proportional-integral (PI) con-
troller is the most widely used in the industry, so more than
31% of the utilized controllers are of this type.Tis controller
has a simple structure and good performance for linear
systems. Considering that the frequency stability problem in
controlling grid-connected EVs is a nonlinear problem with
multiple variables, it is impossible to use linear methods. In
another study, the load frequency control and the efects of
grid-connected EVs on the frequency control of inter-
connected smart grids in the presence of wind power plants
have been investigated. Te PI controller controls EVs’
charging mode in this method to reduce network frequency
fuctuations [15]. According to [11], proportional and in-
tegral coefcients are essential, and their optimal values
should be determined to give the controller the best per-
formance. Tus, in this method, the particle swarm algo-
rithm (PSO) is operated to determine the parameters’
optimal value. Te proposed method has been implemented
on a smart grid, and the results indicated good performance
in controlling the grid-connected EVs [16]. A newmethod to

control the frequency of smart grids using grid-connected
EVs has been presented in [17], and frequency control of
a small power network by aggregating and modelling the
EVs has been investigated. Te genetic algorithm (GA) has
been used to control and plan the electric vehicles connected
to the network in this method. Te presented method is
tested on a 9-base system, and the results revealed adequate
control of frequency fuctuations [12]. Frequency control in
a microgrid has been investigated, including renewable
resources, controllable heating and cooling loads, and an EV
that can be connected to the grid. Te unique point about
this microgrid is its hybridity (AC/DC) and ability to ex-
change energy with the upstream network. Te proposed
controller is a PID controller, in addition to a PSO used to
increase the efciency of this controller. Tis study is
conducted in MATLAB software, and the simulation results
are analyzed [13]. In [18], a new application of the coefcient
diagram method controller, based on virtual inertia in an
island microgrid, considers the penetration of high-level
renewable energy sources to increase the reliability and
robustness of the system against disturbances and un-
certainty. Te reliability of this controller is compared with
the infnite H controller using MATLAB software. In [19],
the frequency control of a microgrid including fuel cell, solar
system, wind generator, and CHP is considered, and the
multi-input and single-output (MISO) phase controller
technique is utilized. Te authors of [20] used a model
predictive control (MPC) for an of-grid microgrid along
with a virtual-impedance droop control that successfully
improved the power quality at the connection point of the
converters. In [21], the frequency control of a microgrid
comprising renewable energies (solar system and wind
turbine) has been carried out with an independent frequency
and voltage control method. Tis reference also investigates
the efect of using energy storage devices for frequency
control. In [22], the efect of power oscillations of a solar
plant on the frequency of the microgrid is investigated and
tried to stabilize the frequency. Te authors of [23] present
a wind-solar hydrogen energy production system that in-
cludes a photovoltaic arrangement, wind turbine, battery,
hydrogen storage unit, and an automatic control system for
battery charging and discharging. Te mathematical model
for each system component has been extracted by running
this system on a real sample system. Te robust controller is
developed using the linear matrix inequalities (LMI) method
[24, 25] and optimized using the genetic algorithm. In this
process, the power system is considered indeterminate, and
the controller is of a high order. In [26], a sliding mode
controller is presented for frequency control in a four-zone
power system with diferent turbines, such as non-preheated
and water turbines. In [27], using a fuzzy PID controller, the
load frequency control (LFC) system is designed in a power
system with two thermal and water zones. In [28], a hybrid
optimization method based on particle swarm and frefy
(PSO-FF) is proposed to adjust the parameters of the PID
controller to minimize the frequency deviation in the
microgrid system under diferent operating conditions, such
as changes in wind speed and load demand. Also, a com-
parative analysis is accomplished to adjust the PID controller
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using particle swarm optimization (PSO) and frefy algo-
rithms to minimize the deviation in frequency. A hierar-
chical control system is presented in reference [29, 30], and
all measurements are based on the Clarke transformation.
Tis research introduces microgrid control in three levels:
primary, secondary, and tertiary. Te purpose of primary
control is to maintain the stability of voltage source in-
verters, secondary control is to eliminate steady-state errors
caused by primary control, and the task of tertiary control is
to power management, expressed in terms of economic
market plans. Correspondingly, all the test loads connected
to the network are considered resistive. In [31], the robust
model, by describing the general behaviour of the data di-
rectly instead of using past data, has led to remarkably
accurate solutions. In order to compare the accuracy of
direct measurement, three years of solar radiation data have
been evaluated, and diferences between hourly samples
have been observed. In [32], a dc-dc transmitter for EV
batteries with grid-to-vehicle service (V2G-PVBP) is pro-
posed. It relies on the energy storage performance of EVs not
only to meet the everyday needs of owners but also to
provide the function of load adjustment and microgrid
management. In [33, 34], the optimal performance of the
fuzzy controller for balancing production and consumption
in an independent microgrid with electric vehicles is in-
troduced. In [35], a new modifed optimal algorithm is
presented for setting the scale factors and membership
functions of a fuzzy-type 2-PI controller by efectively re-
ducing the frequency deviation of the microgrid system
against load disturbances. In [36], a main frequency control
through a V2G system is introduced in an industrial
microgrid, which includes the coordination of the charging
station operator and EV operator. In [37], the regional share
load frequency control system by plug-in vehicles (PEVs)
tries to adjust the frequency in diferent load disturbances.
Te proposed LFC successfully removes the frequency
fuctuations while considering the delays and uncertainties.
In [38, 39], the simulation results obtained from MATLAB
prove that using the hybrid energy storage system (HESS)
can stabilize the frequency of the interconnected multizone
system, and the proposed controller is reasonably practical.
In [40], a new energy storage system based on pumped hydro
energy storage (PHES) is proposed for an integrated
microgrid, and the accuracy and reliability of the LFC in the
investigated system are calculated. Te authors of [41, 42]
discuss virtual inertia simulation based on energy storage
system derivatives and its efect on power system frequency
control. An efcient optimization strategy called the
confict-based Volleyball Premier League (OVPL) algorithm
optimizes the required energy storage system (ESS) and
controller parameters. In [43], an atom search optimization
algorithm (ASO) is described for setting fractional-order
proportional integral derivative (FOPID) parameters and
automatic load frequency control of a heat pump system
(HPS). Tis study tries to analyze the frequency stability of
an HPS with the help ofMatignon’s theorem. In [44, 45], an
electric device and a heat pump with HPS control the fre-
quency and the operation of consumer electrical appliances
such as EVs and heat pumps (HP), reducing the use of

independent energy storage units. As stated in [46], as long
as EVs are connected to the grid, they can act as a con-
trollable load or production source. Also, the reliability of
renewable resources increases with a large number of electric
vehicles. In fact, the large number of electric vehicles in the
network can be considered a large storage battery in the scale
of several megawatts, called vehicle-to-grid or V2G systems.
V2G systems can create a backup storage source that bal-
ances power in the grid by quickly responding to distur-
bances. Accordingly, in [47, 48], smart charging for electric
vehicles is used in microgrids as a frequency control ap-
proach. In this article, the proposed method is a fuzzy
optimized by the colonial competition algorithm. In [39, 49],
an independent microgrid with a heating turbine, wind
turbine, photovoltaic, and electric vehicle system has been
studied using a fuzzy-PI method and adaptive control. In
[50], V2G provides frequency and voltage support based on
integrated EVs in the power grid. While providing necessary
ancillary services, EV battery failure issues are also con-
sidered. Te charging stations are considered in [51, 52] in
which batteries are supplied with photovoltaic and battery
energy systems (BES). BES is used as a backup unit by
storing excess energy in low-demand conditions and sup-
plying the station when in power shortage. In this regard,
a control unit activates the bidirectional DC-to-DC con-
verter for charging and discharging. Also, a maximum
power point tracking technique is used to ofer suitable
pulses for the DC-to-DC converter to extract the maximum
output power from the PVs in distinct conditions. In
[53, 54], an adaptive FOPID fuzzy controller is proposed for
the renewable infltration power system. Te main part of
this research is allocated to adjusting all the possible pa-
rameters of the fuzzy controller and FO and PID controller
simultaneously to solve the uncertainties created by re-
newable resources, loads, and parameter changes. Te au-
thors of [55] present a distributed coordinated model
predictive control (DMPC) for the LFC of a power system
that includes wind power generation with inherent chal-
lenges. Te authors of [56, 57] construct a hierarchical
distributed model predictive control (HDMPC) for frequency
regulation. Te authors of [58] stated that V2G technology
can be used as a mobile energy storage unit and is presented
as a good solution for LFC. Tus, an adaptive neural-fuzzy
system ANFIS is used. Tis research shows that the LFC
based on the ANFIS adaptive neural system has a better
response than other controllers. In this study, a novel
method for controlling grid-connected electric vehicles
(EVs) to reduce grid frequency fuctuations is proposed. Te
proposed method uses an adaptive neurofuzzy inference
system (ANFIS) as a controller. In this method, the grid
frequency and the battery charge state of EVs are considered
as the ANFIS inputs, and the battery charging or discharging
state is considered as the ANFIS output. Te ANFIS should
control the battery charging/discharging state in accordance
with the frequency fuctuations in such a way that the
frequency fuctuations are minimized and ideally reduced to
zero. In the adaptive neurofuzzy inference system, the
learning algorithm is of high importance. In the proposed
method, a learning method based on the whale optimization
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algorithm (WOA) is used to improve the performance of the
adaptive neurofuzzy inference system. Tis learning algo-
rithm was proposed in 2018 and has a better and faster
performance than classic learning algorithms [16]. Te
proposed method will be evaluated using a real model of
a microgrid with diferent loads and grid-connected EVs.

In general, the key points considered in this paper can be
summarized as follows:

(i) Te performance of a fuzzy and fnite-time con-
troller is compared

(ii) A chaotic whale algorithm has been used as a su-
perior learning algorithm

(iii) Te performance of the control system is enhanced
using ANFIS

(iv) Te proposed ANFIS provides more satisfactory
damping than the fuzzy controller

(v) Te proposed controller is consistent and robust
(vi) Te proposed controller eliminates network fre-

quency deviation in a shorter time

3. Chaotic Whale Optimization
Algorithm (CWOA)

Studies have shown that metaheuristic optimization algo-
rithms lead to convergence speed and accuracy [22, 23] and
prevent the system from getting stuck in the local minima.
Terefore, the chaotic whale optimization algorithm
(CWOA) is introduced in [24] to improve the performance
of the standard whale algorithm. In a CWOA, the whales
move towards the prey using chaotic maps. Te logistic
chaos map function is shown by equation (1). Tis chaos
map function is the control parameter to generate a random
number between zero and one.

xk+1 � a. 1 − xk( , (1)

where a is its control parameter and x is the kth mapping’s
output.

Te tent map function is shown by the following
equation:

xk+1 �
2xk, xk < 0.5,

2 1 − xk( , xk ≥ 0.5.
 (2)

Te iterative chaotic map function with infnite descent
(ICMIC) is shown by equation (3) which generates a random
number between zero and one, as it should be regarding the
control parameter.

xk+1 � sin
a
xk

  . (3)

Te sinusoidal chaotic map function is shown by the
following equation:

xk+1 � ax2k sin π xk( . (4)

Te sine chaos map function is shown by the following
equation:

xk+1 � 2.3 xk( 
2 sin πxk( ). (5)

Te function of the Shef chaotic map is shown by the
following equation:

xk+1 � cos a.cps− 1 xk(  , (6)

Te function of the Singer chaos map is shown by the
following equation. Tis chaos map function generates
a random number between zero and one, and a should be
chosen between 0.9 and 1.08.

xk+1 � a 7.86xk − 23.31x2k + 28.75x3k − 13.302875x4k. (7)

Te function of the piecewise chaotic map is shown by
equation (8). Tis chaos map function generates a random
number between zero and one, and a should be chosen
between 0 and 0.5.

xk+1 �

xk
a

, 0≤ xk ≤ a,

xk − a
0.5 − a

, a≤ xk ≤ 0.5,

1 − a − xk
0.5 − a

, 0.5≤ xk ≤ 1 − a,

1 − xk
a

, 1 − a≤ xk ≤ 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

Bernoulli’s chaotic map function is shown by equation
(9). Tis chaos map function generates a random number
between zero and one, and a should be chosen between 0 and
1.

1 + xk �

xk
1 − a

, 0≤ xk ≤ a,

(1 − a) − xk
a

, 1 − a≤ xk ≤ 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)

4. ANFIS

Fuzzy logic is considered an efective tool in complex sys-
tems that are difcult to understand or issues that depend on
human reasoning, decision-making, and inference. Choos-
ing an appropriate method and approach for modelling
a system depends entirely on the complexity of that system,
which has an inverse connection with our knowledge and
understanding of that system. Experts have always tried to
model the system with the highest possible accuracy.
However, without enough knowledge about the system’s
behaviour, the desired accuracy cannot be obtained, and
related problems will arise [26–32].

ANFIS is a neurofuzzy system based on a combined
learning process, which emits the input data to the output
space based on fuzzy if-then rules. Tis operation is per-
formed by assigning suitable membership functions for the
inputs [13]. Considering the learning ability of neural
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networks and the proper functioning of fuzzy systems,
combining these two concepts leads to the emergence of
a powerful tool used in various problems with high speed
and satisfactory accuracy. ANFIS systems are often imple-
mented using a Takagi-Sugeno-Kang fuzzy system as
a progressive network structure. If the output of each layer is
Ok

i (the kth output in the ith the node of the L layer), which is
described by two membership functions, the ANFIS
structure will be fve layers as follows (Figure 1).

4.1. Layer 1 (Fuzzy Layer). In this layer, the degree of the
input membership related to diferent fuzzy intervals is
determined as follows:

O1
i � μAi

(x), (10)

where μAi
represents the membership function of variable x.

Tis member function can be picked out of various shapes,
for instance, triangular and trapezoidal, but mostly bell-
shaped or Gaussian. Te mathematical form of these
functions is shown in the following equations:

μAi
(x) �

0, x ≤ a,

x − a
b − a

, a< x ≤ b,

x − c
b − c

, b< x ≤ c,

0, x ≥ c,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

μAi
(x) �

0, x ≤ a,

x − a
b − a

, a< x ≤ b,

1, b< x ≤ c,

d − x
d − c

, c< x ≤d,

0, x ≥d,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

where a, b, c, and d are the range that the fuzzy set supports.

μAi
(x) �

e− (x− z)2

���
2σ

√ , (13)

where σ is the standard deviation and z is the curve-ftting
constant.

4.2. Layer 2 (Normalized Layer). Each node in this layer
calculates the gain of a rule, and the output of this layer can
be calculated as follows:

O2
1 � wi � μAi

(x) × μBi
(x) i � 1, 2. (14)

4.3. Layer 3 (Product Layer). In this layer, the ith node
normalizes the gain of the kth rule to the sum of the activity
degree of all the rules in the following way:

O3
i � wl �

wi

w1 + w2
, i � 1, 2, (15)

where w is the normalized weight of the kth rule.

4.4. Layer 4 (Defuzzy Layer). In this layer, the output of each
node is equal to

O4
i � wi( fi � wi(  piX + qiy + ri( , (16)

where (wi) is the output of the third layer and pi, qi, ri  are
known as parameter sets. Te number of conclusion pa-
rameters for each fuzzy rule is one more than the number of
inputs. For example, if the constructed ANFIS has four
inputs, the number of inference parameters of each fuzzy
rule is fve.

4.5. Layer 5 (Total Output Layer). In this layer, each node
calculates the fnal output value as follows (the number of
nodes is equal to the number of outputs):

O5
i � overall output,

� 
i
wifi,

�


i
wifi


i
wi

.

(17)

Te training of these systems is based on using the
training data to determine the nonlinear parameters related
to the fuzzy membership functions so that the desired output
is obtained for the applied input. Te hybrid training
method is one of the most critical training methods for fuzzy
inference systems based on adaptive neural networks. Tis
method uses the backward propagation of errors for training
in the frst layer, and the least-squares estimation method is
used in the fourth layer of the system.

4.5.1. Proposed Method. Tis study proposes a new fuzzy
controller to control the charging of EVs connected to the
grid to enhance frequency stability. Consequently, each
electric vehicle is connected to a charging station, which is
connected to an intelligent network that can dispatch the
consumption and charging rate of the electric vehicle’s
battery. Tis point is pictured in Figure 2.

Ideally, it is assumed that there is no delay in sending
information. Also, smart network information, such as
frequency-related measurements, is sent to the charging
station. As can be seen, all components, including EVs,
charging stations, and networks, are linked.

Te structure of the charging station is shown in Fig-
ure 3. At the charging station, decisions are made by fuzzy
rules, and a control command is disseminated; accordingly,
either the batteries charged (charging status) or discharged
(discharging status) are determined.

Te inputs and outputs must be determined through any
control system, and a control command should be
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administered regarding the inputs and outputs. In the
system under study, the state of charge (SOC) and fre-
quency fuctuations are the controller’s inputs. A fuzzy
system uses sets of fuzzy rules to model the problem. Te
input and output variables enter the fuzzy system
changed to be useable by the fuzzy subsets. Terefore,
a fuzzifer, a knowledge base, an inference engine, and
a defuzzifer should be determined. In this study, the
Mamdani method is used for fuzzy inference, and the
minimum and product implication method is used. Since
more than one rule is usually used in each fuzzy model to
calculate the output, the results of each rule should be
combined with rule aggregation methods that is

a maximum and algebraic summation methods in the
designed controller.

One of the essential parts of an ANFIS system is
determining the membership functions (frst layer) and
conclusion parameters (fourth layer). Tis task has no
specifc steps and is highly dependent on the designer’s
decision. So, a chaotic whale optimization algorithm is
proposed to determine the optimal values, as shown in
Figure 4.

For example, if a Gaussian membership function is
used as the membership function and ANFIS includes
two inputs and two fuzzy rules, the process is as follows
(Figure 5).

Micro-grid

Load

Solar Energy

Wind Turbine

Diesel
generator

Battery system

Flywheel

fossil fuel

Electric Vehicles

Figure 2: Communication between electric vehicles, charging stations, and smart networks.

Forwards

Input Layer 1 Layer 2 Layer 3 Layer 5 (output)

Backwards

F

Figure 1: ANFIS overall structure.

Battery charging mode

Fuzzy controller Bidirectional
converter Output power

Network frequency
fluctuations

Figure 3: Te structure of a charging station.
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 . The Network under Study

In this section, the performance of the proposed method is
investigated. Te general structure of the designed
microgrid is shown in Figure 6. Tis microgrid consists of
EVs, a wind power plant (4.5megawatts), a solar power
plant (8megawatts), a diesel generator (15megawatts),
a large household load of 10megawatts, an industrial load
of 0.15megawatts, and 100 electric vehicles (40 kW/each).
Apart from the mentioned sources and loads, small linear
and nonlinear loads are connected to the system in dif-
ferent buses. Te simulation is performed for one day and
one night, and all the results presented, such as sun in-
tensity, wind speed changes, and frequency fuctuations,
are related to the mentioned period.

5.1. Limitations and Boundaries. During the charge/dis-
charge process, the relationship between SOC and charging
rate is as follows [38]:

C(t) �
I(t)
Q

,

S(t) � S t0(  + C(t). t − t0( ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(18)

where I(t) is the electric vehicle charging current, Q is the
permissible battery capacity of the electric vehicle, S(t0) is
the amount of charging status at the time of (t0), and C(t)

is the charging rate of the electric vehicle (positive values
are for charging mode and negative values are for
discharge mode.

If the charging time in a parking lot is sufcient for the
electric car to be fully charged, the SOC battery is not less
than the target value of the Sobj before leaving the car [37].
Te minimum charging time (Tmin) is determined by the
maximum charging rate (Cmax) as follows:

Tmin(t) �
Sobj − S(t)

Cmax
. (19)

It is noteworthy that at any time (t), the departure time
td is supposed to be larger than (t + T min(t)); otherwise,
a full-charge state cannot be achieved.

In calculating the Cmax limitation of the dual-directional
DC/DC charger, (Imax

dc− dc) should be considered as follows:

Cmax(t).Q≤ I
max
dc− dc. (20)

Te maximum charging time (Tmax) is determined by
the time of calculation (t) and the departure time (td):

Sample_Whale Antecedent part
parameters

Conclusion
parameters output

Figure 4: An example of the proposed method.

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Sample_Whale

a1 ai ci c2 p1 q1 r1 r2pi qi ri ri ai a2 ci c1 pi p2 qi q1

a1 c1 a2 c2 p1 q1 r1 p2 q2 r2

Sample_Whale= [ a1 c1 a2 c2 p1 q1 r1 p2 q2 r2]

Figure 5: A sample whale is mentioned as an example.
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Tmax(t) � td − t. (21)

So, the minimum charge can be calculated as follows:

Cmin(t) �
Sobj − S(t) 

Tmax(t)
. (22)

Te ability to reach the target charging state of an electric
vehicle (λiadj) is a fundamental factor that is determined
based on the classifcation of an electric vehicle and in-
fuences the determination of energy and power strategy.
Tis variable is defned as follows:

λiadj(t) �
Ti
max(t)

Ti
min(t)

. (23)

If 1< (t)λiadj, electric vehicles act as fexible electric
vehicles at the time of tth, and the charging rate (Ci(t)) can be
set in the range of [Ci

min(t),C
i
max(t)]. Otherwise,

(if 1≥ (t)λiadj), electric vehicles act as nonfexible electric
vehicles at the time of tth, and the Ci(t) must be equal to
Ci
max charge the battery as much as possible.
Te energy demand of an electric car during the charging

process varies with the charging time, which can be cal-
culated using the following equation:

Ei
EV(n) � Sobj − S(n) .E,

E � U.Q,

⎧⎨

⎩ (24)

where E is the nominal energy in kilowatt-hours, U is the
nominal voltage of the battery, and the total energy demand
is equal to the following equation:

ES(n) � 

NEV(n)

i�1
Ei
EV(n),

⎧⎨

⎩ (25)

where NEV (n) is the number of EVs charged within the n
timeframe. Te power charging and energy supplied from
the electric vehicle in the n timeframe can be obtained by the
following equations:

Pi
chg(n) � Ui

(n).Qi
.Ci

(n), (26)

Ei
chg(n) � Ui

(n).Qi
.Ci

(n).∆t, (27)

where Pi
chg(n) is the required power to charge the EV within

the n timeframe, Ei
chg(n) is the demand for EV energy within

the n timeframe, Ui(n) is the battery voltage, and Qi is the
uncertain capacity of the battery.

Te minimum and maximum energies required for EVs
are defned by the following equations:

Ei
min(n) � Ui

(n).Qi
.Ci

min(n).∆, (28)

Ei
max(n) � Ui

(n).Qi
.Ci

max(n).∆t. (29)

Also, the minimum and maximum energies required by
the charging station at n intervals are defned by the fol-
lowing equations:

C(t) �
I(t)
Q

,

S(t) � S t0(  + C(t). t − t0( ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(30)

C(t) �
I(t)
Q

,

S(t) � S t0(  + C(t). t − t0( .

⎧⎪⎪⎨

⎪⎪⎩
(31)

Diesel Generator

Load

Load

V2G

Residential + ASM

PV farm

Wind farm

Figure 6: Te overall structure of the designed microgrid.
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5.2. Renewable Power Resources

5.2.1. Wind Turbine. Figure 7 shows the changes in wind
speed during the test. In this fgure, the horizontal axis
represents time in hours, and the vertical axis represents
wind speed in meters per second. Te wind turbine has
a maximum production power of 13.5meters per second,
and the maximum allowed speed is 15meters per second. As
can be seen, the wind speed is unpredictable.

5.2.2. Photovoltaic System. Sun power SPR-305E-WHT-D is
assumed as the solar power plant in the simulation. More
complete specifcations of the panel are listed in Table 2. In
a solar power plant, the most efective parameter in de-
termining the amount of power produced is sun intensity.
Te higher the intensity, the higher the amount of power
produced by the solar power plant, whereas an increase in
temperature inversely infuences the production. Notably, in
reality, the weather is sometimes cloudy and leads to partial
shade conditions. Figure 8 shows the intensity changes
during the test. In this fgure, the horizontal axis shows the
time in hours, and the vertical axis shows the intensity in
watts per square meter. Although a slight shadow occurred
at noon and led to a decrease in intensity, for the rest of the
period, panels received an average intensity.

5.2.3. Electric Vehicles. Te vehicles are divided into fve
equal groups (each group consists of 20 electric vehicles)
with characteristics listed as follows:

First group: vehicle owners drive to work every day,
and it is possible to charge the batteries at the workplace
Second group: vehicle owners drive a longer distance
to work, and charging the batteries at the workplace is
possible
Tird group: vehicle owners drive to work every day,
and charging the batteries at the workplace is
impossible
Fourth group: vehicle owners stay at home
Fifth group: vehicle owners go to work at night

In order to evaluate the performance of the proposed
method, the following three diferent scenarios are assumed:

First scenario: at 3 a.m., the industrial load enters the
circuit, so the balance between the production and
consumed power is disturbed; as a result, frequency
fuctuation occurs
Second scenario: at noon, there is a partial shadow in
which the sun’s intensity decreases from 525 to
380watts per square meter; consequently, the pro-
duction power of the solar power plant is reduced, and
the balance between the production and consumption
power is disturbed
Tird scenario: at 22:00, the wind speed exceeds the
maximum speed; consequently, the production of the
wind power plant stops, so the balance between pro-
duction and consumption power is disturbed

Te results obtained from the proposed scenarios are
given as follows. In order to investigate the impact of EVs on
the network frequency stability, the mode of not using
electric vehicles has also been investigated. At this point, EVs
are only charged and considered consumers. Te perfor-
mance of the proposed case has been compared with the
artifcial bee colony algorithm (ABC).

6. Performance of the Proposed Method

6.1. Fuzzy Logic System. In this section, the performance of
the proposed method is reviewed, considering the three
scenarios introduced in the previous section. In each of these
scenarios, the balance of production power and consump-
tion load is disturbed, and as a result, the frequency of the
system fuctuates. Te proposed method should be able to
minimize the range of frequency fuctuations in the
shortest time.

In order to use the fuzzy system, frst, its structure must
be determined. Te proposed method uses the Gaussian
membership function for the frst input and the triangular
function for the second input. Te Mamdani inference
engine and the centre of gravity defuzzifer have been uti-
lized, and the chaotic whale optimization algorithm de-
termines other parameters. Te mathematical form of the
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Figure 7: Changes in wind speed during the test.

Table 2: Sun power SPR-305E-WHT-D panel specifcations.

Parameter Value
Maximum power 80W

Open circuit voltage 22.1V

Maximum PowerPoint voltage 17.7V

Short circuit current 4.8A

Maximum power point current 4.6A

Temperature coefcient 0.08(V/Deg.C)

Short circuit temperature coefcient − 0.061745(%/Deg.C)

Diode saturation current 6.3 × 10− 12

Ideality factor of the diode 0.945
Parallel resistance Rsh
Series resistance Rs
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Gaussian membership function is in equation (32) and is
illustrated in Figure 9. In this membership function, co-
efcients a and bmust be determined and are equal to 2 and
5, respectively.

Te mathematical form of the triangular membership
function is presented in equation (11) and is shown in Figure 9.
In this membership function, coefcients a, b, and c must be
determined and are equal to 3, 6, and 8, respectively. Figure 10
presents the shape of the triangular membership function.

Considering that Gaussian and triangular membership
functions are used in the constructed fuzzy system, the
parameters of the fuzzifer and defuzzifer are as follows.

6.2. Parameters of the Fuzzifer. Tese parameters include
parameters of Gaussian and triangular membership functions.

Considering that seven membership functions are as-
sumed for each input, the number of parameters in the frst
part equals 35. Tere are two parameters for each Gaussian
membership function, so 14 parameters must be determined
for seven Gaussian functions. Also, there are three pa-
rameters for each triangular membership function, so 21
parameters must be determined. Accordingly, there are
a total of 35 parameters the chaotic whale optimization
algorithm must determine. In Figures 11 and 12, the input
membership functions of both inputs are shown, which are
built based on the optimal parameters the chaotic whale
optimization algorithm resolves.

In the defuzzifer, four fuzzy rules are used. Te number of
parameters for each fuzzy rule is one more than the number of
inputs. Here, there are two inputs and four rules.Terefore, the
number of parameters in the defuzzifer for each fuzzy rule
equals 3.Tere are 12 parameters in the fnal section.Terefore,
the total number of optimization variables is equal to 47. Te
selected values for the parameters of the chaotic whale opti-
mization algorithm are listed in Table 3.

7. Results

Te results are indicated in Figures 13–17. Figure 13 displays
the system’s frequency after starting the frst scenario. In this
fgure, the horizontal axis shows the time in seconds, the

vertical axis shows the system’s frequency in Hertz, and the
second zero indicates the scenario start point. In order to
investigate the charging control efciency and discharging of
EVs on the frequency stability, the normal mode (absence of
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Figure 8: Changes in the intensity of the sun during a day.
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EVs) is also shown in this fgure. Trough the normal mode,
EVs are only charged and function as consumers; therefore,
there is no control over the charge and discharge of EVs.

As can be seen, since the frst scenario starts, the fre-
quency fuctuations of the proposed method introduced as
the frst mode are around 0.08Hz (black line). With the
passage of time and employing charge stored in the EVs, the
range of fuctuations is decreased. Finally, the range of
frequency fuctuations reaches less than 0.03Hz. Te am-
plitude of oscillations in the second state, where electric
vehicles are the only consumers, is more than 0.2Hz at the
beginning and has reached 0.13 in the steady state (red line).
Te results showed that the proposed method reduced the

fuctuations by 70% compared to the secondmode. Figure 14
shows the proposed method’s frequency deviation and the
normal mode.

Figure 15 shows the frequency since the second scenario
started, in which there is a partial shadow at noon where the
sun’s intensity increases from 525W/m2 to 380W/m2, and
Figure 16 illustrates the frequency deviation. With the de-
crease of irritations, the production power of the solar power
plant is reduced, and the balance between the amount of
production and consumption power is disturbed. In this
fgure, the frequency of the system in the frst mode
(presence of EVs) is signifcantly more stable than that in the
second mode (absence of EVs).
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Figure 12: Membership functions of the second input.

Table 3: Parameter values of the optimizer.

Parameter Value
Population of whales 30
b 2
Chaotic map Sinusoidal
Maximum iteration 100

Proposed method
Dumb charging
ABC
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Figure 13: System frequency in the frst scenario using the proposed method and other methods.
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In the third scenario, at 22:00, the wind speed exceeds the
maximum speed, so the wind farm production stops; con-
sequently, the balance between the generated power and

demand is disrupted. Figure 17 shows the frequency in the
third scenario. As can be seen, the frequency fuctuations
using the proposed method are around 0.16Hz, and with the
passage of time and the use of the stored power in the
battery, the range of fuctuations starts to decrease. Finally,
the range of frequency fuctuations reaches less than 0.03Hz,
while this value for the normal mode reaches 0.18 in the
steady state. Te results showed that the proposed method
reduced the fuctuations by 83%. Figure 18 displays fre-
quency deviation using the proposed method and
normal mode.

7.1. Performanceof theOptimizerAlgorithm. ANFIS controls
how electric vehicles are charged and discharged in this
method to stabilize the system’s frequency. In order to in-
crease the accuracy of ANFIS, the chaotic whale optimi-
zation algorithm is used for the training process. Since
a satisfactory optimization algorithm should be fast and able
to reach the desired solution in the least number of itera-
tions, the performance of the chaotic whale optimization
algorithm is investigated in diferent cases. Figure 19 shows
the convergence of the CWOA. In this fgure, the horizontal
axis represents the iteration, and the vertical axis represents
the minimum squared error (MSE) for the diference be-
tween the reference and actual frequency in the frst sce-
nario. Due to training the algorithm with ANFIS, the range
of frequency fuctuations is minimized and ideally reaches
zero. It is noteworthy that the training is completed in less
than 60 iterations.

In Figures 20–24, the changes in the parameters of the
preliminary and conclusion sections are shown.Te changes
in the parameters of the frst part of one of the Gaussian
membership functions (the second membership function)
are shown in Figures 20 and 21, assuming C� 0.314 and
0.233. As can be seen, the algorithm can fnd the optimal
value of Gaussian membership function parameters in fewer
than 60 iterations. Similar results are obtained for the rest of
the membership functions (see Table 4).

Figures 22–24 illustrate changes in the parameters of the
frst part of one of the triangular membership functions (the
third membership function). In this membership function,
b� 71.25, a� 35.16, and c� 90.46. As can be seen, the CWOA
can fnd the optimal value of the parameters of the triangular
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Figure 14: Frequency deviation in the frst scenario using the
proposed method and other methods.
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Figure 15: System frequency in the second scenario using the
proposed method and other methods.
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Figure 16: Frequency fuctuations in the second scenario using the
proposed method and normal mode.
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Figure 17: System frequency in the third scenario using the
proposed method and other methods.
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Figure 18: Frequency fuctuations in the third scenario using the proposed method and other methods.
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Figure 19: Convergence process of the chaotic whale optimization algorithm in diferent implementations.
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Figure 21: Variations of the second parameter σ of the second Gaussian membership function in the preceding section.
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Figure 22: Variations of the frst parameter (a) of the third triangular membership function in the preceding section.

30

32

34

b
36

38

40

42

44

10 7020 30 40 9050 60 10080

Iteration

Figure 23: Variations of the second parameter (b) of the third triangular membership function in the preceding section.
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Figure 24: Variations of the third parameter (c) of the third triangular membership function in the preceding section.

Table 4: Nomenclature.

x Mapping’s output
a Control parameter
Ok

i Output of each layer
k Number of layers
i Number of nodes
μAi

(x) Membership function of variable x
a, b, c, d Specifc points of a membership functions
σ Standard deviation
z Curve-ftting constant
wi Weight of ith node
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membership function in fewer than 60 iterations. Similar
results are obtained for the rest of themembership functions.

8. Conclusion

Te presence of EVs on a large scale, despite upbringing
challenges, can be used to improve the characteristics of the
power system, such as frequency stabilization and power
compensation, if properly managed and controlled. A new
method based on fuzzy systems has been introduced to
control EV charging to reduce system frequency fuctua-
tions, and the chaotic whale algorithm is used as the training
algorithm of the ANFIS. In order to evaluate the perfor-
mance and reliability of the designed approach, it is tested
under several scenarios with several other methods. Te
results showed that by utilizing the charge stored in the
battery of electric vehicles, the range of oscillations is de-
creased by 83% to a value of approximately 0.2Hz. Also, the
chaos whale algorithm can train ANFIS in less than 60 it-
erations. Moreover, the chaotic whale algorithm has out-
standing accuracy and speed of convergence. Te results
show the proposed method’s good performance in gov-
erning electric vehicles’ stored power to reduce fuctuations.

Abbreviations

MG: Microgrid
DER: Distributed energy resources
CHP: Combined heat and power
PV: Photovoltaic
EV: Electric vehicle
CDM: Controller diagram method
MISO: Multi-input and single-output
MPC: Model predictive control
LMI: Linear matrix inequalities
LFC: Load frequency control
FF-PSO: Firefy and particle swarm optimization
EV: Electric vehicle

GT2FL: General type-2 fuzzy logic
PEV: Plugin electric vehicle
HESS: Hybrid energy storage system
PHES: Pumped hydropower energy storage
OVPL: Opposition-based Volleyball Premier League
ASO: Atom search optimization
FOPID: Fractional-order proportional integral derivative
HPS: Heat pump system
BES: Battery energy system
DMPC: Distributed model predictive control
ANFIS: Adaptive neural-fuzzy inference system
GT2FLS: General type II fuzzy logic sets
IT2FLS: Several interval type II fuzzy logic systems
OFPI: Optimal fuzzy PI
RL: Rule layer
NL: Normalization layer
CP: Conclusion parameters
DL: Defuzzifcation layer
SL: Summation layer
WOA: Whale optimization algorithm
CWOA: Chaotic whale optimization algorithm
SOC: State of charge
ICMIC: Iterative chaotic map with infnite collapses
FI: Fuzzy inference
FI: Fuzzy implication
ABC: Artifcial bee colony
MSE: Mean square error
DMPC: Distributed model predictive control
HDMPC: Hierarchical distributed model predictive control
DG: Diesel generator
ANN: Artifcial neural networks
FIS: Fuzzy inference system.

Data Availability

Data will be available upon request. For data-related
queries, kindly contact Baseem Khan baseem.khan04@
ieee.org.

Table 4: Continued.

w Normalized weight
pi, qi, ri Parameter set of ith node
I(t) Charging current
Q Battery capacity
Qi Uncertain battery capacity
S(t0) Charging status
C(t) Charging rate
Cmin Minimum charging rate
Cmax Maximum charging rate
Tmin Minimum charging time
Sobj Desired State of charge
λi
adj Te ratio of the maximum to the minimum time required to charge the battery

E Energy (kw/h)
ES(n) Total required energy of a station within the n timeframe
Ei
EV(n) Required energy to charge an EV within the n timeframe

U Voltage
NEV(n) Number of EVs charged within the n timeframe
Pi
chg Required power to charge an EV within the n timeframe

EI
chg(n) Demand for EV energy within the n timeframe

16 International Transactions on Electrical Energy Systems

mailto:baseem.khan04@ieee.org
mailto:baseem.khan04@ieee.org


Conflicts of Interest

Te authors declare that they have no conficts of interest.

References

[1] M. Khamies, G. Magdy, M. Ebeed, and S. Kamel, “A robust
PID controller based on linear quadratic Gaussian approach
for improving frequency stability of power systems consid-
ering renewables,” International Society of Automation
Transactions, vol. 117, pp. 118–138, 2021.

[2] J. Tian, R. Xiong, J. Lu, C. Chen, and W. Shen, “Battery state-
of-charge estimation amid dynamic usage with physics-
informed deep learning,” Energy Storage Materials, vol. 50,
pp. 718–729, 2022.

[3] S. Iqbal, S. Habib, N. H. Khan, M. Ali, M. Aurangzeb, and
E. M. Ahmed, “Electric vehicles aggregation for frequency
control of microgrid under various operation conditions
using an optimal coordinated strategy,” Sustainability, vol. 14,
no. 5, p. 3108, 2022.

[4] Y. Zhang, P. Tino, A. Leonardis, and K. Tang, “A survey on
neural network interpretability,” Institute of Electrical and
Electronics Engineers Transactions on Emerging Topics in
Computational Intelligence, vol. 5, no. 5, pp. 726–742, 2021.

[5] S. Liu, S. You, Z. Lin et al., “Data-driven event identifcation in
the US power systems based on 2D-OLPP and RUSBoosted
trees,” Institute of Electrical and Electronics Engineers
Transactions on Power Systems, vol. 37, no. 1, pp. 94–105,
2022.

[6] X.-C. Shangguan, Y. He, C. K. Zhang et al., “Control per-
formance standards-oriented event-triggered load frequency
control for power systems under limited communication
bandwidth,” Institute of Electrical and Electronics Engineers
Transactions on Control Systems Technology, vol. 30, no. 2,
pp. 860–868, 2022.

[7] A. Oshnoei, M. Kheradmandi, S. M. Muyeen, and
N. D. Hatziargyriou, “Disturbance observer and tube-based
model predictive controlled electric vehicles for frequency
regulation of an isolated power grid,” Institute of Electrical
and Electronics Engineers Transactions on Smart Grid, vol. 12,
no. 5, pp. 4351–4362, 2021.

[8] M. Alizadeh, M. T. H. Beheshti, A. Ramezani, and
H. Saadatinezhad, “Network trafc forecasting based on fxed
telecommunication data using deep learning,” in Proceedings
of the 2020 6th Iranian Conference on Signal Processing and
Intelligent Systems (ICSPIS), IEEE, Mashhad, Iran, December
2020.

[9] M. Alizadeh, A. Ramezani, and H. Saadatinezhad, “Fault
tolerant control in an unmanned bicycle robot via sliding
mode theory,” Institution of Engineering and Technology
Cyber-Systems and Robotics, vol. 4, no. 2, pp. 139–152, 2022.

[10] R. Armin, S. Masoud, and G. Aliakbar, “Evaluation of the
mechanical properties of Inada granite under true triaxial
conditions by discrete element method,” Arabian Journal of
Geosciences, vol. 16, no. 1, p. 70, 2023.

[11] D.-W. Zhang, G.-P. Liu, and L. Cao, “Proportional integral
predictive control of high-order fully actuated networked
multi-agent systems with communication delays,” Institute of
Electrical and Electronics Engineers Transactions on Systems,
Man, and Cybernetics: Systems, 2022.

[12] S. Z. Ardabili, S. Bahmani, L. Z. Lahijan, N. Khaleghi,
S. Sheykhivand, and S. Danishvar, “A novel approach for
automatic detection of driver fatigue using EEG signals based

on graph convolutional networks,” Sensors, vol. 24, no. 2,
p. 364, 2024.

[13] R. Hu, Z. Peng, X. Zhu et al., “Multi-band brain network
analysis for functional neuroimaging biomarker identifca-
tion,” Institute of Electrical and Electronics Engineers Trans-
actions on Medical Imaging, vol. 40, no. 12, pp. 3843–3855,
2021.

[14] Q. Yang, J. Li, R. Yang, J. Zhu, X. Wang, and H. He, “New
hybrid scheme with local battery energy storages and electric
vehicles for the power frequency service,” eTransportation,
vol. 11, Article ID 100151, 2022.

[15] H. Saadatinezhad, A. Ramezani, M. Alizadeh, and
E. Hajimalek, “Fault tolerant load frequency sharing of
a multi-area power system using model predictive control,”
Journal of Engineering, vol. 2022, pp. 337–347, 2022.

[16] A. A. Zishan, M. M. Haji, O. Ardakanian, and O. Ardakanian,
“Adaptive congestion control for electric vehicle charging in
the smart grid,” Institute of Electrical and Electronics Engineers
Transactions on Smart Grid, vol. 12, no. 3, pp. 2439–2449,
2021.
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