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To address the issue of multiobjective control in multienergy systems with diverse operational objectives, a two-stage optimization
framework based on expected point tolerance has been proposed in this paper. In the frst stage, a single objective function is used
for optimization control to obtain the expected point of the multiobjective optimization problem. Ten, in the second stage, by
defning the allowable deviation between each optimization objective and the expected point, the original multiobjective op-
timization problem is transformed into a single objective optimization problem solution with tolerance measurement. Finally, in
the simulation scene of a multienergy system, it is demonstrated that compared with the optimal results under each single
objective method, the proposed method increases power line loss, maximum voltage deviation, new energy consumption, and
economy by 2.22, 2.30, 1.02, and 2.45 times, respectively. Compared with the suboptimal results, the proposed method reduces
power line loss by 22.26, 1.74, 1.09, and 0.97 times, respectively. Combining the shape of the Pareto frontier, it is demonstrated that
the proposed method can comprehensively consider the needs of multiple power optimization objectives for forming a more
reasonable and efective system optimization scheduling and also provide a new approach for solving multiobjective optimization
problems.

1. Introduction

With the increasing capacity of distributed renewable energy
power plants connecting to the grid, the volatility and
randomness of renewable energy generation and load
consumption pose new challenges to the power balance and
stable operation of the grid [1]. Energy storage system (ESS)
can efectively accommodate renewable energy generation,
improve power quality, and enhance system efciency. Tey
have been widely applied in modern power systems [2].
However, with the increasing demand for power services
and the conficting optimization objectives of various ser-
vices, the management and scheduling of renewable energy
generation systems and energy storage systems have become
increasingly challenging and complex in a multienergy
system [3, 4]. Te core challenge in further advancing the

application of multienergy systems lies in balancing the
conficting demands of various services and establishing
a scientifc and rational optimization and scheduling
strategy. Tis strategy aims to maximize the fulfllment of
diverse optimization requirements and address the multiple
objectives efectively.

A signifcant amount of research has been conducted by
domestic and international experts and scholars to address
the multiobjective optimization control problem in energy
systems, leading to some achievements. For example, in [5],
the authors minimize the total generation cost and pollutant
emissions of renewable energy systems through two ob-
jective functions. Tis approach enables dynamic economic
and emission dispatch control of the system. In [6], a game-
theoretic approach is proposed, which utilizes an improved
equilibrium coordination algorithm to achieve game
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optimization for two operational objectives: wind-storage
system generation cost and grid voltage support. Tis study
presents an economic dispatch optimization method for
energy storage systems.

Based on existing research, there are three main ap-
proaches to address multiobjective optimization. Te frst
approach involves transformingmultiple objective functions
into a single objective for optimization calculations [7, 8].
For example, in [9], the authors add up the operating costs of
diferent energy sources in a microgrid to convert the
multiobjective optimization problem into a single-objective
optimization problem. Te optimized results obtained
through this summation approach lie on the Pareto frontier
of the multiobjective optimization, thus achieving optimal
energy storage scheduling instructions. In [10], a weighted
sum method is used to transform the multiobjective opti-
mization model into a single-objective model, and the in-
fuence of weights on the operation cost and lifespan of
energy storage batteries is analyzed. Similarly, in [11, 12],
a weighted sum approach is utilized to unify objectives such
as power loss, load fuctuation, and voltage fuctuation in
optimal operation strategies for distribution networks with
distributed renewable energy sources. In [13], a model
predictive control-based scheduling method for user-side
energy storage is proposed, optimizing control with the
objective of economic efciency. In [14], a fuzzy control
method is employed to dynamically adjust the weight co-
efcients of multiple objectives, forming an energy man-
agement strategy for hybrid oil-electric systems and
achieving global optimal control. Te advantage of this
approach is that it can yield an efective unique solution.
However, the transformation method has a signifcant im-
pact on the results, and it lacks a characterization of the
degree to which the global optimal solution for multiple
objectives is approximated. In addition, there is insufcient
understanding of the interdependencies between diferent
objectives.

Te second approach involves decomposing the multi-
objective function into single objectives at diferent stages
for optimization calculations [15–17]. Trough iterative
interactions between these stages, an optimal value is
eventually achieved. For instance, in [18, 19], the day-ahead
optimal energy scheduling of a multienergy system is de-
termined in the frst stage based on deterministic forecasting
information. Te second stage involves optimizing and
adjusting the energy scheduling instructions based on the
dispatch instructions from the frst stage. In [20], the frst
stage employs a real-time pricing strategy to determine the
optimal ordered power for loads. In the second stage,
a stochastic dynamic interaction between users and suppliers
is established by minimizing the diference between actual
power consumption and ordered power through real-time
incentives, creating a two-layer model. However, in multi-
objective optimization problems, there is often a complex
coupling relationship between multiple objective functions,
which poses signifcant challenges for the multilevel

decomposition process. Moreover, this approach generally
results in a trade-of among multiple objective functions,
lacking an analysis of the importance level between diferent
objective functions [21].

Te third approach involves using swarm intelligence
optimization algorithms to compute the Pareto solution
set, resulting in a series of nondominated suboptimal so-
lutions [22, 23]. Ten, the distribution patterns and in-
fuences of these nondominated suboptimal solutions are
analyzed [24, 25]. Alternatively, the fnal recommended
value can be obtained by evaluating the suboptimal solu-
tions in the solution set. Te drawback of this approach is
that the solutions in the solution set are often limited and
few in number, and the recommended solution is directly
infuenced by diferent evaluation methods. Te authors of
[26–28] utilize the multiple update strategies (MOMUS)
and the nondominated sorting genetic algorithm-II
(NSGA-II) to perform multiobjective optimization. Te
technique for order preference by similarity to an ideal
solution (TOPSIS) method is then employed to evaluate the
quality of nondominated solutions in the Pareto solution
set, ultimately obtaining the recommended solution. Te
authors of [29] employ a potent symphony orchestra search
algorithm (SOSA) to solve nonconvex mixed-integer
nonlinear master-slave optimization problems. Ten,
a conservative fuzzy satisfying method is utilized to select
the best compromise solution that meets the economic and
fexibility requirements of energy storage systems. In [30],
a decomposition-based multiobjective evolutionary algo-
rithm (MOEA/D) is proposed to address the balance be-
tween investment in energy storage systems and the
internal energy autonomy in active microgrid operations.
Te authors of [31] utilize the NSGA-II to perform mul-
tiobjective optimization for a compressed CO2 energy
storage (CCES) system, considering both its economic and
efciency aspects. Te solution closest to the origin in the
objective function space on the Pareto front is selected as
the fnal recommended value. In [32], a modifed version of
the multiobjective sine-cosine algorithm is proposed.
Compared to existing methods such as multiobjective grey
wolf optimizer (MOGWO), multiobjective slime mould
algorithm (MOSMA), nondominated sorting genetic
algorithm-II (NSGA-II), and multiobjective particle swarm
optimization (MOPSO), this approach is capable of
obtaining a better Pareto front. Te comparison of the
model and method from some existing literature is shown
in Table 1.

To address the limitations of the above-mentioned
methods, including the lack of representation for the ap-
proximation of global optimal solutions in a multiobjective
optimization problem and the local optimal problem of the
recommended solution based on a Pareto solution set of
fnite nondominated solutions, a two-stage optimization
framework based on the expected point tolerance has been
proposed in this paper.Te contributions of this paper are as
follows:
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(1) Unlike the existing literature that uses subjective or
objective weighting methods to aggregate multiple
objective functions or evaluate the Pareto solution
set, the proposed two-stage optimization framework
in this paper takes a diferent approach. In the frst
stage, the optimal values under each objective
function are independently calculated multiple times
to obtain the expected points of the multiobjective
optimization problem, providing a reference for the
measurement of optimal solutions. In the second
stage, a measurement function is defned to quantify
the permissible deviation between feasible solutions
and expected points, enabling the optimal solutions
to approach the expected points and achieve superior
overall performance.

(2) By introducing permissible deviations between fea-
sible solutions and expected points, multiple opti-
mization objective functions are transformed into
multiple inequality constraints. Ten, the measure-
ment function for permissible deviations is defned
to transform the multiobjective optimization prob-
lem into a single-objective problem for optimizing
the deviations. Tis approach enables the search for
a dominating solution on the Pareto front with the
smallest permissible deviation from the expected
point, addressing the issue of solution diversity in
multiobjective optimization.

Te remainder of this paper is organized as follows. In
Section 2, a multiobjective optimization problem is analyzed
to present the architecture of the proposed method. Ten,
the mathematical model of a multienergy system with
multiple types of objective functions and constraints is
established in Section 3. Section 4 analyzes and discusses the
optimization performance of the proposed method and the
coupling relationships among diferent objectives. Finally,
Section 5 provides the relevant conclusions of this paper and
suggests future research directions.

2. Multiobjective Optimization Problems
and Solutions

2.1. Multiobjective Optimization Problems. In multiobjective
optimization problems, amathematicalmodel with S objectives
can be described as equation (1). In the above equation,X� [x1,
x2, . . ., xm] represents a vector of optimization variables xi,
where i� 1, 2, . . ., m, fs(X) represents the s-th objective
function to be minimized and gk(X) represents the k-th in-
equality constraint, while hl(X) represents the l-th equality
constraint and xlb

i and xub
i denote the lower and upper bounds

of the optimization variable xi, respectively.

minimize
X

F(X) � f1(X), f2(X), . . . , fS(X) , (1)

Subject to
gk(X) ≤ 0, k � 1, 2, . . . , K,

hl(X)≤ 0, l � 1, 2, . . . , L,

x
lb
i ≤xi ≤x

ub
i , i � 1, 2, . . . , m.

⎧⎪⎪⎨

⎪⎪⎩
(2)

Pareto optimization is a conventional approach to
solving the aforementioned multiobjective optimization
problems. It involves analyzing the superiority relation-
ships between diferent solutions to obtain the Pareto-
optimal solutions, which are considered nondominated.
Te relevant defnitions regarding Pareto optimality are
shown in [32]. However, using Pareto optimization often
results in a set of nondominated solutions rather than
a single global optimal solution, which can make it
challenging to select the best solution. To better illustrate
the proposed solution, this paper analyzes the results of
Pareto optimality using two optimization objectives as an
example, as shown in Figure 1. It can be observed that
using Pareto optimization can yield a set of nondominated
solutions, forming a convex surface in the multiobjective
function space known as the Pareto front. It is worth
noting that if this paper independently optimizes each
objective, a global optimal point can be obtained in the
function space. Tis global optimal point can be defned as
the expected point of the multiobjective optimization
problem, as illustrated by point A in the fgure. Clearly, in
most multiobjective optimization problems, it is not
possible to reach this expected point. However, from the
fgure, it can be seen that the distance between the
nondominated solutions on the Pareto front and the
expected point is diferent. Tis is illustrated by the dis-
tances d1 and d2 between points B and C on the Pareto
front and the expected point A. Terefore, the problem of
multiobjective optimization can be transformed into
fnding the solution in the function space that has the
minimum distance to the expected point. Tis solves the
problem of selecting nondominated solutions on the
Pareto front. It is worth mentioning that the term “dis-
tance” here is just a measure function that describes the
proximity between a point in the function space and the
expected point. It is not limited to the Euclidean distance
as shown in Figure 1.

Objection Function f1(X)0

O
bj

ec
tio

n 
Fu

nc
tio

n 
f 2(X

)

Expectation point
(min f1(X), min f2(X) )

d2

d1

min f1(X)

min f2(X)

Pareto Front

Expectation point (min f1(X), min f2(X))
Non-dominated solution on the Pareto Front

(f1(X2), f2(X2))

(f1(X1), f2(X1))

(f1(X1), f2(X1)) is a non-dominated solution
di = D(f1(Xi), f2(Xi), min (f1(X)), min (f2(X)))

A
B

C

Figure 1: Block diagram for describing multiobjective optimization
problems in two objective functions example.
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2.2. A Two-Stage Optimization Process Based on Expected
PointTolerance. Based on the analysis of Figure 1, this paper
proposes a two-stage optimization framework based on the
expected point tolerance. Te objective of this framework is
to minimize the deviation between the recommended so-
lution and the expected point by using a measurement
function. Te specifc implementation process is as follows:

Step 1: Under the constraints shown in equation (2), we
minimize each objective function fs(X) to calculate the
expected point (min (f1(X)), min (f2(X)), . . ., min
(fs(X))), as shown in the following equation:

minimize
X

fs(X)

Subject to

gk(X)≤ 0, k � 1, 2, . . . , K,

hl(X) ≤ 0, l � 1, 2, . . . , L,

x
lb
i ≤xi ≤x

ub
i , i � 1, 2, . . . , m.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

Step 2: Based on the single-objective optimization
model derived from equation (3), the expected point
(min (f1(X)), min (f2(X)), . . ., min (fs(X))) is ob-
tained. Tis paper defnes the allowable deviation rs for
a feasible solution on the s-th optimization objective.
Tis allows us to transform multiple optimization

objectives into inequality constraints involving the
allowable deviation, as shown in the following
equation:

fs(X) − min fs(X)( 

min fs(X)( 



≤ rs. (4)

Based on equation (4), this paper can transform the
multiobjective optimization problem described in equation
(2) into an optimization problem involving multiple al-
lowable deviations rs. Te advantages of this transformation
include the following: (1) eliminating the biases in opti-
mization results caused by diferent scales among objective
functions, (2) defning a simple and clear measurement
function for the allowable deviation rs, such as a norm, and
(3) tailoring the specifc value of the allowable deviation rs

according to the specifc requirements of practical appli-
cations and enabling optimization of the system’s optimal
results within a specifc allowable deviation range for the s-th
optimization objective. Taking two norm as an example for
the measurement function of the allowable deviation rs, the
above optimization problem can be defned as shown in the
following equation:

minimize
S

s�1
r
2
s � r‖ ‖

2
2

Subject to

gk(X) ≤ 0, k � 1, 2, . . . , K,

hl(X) ≤ 0, l � 1, 2, . . . , L,

x
lb
i ≤xi ≤x

ub
i , i � 1, 2, . . . , m,

fs(X)≤ |min fs(X)( |rs + min fs(X)( .

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

3. Mathematical Model of Multienergy System

Tis paper applies the aforementioned methods to a mul-
tienergy system consisting of distributed generation, dis-
tributed renewable energy, and energy storage system.
From the perspectives of grid performance, renewable
energy integration, and system economy, four optimization
objective functions have been established, including grid
line loss, maximum voltage deviation, renewable energy
integration, and system generation cost. Te calculation
formulas for each objective function are shown in Table 2.
It is worth noting that in this paper, when establishing the
objective function for renewable energy integration, in
order to maintain consistency with the other objectives in
terms of seeking the minimum value, the negative of the
active power output of renewable energy is defned as the
optimization objective J3. Among them, ii,j(t) represents
the current fowing from node j to node i at time t, A. Vi(t)

represents the voltage at node i at time t, and Vbase rep-
resents the base voltage of the power network, kV. Ri,j and
Xi,j represent the resistance and reactance between node i

and node j, respectively, Ω. PDG,i(t) and QDG,i(t) represent
the actual output active and reactive power of the dis-
tributed power source at node I at time t, MW and MVar.
PESS d,i(t) and QESS d,i(t) represent the actual discharge
active power and reactive power output of the battery
energy storage system at node i at time t, MW and MVar.
SN
DG,i and PN

ESS,i represent the rated capacity of the dis-
tributed power source and rated power of the battery
energy storage system at node i, MW和MW. Pref

New,i(t) and
PNew,i(t) represent the maximum active power output and
actual active power output of the new energy generation
station at the i-th power network node at time t, MW. Te
new energy generation station primarily refers to photo-
voltaic (PV) power plants and wind power plants, which are
widely used forms of renewable energy with large installed
capacities. k1,i, k2,i, and k3,irepresent the generation cost
coefcients of the distributed power source, ¥/kWh. k4,i and
k5,i represent the cost coefcients of the battery energy
storage system and the renewable energy station, ¥/kWh.
Te cost per kilowatt-hour of the battery energy storage
system is calculated based on its initial investment cost,
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maintenance cost, electricity cost, and recovery cost, as well
as the amount of discharge throughout its lifecycle. Tis
cost calculation is dependent on the parameters specifc to
the type of battery energy storage system being considered.
In this paper, the distfow optimal power fow (OPF)
method [33] has been utilized. Also, the energy storage
system is applied to lithium iron phosphate batteries. Nb

represents the number of nodes in the power network, T
represents the duration of a typical day, and max(·) and
abs(·) represent functions that calculate the maximum
value and absolute value, respectively.

From the defnition formulas of multiple objective
functions shown in Table 2, it can be observed that (1) the
physical dimensions of the multiple objectives established in
this paper are diferent, making it difcult to directly
compare and analyze the importance of each objective. (2)
Each objective function is only used as one indicator to
evaluate the performance of the multienergy system. Tis
means that in the mathematical modeling of the multienergy
system, all objective functions are considered equivalent.
Furthermore, it should be noted that the four objective
functions mentioned above are only listed to illustrate the
methods proposed in this paper. It does not mean that the
methods presented in this paper are limited to optimizing
only these four objective functions.

In addition to the multiple service objectives mentioned
earlier, the optimization and operation control mathemat-
ical model of a multienergy system also includes several
fundamental requirements for the interaction of energy
among diferent energy sources, the power grid, and loads.
Tese requirements are referred to as constraints. Tis paper
establishes the constraints from the perspective of energy
balance and basic physical laws. Te constraints include the
range of the output power of distributed power sources, the
power output and state of charge requirements of energy
storage batteries, the actual power output capabilities of
renewable energy stations, as well as constraints on active
power, reactive power, node voltage, and branch current in
the power grid. Te defnition formulas for all the con-
straints are shown in Table 3. It can be seen that the op-
erational constraints of a multienergy system are numerous
and include many equality constraints, inequality con-
straints, and second-order cone constraints [34]. Te opti-
mization variables consist of continuous and discrete 0-1
variables. Terefore, the optimization problem of a multi-
energy system is a type of mixed-integer multiobjective
programming problem with complex constraints.

Among them, SN
DG,i, Pmin

DG,i, Pmax
DG,i, Qmin

DG,i, and Qmax
DG,i repre-

sent the rated capacity, lower and upper limits of active power
output, and lower and upper limits of reactive power output of
the distributed power source at node i, respectively. In this
paper, Pmin

DG,i � 0, Pmax
DG,i � SN

DG,i, Qmin
DG,i � − SN

DG,i, and
Qmax

DG,i � SN
DG,i. CSOE,i(t+Δt) and CSOE,i(t) represent the energy

state of the battery energy storage system at node i at time t+Δt
and t, respectively, %. Δt represents the time interval in hours,
h. PESS d,i(t), PESS c,i(t), and PESS,i(t) represent the discharge
power, charge power, and actual active power of the battery
energy storage system at node i at time t, respectively, MW. ηc,i,
ηd,I, and SN

ESS,i represent the charging efciency, discharging
efciency, %, and rated capacity of the battery energy storage
system at node i, MWh, respectively. CL

SOE,i and CD
SOE,i rep-

resent the lower and upper limits of the energy state of the
battery energy storage system at node i, respectively, %. uc

i (t)

and ud
i (t) represent binary variables indicating the charging

and discharging status of the battery energy storage system at
node i at time t, with values of 0 or 1.PLOAD,i(t) andQLOAD,i(t)

represent the active power and reactive power demand of the
load at node i at time t, MW. Pi(t) and Qi(t) represent the
injected active power and reactive power at node i at time t,
respectively, MW. Pi,j(t) and Qi,j(t) represent the active
power and reactive power fowing from node j to node i at time
t, respectively, MW. Ii,j(t) represents the magnitude of the
current fow ii,j(t) from node j to node i at time t, A2. Ui(t)

and Uj(t) represent the square of the voltage at node i and
node j at time t, respectively, kV2. Umax and Umin represent the
square of the upper and lower limits of node voltage, re-
spectively. Imax represents the maximum current fow in the
branch. Ri,j and Xi,j represent the resistance and reactance
between node j and node i, respectively, Ω.

4. Case Analysis and Discussion

4.1. Example Parameters. In order to analyze and validate the
proposed methods, this paper has considered an IEEE33
distribution network [34] with the integration of two photo-
voltaic stations (at nodes 6 and 13), two wind power plants (at
nodes 22 and 32), one distributed power source (at node 1), and
one lithium-ion battery energy storage station (at node 6), as
shown in Figure 2. Figure 3 illustrates the power profles of the
load, PV, and wind power generation during a typical day.
Also, Figure 4 represents the distribution of active and reactive
power demand at each nod in a typical day [34]. Te time

Table 2: Four types of optimization objective functions for multienergy systems.

Meaning of the objective function Defnition of the objective function

Line loss [4, 12] min J1 �
1
2


T

t�1
Nb

i�1
Nb

j�1i
2
i,j(t) ×

��������

R
2
i,j + X

2
i,j





Maximum voltage deviation [6] min J2 � maxT
t�1 (maxNb

i�1(abs(V
2
i (t)/V2

base − 1)))

Abandoned amount of new energy [4] min J3 � − 
T

t�1
Nb

i�1(PNew,i(t))

Power generation cost [6, 10] min J4 � 
T

t�1
Nb

i�1(k1,iP
2
DG,i(t) + k2,iPDG,i(t) + k3,i + k4,iPESS,i(t) + k5,iPNew,i(t))
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intervalΔt is set to 1hour, and the duration of the typical day T
is 24 hours. Te parameters and simulation conditions of the
power grid, distributed power sources, PV stations, wind power
plants, and lithium-ion battery energy storage station are

presented in Table 4. Te simulation environment for this case
study is MATLAB 2020a running on a Windows 10 system
with 32GB RAM, an Intel Core i7 CPU with a frequency of
2.3GHz, and 16 cores. To solve the above optimization

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19 20 21

23 24 25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

18
19 20 21

22
23 24

DG Distributed 
generator

Photovoltaic 
power station

22

26 27 28 29 30 31 32 33

25
26 27 28 29 30 31 32

Battery energy 
storage system

Photovoltaic 
power station

Wind farm

Wind farm

Figure 2 are reproduced from the literature [34]

Figure 2: Network topology of IEEE33 system with DG, wind farm, PV station, and BESS.
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Figure 3: PV, wind power, and load output power curve under a typical day.
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problem, a mathematical programming solver CPLEX that was
developed by IBM has been adopted.

From Figure 2 and Table 4, it can be observed that in the
simulation, the PV and wind power generation are dispersedly
integrated at four diferent nodes.Te total installed capacity of
the renewable energy sources is 11MW, slightly larger than the
rated power of the power sources and the apparent power of
the loads.Tis highlights the challenge of accommodating high
penetration levels of renewable energy in the power grid.
Particularly, from Figure 3, it can be seen that the load demand
is relatively high. During the period from 5 AM to 11 AM and
from 4 PM to 12 AM, the output power of the renewable
energy sources is insufcient to meet the load demand, and the
generators supply the active and reactive power. During the
period from 1 AM to 5 AM and from 12 PM to 3 PM, the
output power of the renewable energy sources exceeds the load
demand, resulting in curtailment of wind and solar power
when no energy storage system is installed. In addition, as
shown in Figure 4, the load power exhibits two peak periods in
the morning and evening, following the users’ consumption
pattern. Te load at each node has signifcant diferences in
active power and reactive power demand, and nodes with high
power demand are located far from the generator node,
resulting in signifcant network losses.

4.2. Analysis of System Optimization Control Results.
Under the simulation parameters mentioned above, this sec-
tion compares the proposed methods with the results obtained
from single-objective optimization. Table 5 presents the vari-
ations in the objective function value under the single-objective
optimization in the frst stage of the proposed methods. Fig-
ures 3 and 4 have illustrated the performance comparison of
the multienergy system in terms of power sources, renewable
energy, energy storage batteries, and the power grid under
diferent optimization approaches. In Table 5, the reason for J3

being negative is calculated based on Table 2. Te larger the
absolute value of the objective function value J3, the better the
performance of that objective.

From Table 5, it can be observed that when optimizing
with a single objective, only that specifc objective is guar-
anteed to be optimal, while other objectives may perform
poorly and fail to achieve a dominant solution across all
objectives. For example, when optimizing with the objective
function J1 as the single objective, the objective function
value J2 is 0.21, at least 10 times larger than the other op-
timization results. Similarly, when optimizing with the
objective function J2 as the single objective, the objective
function value J3 is − 2.9924, more than twice as large as the
other optimization results. Terefore, in the control of
multienergy systems, it is necessary to consider the needs of
various objectives and develop comprehensive optimization
and scheduling strategies. Compared to the results of single-
objective optimization, the proposed methods in this paper
perform suboptimally in terms of all objective function
values except for J4. By comparing the variations of objective
function J2 and J4, it can be observed that as the objective
function value J2 decreases, the objective function value J4
increases. Tis indicates a signifcant trade-of between re-
ducing grid voltage fuctuations and increasing system
generation costs.

Figure 5 illustrates the diferences in the generator
system, renewable energy system, energy storage system, and
grid voltage of the multienergy system under diferent op-
timization objectives. In Figure 5(a), which shows the
comparison of active and reactive power output of the
generator, it can be observed that under the single opti-
mization objective of J2, the active and reactive power
output of the generator is signifcantly higher than the re-
sults of other optimization objectives. Tis is mainly because
the objective function J2 is designed to reduce grid voltage
fuctuations and meet the active and reactive power demand

Table 4: Description of simulation parameters.

Parameter Value
Reference capacity (MW) 10
Line nominal voltage (kV) 12.66
Voltage upper and lower limit range (%) ±10
Maximum current of the line (A) 456
Charging and discharging efciency (%) 95 and 92
Upper and lower limits of SOE (%) 90 and 10
Initial SOE value (%) 50
Rated power of energy storage system (MW) 3.3
Rated capacity of energy storage system (MWh) 13.2
Cost per kWh of energy storage system (¥/kWh) 0.574
Rated power of distributed power sources (MVA) 10
Distributed power generation cost coefcient k1 (¥/kWh) 40000
Distributed power generation cost coefcient k2 (¥/kWh) 650
Distributed power generation cost coefcient k3 (¥) 8
Photovoltaic installed capacity of node #6 (MW) 4
Photovoltaic installed capacity of node #6 (MW) 2
Cost of photovoltaic kWh at nodes #6 and #13 (¥/kWh) 0.293
Wind power installed capacity at node #22 (MW) 3
#32 node wind power installed capacity (MW) 2
Wind power cost per kilowatt hour at nodes #22 and #32 0.3
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Figure 5: Continued.

Table 5: Single objective J1∼J4 optimization results in the frst stage of the proposed method.

J1 J2 J3 J4

min J1 0.0294 0.2100 − 5.6129 90167.9471
min J2 1.9392 0.0027 − 2.9924 125350.6774
min J3 1.4559 0.0108 − 9.5580 27508.7962
min J4 4.1385 0.0261 − 8.5573 11584.3200
min r‖ ‖22 0.0654 0.0062 − 9.3551 28413.7869

10 International Transactions on Electrical Energy Systems



0 4 8 12 16 20 24
Time (h)

0 4 8 12 16 20 24
Time (h)

4

3.5

3

2.5

2

1.5

1

0.5

0

Ac
tiv

e p
ow

er
 o

f t
he

 P
V

 sy
ste

m
 (M

W
)

Ac
tiv

e p
ow

er
 o

f t
he

 w
in

d 
fa

rm
 (M

W
)

6
5.5

5
4.5

4
3.5

3
2.5

2
1.5

1
0.5

0

Under single objective J1

Under single objective J2

Under single objective J3

Under single objective J4

Under objective ||r||2
2

Maximum active power

Under single objective J1

Under single objective J2

Under single objective J3

Under single objective J4

Under objective ||r||2
2

Maximum active power

(b)
Figure 5: Continued.

International Transactions on Electrical Energy Systems 11



0 4 8 12 16 20 24
Time (h)

15

12

9

6

3

0

-3

-6

-9

-12

-15

Ac
tiv

e p
ow

er
 o

f t
he

 B
ES

S 
(M

W
)

100

90

80

70

60

50

40

30

20

10

0

SO
E 

of
 th

e B
ES

S 
(%

)

0 4 8 12 16 20 24
Time (h)

8

6

4

2

0

-2

-4Re
ac

tiv
e p

ow
er

 o
f t

he
 B

ES
S 

(M
V

ar
)

Active power
Active power

Active power
Active power

Active power

SOE under single objective J1

SOE under single objective J2
SOE under single objective J3

SOE under single objective J4

SOE under objective ||r||22

(c)
Figure 5: Continued.

12 International Transactions on Electrical Energy Systems



of the grid load, as shown in Figure 5(b). On the other hand,
under the single optimization objective of J4, the generator’s
active power output is minimized, and it only provides
reactive power to support the grid voltage. Tis is because J4
represents the system’s generation cost, as shown in formula
(9), which is a quadratic function of the actual active power
output of the generator. However, in the proposed opti-
mization methods in this paper, the actual power output of
the generator lies between these two scenarios, balancing the
optimization requirements of objectives J2 and J4.

On the other hand, from Figure 5(b), which shows the
comparison of actual active power output of the PV and
wind power generation systems, it can be observed that
under the single optimization objectives of J1, J2, and J4,
both PV and wind power generation experience signifcant
and high curtailment, especially for wind power generation.
However, under the proposed optimization methods in this
paper, the curtailment of renewable energy is signifcantly
reduced. Combined with Figure 5(c), which shows the active
power output and energy state of the energy storage battery,
it can be seen that between 0 AM and 6 AM, the energy
storage system actively charges to absorb the excess wind
power generation that exceeds the load demand. Between 6
AM and 11 AM, when the load demand for active power
exceeds the maximum output power of renewable energy,
the energy storage system discharges to support the load
demand. Between 11 AM and 4 PM, due to the higher
contribution from PV generation, the renewable energy
generation exceeds the load demand, and the energy storage
system charges again to prepare for the shortfall in load

demand and renewable energy supply resulting from the
decrease in PV generation. Figure 5(d) compares the voltage
distribution at diferent nodes of the grid under diferent
optimization objectives. It can be observed that when
minimizing grid losses, (J1) is the optimization objective and
the grid voltage approaches 1.21, which is the square of the
reference voltage of 110%. Under other methods, the grid
voltage remains close to the reference value, indicating better
control efectiveness.

4.3. Analysis and Discussion. To analyze the impact of dif-
ferent deviation metrics on the optimization results, Table 6
presents the optimization results of the multienergy system
under diferent norm forms. In this table, the infnity norm
measures the maximum allowable deviation, the two norm
measures the sum of squared deviations, and the one norm
measures the sum of absolute deviations. From the com-
parison results presented in Table 6, it can be observed that
under diferent norms, the variation in objective function
values is small, and there is no dominance among the op-
timization results for diferent norms. Tis indicates that the
optimization results under diferent norms are all non-
dominant solutions of multiobjective optimization, and the
optimization results are not sensitive to the norm defnition.

In the multienergy system, to refect the bias towards
diferent optimization objectives in the actual application
process, this paper introduces weight coefcients for dif-
ferent optimization objectives in equation (5), as shown in
equation (6), where ωs represents the weight coefcient for
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Figure 5: Comparison results of operational performance of multienergy systems under diferent optimization objectives. (a) Output active
and reactive power from the DG under diferent optimization objections. (b) Output active power from new energy power stations under
diferent optimization objections. (c) Output active power, reactive power, and SOE from the BESS under diferent optimization objections.
(d) Square of the ratio of grid voltage to reference voltage under diferent optimization objections.
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the allowable deviation of the s-th optimization objective. To
further discuss the impact of weight coefcient variations on
the optimization results, Table 7 presents the optimization

results of the multienergy system under diferent weight
combinations for the four optimization objectives.

minimizemax r1, r2, . . . , rS(  � r‖ ‖
2
2

Subject to

gk(X)≤ 0, k � 1, 2, . . . , K,

hl(X)≤ 0, l � 1, 2, . . . , L,

x
lb
i ≤ xi ≤ x

ub
i , i � 1, 2, . . . , m,

fs(X) ≤
ωs


S
j�1ωj

rs |min fs(X)( | + min fs(X)( .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

FromTable 7, it can be observed that under the condition
of weight variation for ω1 to ω3, as the weight value ω1
decreases, the allowable deviation of the objective function
J4 decreases.Tis means that the optimization result is closer
to the desired value on the J4 objective. By reducing the
weight coefcient of a specifc optimization objective, the
allowable deviation for that objective can be controlled,
thereby achieving a preference for a specifc optimization
objective. At the same time, there are some diferences in the
variation patterns of the objective values under the condition
of equal weights for the other three objectives. Te objective
J3 shows the greatest improvement when ω4 changes from 7
to 1, while J1 and J2 show the greatest improvement whenω4
changes from 0.1 to 0.01. Tis indicates that diferent op-
timization objectives have diferent sensitivities to the
weights, and therefore, it is necessary to conduct further
discussions. Figure 6 shows the variation curves of the four
objective values under diferent weight variations for the
optimization objectives. It should be noted that the weights
of the other three objectives change in equal increments
along the x-axis, representing the weight of the optimization
objective.

In Figure 6(a), it can be observed that under the con-
dition of equal values for ω2 to ω4, as the weight ω1 increases,
the objective value J1 shows an exponential growth trend.
Before ω1 � 0.7, the growth is relatively slow, but after
ω1 � 0.7, it increases rapidly. On the other hand, the ob-
jective value J2 experiences a sudden drop and then remains
unchanged, indicating that J2 is not sensitive to the variation
of ω1. Objective values J3 and J4 have a plateau period, and
after this period, J3 increases while J4 decreases.Te increase

in J3 implies an increase in the abandonment of renewable
energy, which is due to the decrease in weight ω4 caused by
the increase in ω1, indicating that the optimization objective
J2 is given higher priority, thus afecting the integration of
renewable energy. Similarly, from Figure 6(b), it can be
observed that under the condition of equal values for ω1, ω3,
and ω4, as the weight ω2 increases, the objective value J2
shows an exponential growth trend. Before ω2 � 0.9, the
growth is relatively slow, but after ω2 � 0.9, it increases
rapidly. On the other hand, the objective values J1, J3, and J4
gradually decrease and enter a plateau phase. Tis indicates
that J1, J3, and J4 are only infuenced by ω2 within a certain
range. In Figure 6(c), under the condition of equal values for
ω1, ω2, and ω4, as the weight ω3 increases, all the objective
values J1 to J4 show rapid changes and then tend to stabilize.
Simultaneously, as the abandonment of renewable energy
increases, the objective value J3, which represents voltage
fuctuations in the grid, decreases. However, the system
network losses and operation costs increase. Nevertheless,
the changes in the objective values J1, J2, and J4 are very
small. Tis implies that the impact of allowable deviation of
the optimization objective J3 on the optimization results can
be almost negligible. In Figure 6(d), under the condition of
equal values for ω1 to ω3, as the weight ω4 increases, the
objective values J3 and J4 gradually increase.Tis means that
as the system operating costs are relaxed, the abandonment
of renewable energy will increase continuously. At the same
time, the objective J1, which represents network losses,
decreases rapidly, and the voltage fuctuations in the grid
decrease slowly, but the numerical changes are small. Tis
indicates that the system operating costs have a signifcant

Table 6: Comparison of optimization results of diferent metric functions for tolerance.

J1 J2 J3 J4 r1 r2 r3 r4

Expectation point 0.0294 0.0027 − 9.5580 11584.3200 — — — —
r‖ ‖∞ 0.0700 0.0063 − 9.5347 27581.8172 1.3810 1.3810 1.3810 1.3810
r‖ ‖2 0.0654 0.0062 − 9.3551 28413.7869 1.2231 1.3121 0.0212 1.4528
r‖ ‖1 0.0637 0.0063 − 9.3722 28407.4498 1.1661 1.3686 0.0195 1.4522
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Table 7: Comparison of optimization results for diferent weights of tolerance.

min r‖ ‖22
J1 J2 J3 J4ω1 ω2 ω3 ω4

1 1 1 7 0.0498 0.0045 − 7.1911 67894.6029
1 1 1 1 0.0700 0.0063 − 9.5347 27581.8172
1 1 1 0.1 0.3383 0.0307 − 9.5580 23751.0729
1 1 1 0.01 1.2602 0.1137 − 9.5580 16432.1650
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Figure 6: Continued.

International Transactions on Electrical Energy Systems 15



impact on network losses within a small range, while their
efect on grid voltage is minimal. From the above analysis, it
can be concluded that there is a complex coupling re-
lationship among the optimization objectives in the mul-
tienergy system. Simply modifying the weight of a single
optimization objective may have a minimal impact on the
overall optimization results or even cause step changes.
Terefore, the coupling relationships and sensitivities
among the optimization variables will be one of the im-
portant research topics in subsequent multiobjective opti-
mization calculations.

In order to present the optimization results of the
proposed method more intuitively, we take the example of
a two-objective optimization consisting of objective

functions J1 and J4 and analyze the position of the obtained
optimization results on the Pareto frontier as shown in
Figure 7.

In Figure 7, it can be seen that in the optimization model
with objective functions J1 and J4, the coordinates of the
expected point A are (0.0294, 1.158×104), and the co-
ordinates of the optimal point B obtained by the proposed
method are (0.04528, 2.752×104). Te optimal point B is
located on the Pareto frontier of the two-objective opti-
mization model, indicating that the optimization results are
efective. Moreover, from the shape of the Pareto frontier,
when the optimization objective J1 increases, the optimi-
zation objective J4 frst decreases rapidly, then decreases
slowly, and fnally approaches the corresponding ordinate
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Figure 6: Te variation curve of each optimization objective value under the variation of tolerance weight for diferent optimization
objectives. (a) Optimization result curve under tolerance weight change of objective function J1. (b) Optimization result curve under
tolerance weight change of objective function J2. (c) Optimization result curve under tolerance weight change of objective function J3.
(d) Optimization result curve under tolerance weight change of objective function J4.
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value of the expected point. Tis means that under the
condition of sacrifcing the optimization objective J1, the
optimization objective J4 gains rapidly and then levels of.
Te optimal point obtained by the proposed method is
exactly at the point where the optimization objective J4 starts
to decrease rapidly, indicating that the proposed method
balances the overall benefts of the two optimization ob-
jectives and is superior. Furthermore, the tolerances on J1
and J4 are r1 � 0.5586 and r4 � 1.3756, respectively, and it is
evident that r4 is greater than r1. Tis means that the
multienergy system requires a higher tolerance level for the
optimization objective J4. More specifcally, if the tolerance
for the optimization objective J4 is reduced and the al-
lowable deviation is reduced, the cost required for the
multienergy system to achieve the optimization objective J1
will be higher.

5. Conclusion

To address the problem of multiservice objective optimi-
zation in multienergy systems, a two-stage optimization
framework and method based on the expected point tol-
erance are proposed in this paper. Based on the expected
point derived from the optimization results of each single
objective function, the characteristic of the proposedmethod
is to transform a multiobjective optimization problem into
a single optimization objective solution by describing the
distance between the nondominated solutions on the Pareto
frontier and the expected point. In the IEEE 33-bus simu-
lation example including a multienergy system, the com-
parative results and analysis conclusions have been as
follows. Compared with the optimal results under each
single objective method, the proposed method increases
power line loss, maximum voltage deviation, new energy
consumption, and economy by 2.22, 2.30, 1.02, and 2.45
times, respectively. Compared with the suboptimal results,

the proposed method reduces power line loss by 22.26, 1.74,
1.09, and 0.97 times, respectively. Te proposed method can
efectively balance the contradictions between diferent
optimization objectives and ensure that the optimization
results are more reasonable. Under diferent deviation
metrics of the proposed method, the maximum relative
errors on each objective function are 9.0%, 1.59%, 1.88%,
and 2.93%, respectively. Tis indicates that the optimization
results under diferent norms are all nondominant solutions
of multiobjective optimization, and the optimization results
are not sensitive to the norm defnition. It means that the
impact of diferent deviation metrics on optimization results
is relatively small. Based on the comparison results of tol-
erance weights for diferent objective functions, there is
a complex coupling relationship between the optimization
objectives, and the impact of a tolerance weight on the
optimization results is signifcant. Terefore, the coupling
relationship and sensitivity analysis among optimization
objectives will be the important topics in future research.
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