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We present the length-weight relationships (LWRs) in 20 cryptobenthic reef fish species in the Gulf of California (Mexico). Nine
of these species had no LWR records yet. However, the other species had LWRs based on in-formalin specimens collected more
than 20 years ago. This conservation method has likely affected LWRs parameters. Our study showed higher estimations of the
parameter a obtained on fresh specimens than in-formalin individuals. On the other hand, parameter b was not affected.
Therefore, the biomass estimates using previous LWRs were strongly underestimated. Ergo, the similitude in parameter b between
the two conservation methods highlights that the shape of the LWRs is conserved and did not change over the last 20 years. Finally,
we compared the LWRs of shared species in the region’s two main types of shallow reefs, i.e., coral and rocky reefs. We found that
the body fitness was not affected by reefs type, which means that both habitats seem to offer similar living conditions for shared

species.

1. Introduction

The cryptobenthic reef fishes (CRFs) are small size
species (~less than 50 mm) living hidden in the in-
terstices of the reef’s substratum [1]. Although highly
abundant and playing essential roles in reefs’ troph-
odynamics and productivity [2-4], CRFs are generally
understudied because of their discrete nature. The Gulf of
California (GC, Mexico) supports a rich and abundant
ichthyofauna with approximately 300 reef fishes’ species
[5, 6], of which about one-third are CRFs [7]. While some
studies have investigated biogeographic patterns of CRFs
in this region [8, 9], their ecology is still poorly known
(but see [10, 11]).

Length-weight relationships (LWRs) allow for esti-
mating fish biomass thanks to more accessible fish body
length data and are essential for fisheries management and
conservation for regulating catches [12]. Moreover, LWRs
can be used as conditions factors to compare the fitness of
individuals [13] that may vary on temporal and spatial
scales [12]. Because of their small size, CRFs have a high
metabolism, and unfavorable conditions (scarcity or less
nutritional prey, higher predation pressure, pollution, etc.)
may have rapid negative effects on their fitness and, in turn,
on their productivity [1]. CRFs may represent ~60% of
consumed reef fish biomass and represent a cornerstone for
ecosystem functioning and trophodynamic relationships
[4]. Therefore, a less suitable environment for CRFs may
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affect the equilibrium and functioning of the reef. For
example, divergent prey availability between the southern
Arabian Gulf and the Gulf of Oman modified LWRs of
CRFs with lower fitness in Arabian Gulf, characterized by
more extreme environmental conditions [14]. Therefore,
knowledge about species LWRs and their spatial and
temporal comparison may estimate the individual’s living
conditions and help understand the health status and
functioning of the reefs.

To our knowledge, a single study estimated the LWRs in
17 CRFs species in the GC (La Paz Bay) on individuals
collected more than 20 years ago [15]. Additionally, a LWRs
study was conducted in the mangrove swamp of La Paz Bay
and included a single CRF species [16]. Balart et al. [15] used
weights of specimens preserved in formalin, likely affecting
the LWRs estimations.

We estimated the LWRs in 24 CRFs species using fresh
weight in the present study. Nine of them have not been
recorded in Fishbase yet. Then, by comparing the shared
species between our research and the anterior of Balart et al.
[15]; we investigated the effect of conservation methods on
LWRs estimation. Finally, we compared the LWRs between
rocky and coral reefs to test whether both habitats offer
similar ecological opportunities for shared species.

2. Materials and Methods

We sampled CRFs assemblages from August to November
2020 in two coral and two rocky reefs in La Paz Bay (Fig-
ure 1) at 2 to 6 m depth. We injected clove oil and ethanol
(ratio 1:3) inside a leak-proof bag covering a one-meter
squared quadrant. Anesthetized fish were collected by divers
using hand nets, placed in tagged plastic bags, and preserved
on ice until transport to the laboratory, where specimens
were preserved at —20°C. We collected CRFs on 70 quadrants
(16 on the reef “El Faro” and 18 for each other three reefs).
All fish were identified to species level using specialized keys
[5]. The total length (TL) of fish was measured using digital
calipers with 0.l mm precision and weighted using an
electronic scale with 0.01 g precision.

First, we explored the length-weight relationships for
each species to delete high-leverage points (Figure S1). We
then calculated LWRs using Froese’s equation (2006) as
given as follows:

W=axLl+e (1)
or in its logarithmic form as given as follows:
logW =loga+ b= logh +¢, (2)

where W is the total weight of the fish (g), L is total length
(mm), a is the intersection point with the y axis, b is the slope
of the curve, and ¢ is an error term, assuming that
€ ~ N (0, 0). The LWR models were adjusted using nonlinear
least squares with the nls function in R software [17]. Because
the sampling size was highly heterogeneous among species
(Table 1), we plot the relationships between each models’
coefficients of determination (1) against sampling sizes.
Finally, we plot the logarithmic values of parameter a against
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FIGURE 1: Geographic location of the four reef sites where cryp-
tobenthic fishes were collected in La Paz Bay, Gulf of California.
Coral and rocky reefs are orange and blue-colored, respectively.
CAL: Caleritas, CRU: Las Cruces, FAR: El Faro, PME: Puerto
Mexia.

parameter b values to detect questionable LWRs due to
narrow size range, not enough data, or outliers to the re-
spective model [12].

Based on the 14 species in common between our study
and the collection of Balart et al. [15], we compared a and
b parameters between the two studies and how potential
differences may affect the estimated biomass. Finally, we
selected seven species abundant in both coral and rocky
reefs, and we compared their length, weight, and LWRs
between the two habitats. Length and weight comparisons
were run with student ¢-tests (Table S1) in R software [17].

3. Results and Discussions

The LWR models generally provided a good fit to the data as
r* was higher than 0.9 for 21 of the 24 species and below 0.7
for Coralliozetus micropes (Table 1). Although the lowest r*
had a small sampling size and narrow size range, these two
parameters do not seem to have affected the fitting of the
models (Figure 2(a)). All the parameter b values fell in the
acceptable 2.5-3.5 range (Table 1), with values outside this
range generally indicating wrong estimates due to sampling
size or too narrow range size [18]. The parameter a values
were also included in the 95% range values found on teleosts
[12]. The relationship between the logarithmic values of
parameter a and parameter b indicates some outliers (Fig-
ure 2(b)). These divergences do not seem related to the
representativity of the studied size range but the body shape
of the species. The two non-CRFs species Cirrhitichthys
oxycephalus (Bleeker, 1855) and Stegastes rectifraenum (Gill,
1862) have a short and deep body shape. These two species
have higher values of parameter a for a given parameter
b value than most studied species with elongated or fusiform
body shapes (Figure 2(b)). On the contrary, Doryrhamphus
excisus (Kaup, 1856) has an eel-like body shape and lower
parameter a value (Figure 2(b)). Our observed body shape
effect reflects what was observed on teleosts [12].

We found a high difference in parameter a values when
estimations were made on fresh or in-formalin specimens,
but parameter b showed complete overlap (Figure 3(a)).
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FIGURE 2: (a) Relationship between the coefficient of determination (r*) of LWR models and sample size and relative size range.
(b) Relationship between parameter a (log-scale) and parameter b. For each species, the relative size range and the body shape are indicated.
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F1GURe 3: Comparison of LWR based on fresh (green) and in-formalin (purple) specimens. (a) Comparison of parameters a and b. (b) Effect
of LWR difference on weight and biomass estimations. For example, the estimated weight of Acanthemblemaria crockery along the full
simulated range size of the species is shown according to the two conservation methods. The biomass per quadrant of fish assemblages
considering the 14 species in common between the present study (fresh specimens) and the anterior study (in-formalin specimens, [15] is
also shown. Data are represented by site and reef types are indicated (coral and rocky). Three biomass values are shown: (i) the estimated
biomass based on LWR parameters using in-formalin specimen (purple); (ii) the estimated biomass based on LWR parameters using fresh

specimen (green); and the true (weighted) biomass (grey).

That means that the preservation in formalin affected the
intercept of the LWRs models (in log scale, equation (2)) but not
the slope. That provides a substantial underestimation of the
biomass (Figure 3(b)). However, the shape of the LWRs (slope
value) seems unaffected. Hence, LWRs based on in-formalin
specimens will poorly estimate weight or biomass values but can

be helpful for comparing the slope, and therefore, the body
condition of individuals preserved with the same method. As we
found no difference in parameter b with the collection made
~20 years ago, the LWRs showed temporal stability, indicating
that reefs’ environmental conditions did not significantly change
in the last two decades or that species were able to adapt.
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F1GURE 4: Comparison of length, weight and LWR between coral (orange) and rocky (blue) reefs of seven abundant species in the two habitats.
(a) The differences between rocky and coral means are sketched with their 95% CI. The only significant difference (CI not crossing zero) is
highlighted in orange with higher length and weight in the coral reefs. (b) The LWRs are sketched for the seven species in function of the habitat.

From the abundant species in both coral and rocky reefs,
we found that only the gobiid Chriolepis zebra (Ginsburg,
1938) had a higher length and weight in coral reefs than in
rocky reefs (Figure 4(a), Table S1). However, the LWRs did
not differ between the two habitats (Figure 4(b)), meaning
that body conditions are similar. A less favorable habitat
could affect the fitness of species [14]. Although coral reefs
generally host less fish diversity than rocky reefs in the
eastern tropical Pacific due to a more homogeneous seascape
[19], they seem to offer similar living conditions for shared
species.
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Supplementary Materials

Table S1: length and weight comparison of cryptobenthic reef
fishes between coral and rocky reefs. The estimate representing
the difference between rocky and coral means, standard error
(SE), and t value (Estimate/SE) is indicated. Figure S1: re-
lationship between weight and length of the 24 species studied.



Red dots indicate individuals that were not considered because
of unusual values along weight or length axes. Full species
names are available in Table 1. (Supplementary Materials)
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