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SOXE transcription factors, including SOX8, SOX9, and SOX10, regulate several developmental events, such as sex determination,
chondrogenesis, and neurogenesis. Tis study systematically identifed six SoxE subfamily genes from the turbot (Scophthalmus
maximus) genome and transcriptome, including SmSox8a, SmSox8b, SmSox9a, SmSox9b, SmSox10a, and SmSox10b. Te du-
plicates of three SOXE members revealed that SoxE subfamily genes in the turbot underwent signifcant expansion. Relatively
conserved exon-intron structures and intron insertions were detected using genomic structural analysis. Besides, phylogenetic
analysis supported the previous classifcation of the SoxE subfamily. Results of the expression profle revealed that turbot SoxE
subfamily genes may be involved in diferent activities, such as neurogenesis and gonad development. Tese fndings would assist
in the understanding of fsh SoxE gene subfamily activities and evolution.

1. Introduction

Te Sox family encodes various transcription factors (TFs) in
the animal kingdom that regulate diverse biological pro-
cesses [1].Te Sox TF family is characterized by the presence
of a sry-related high-mobility group (HMG). On the basis of
the structural homology of the HMG domain together with
partial regions outside the HMG-box, the Sox family is
divided into 11 subfamilies (A–K) [2, 3]. More than 80%
homology in HMG-box sequences is observed for diferent
Sox genes in a subfamily; moreover, they exhibit similar
biochemical properties and biological functions [4, 5].
Studies on the structure and function of SoxE subgroups
were the most extensive when compared with other Sox
subgroups [6, 7].

In mammals and other higher vertebrates, the SoxE
family is composed of three members, namely, Sox8, Sox9,
and Sox10. For example, three SoxE genes were discovered in

Homo sapiens, Mus musculus, and Gallus domesticus [7–9].
Although fsh have a low evolutionary status among ver-
tebrates, they are the most widely distributed and account
for nearly half of the existing vertebrate species. Because
teleost fsh underwent teleost-specifc whole-genome du-
plication (3R-WGD), a greater number of SoxE genes are
present in fsh compared with other vertebrates. For example
(as shown in Table 1), channel catfsh (Ictalurus punctatus)
has 4 putative SoxE genes, zebrafsh (Danio rerio) has 5,
tongue sole (Cynoglossus semilaevis) has 6, Japanese founder
(Paralichthys olivaceus) has 6, puferfsh (Tetraodon fuvia-
tilis) has 6, Nile tilapia (Oreochromis niloticus) has 6, and
common carp (Cyprinus carpio) has 10 [3, 10–14]. Because
of its special phylogenetic status, the study of SoxE evolution
and function in fsh is more attractive. SoxE modulates
diferent bioprocesses in vertebrates, such as nervous system
development [7, 15], skeletogenesis [16], and sex de-
termination and diferentiation [17, 18]. In fsh, Sox9 is the
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most studied SoxE that exerts a crucial efect on sex de-
termination and diferentiation in P. olivaceus and medaka
(Oryzias latipes) [19, 20]. In spotted sea bass (Lateolabrax
maculatus), Sox8b, Sox9b, and Sox10 are upregulated in the
brain, indicating that SoxE is a key regulator in central
nervous system (CNS) development [21].

Turbot (Scophthalmus maximus) is a valuable com-
mercial farming fsh in the Chinese aquaculture industry,
especially in Northern China [22–25]. Te genome sequence
of S. maximus has been published (GenBank Accession:
PRJNA821077). Te systemic characterization of the SoxE
subfamily has been completed in certain fsh species but not
in S. maximus. Tis study comprehensively identifed genes,
analyzed sequence structures, and evaluated the evolu-
tionary characteristics for the systemic analysis of the turbot
SoxE subfamily. Moreover, this work analyzed gene ex-
pression profles to investigate possible SoxE activities in
adult tissues. Our fndings would contribute to a better
understanding of SoxE-related biological activities in turbot
and in other teleost species.

2. Materials and Methods

2.1. Animals and Sample Collection. Turbot individuals (age:
2 years, mean length: 38± 3.62 cm, and mean weight
1.82± 0.21 kg) were obtained from an aquatic product
market in Lianyungang (Jiangsu, China). Te turbot in-
dividuals were anesthetized using MS-222, followed by the
collection of tissues, such as the brain, gill, liver, heart,
spleen, stomach, kidney, muscle, intestines, and gonad
(ovary or testis). Te collected tissues were frozen imme-
diately in liquid nitrogen and stored at −86°C until RNA
purifcation. All animal-based experiments were approved
by the Animal Research and Ethics Committee of Jiangsu
Ocean University, and the detailed experimental operations
were consistent with previous studies [26, 27].

2.2. Identifcation of SoxE in S. maximus. Te genes were
identifed on the basis of the conserved HMG-box in the
SoxE genes of zebrafsh (Danio rerio). Te sequences were
obtained from Ensembl (https://asia.ensembl.org/Danio_
rerio/Info/Index) and compared against the tblastn of
BLAST in NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi),
with an E-value threshold level of 1e−6. All gene candidates
were analyzed to determine the presence of the core motif
RPMNAFMVW, which verifed that the gene was Sox [2].

2.3. Sequence Analysis and Structure Construction of SoxE.
We obtained DNA, mRNA, and protein sequences of the
S. maximus SoxE subfamily by using NCBI (https://www.ncbi.
nlm.nih.gov). Moreover, the exon-intron structures were ac-
quired using reference genome-related annotation fles. On the
basis of the principle of equivalence, introns, exons, HMG-
boxes, and open-reading frames were further identifed, fol-
lowed by mapping of the SoxE subfamily gene structure.
Subsequently, the EXPASY compute pI/MW approach
(https://www.expasy.org/tools/) was used to measure the iso-
electric point (pI), molecular weight (MW), and other attribute

values of every SoxE protein. SMART (https://smart.embl.de/
smart/show_motifs.pl) was adopted to predict conservedHMG
sequences in SoxE proteins, while DNAMAN 8.0 was used to
perform multiple alignments. WebLogo (https://weblogo.
berkeley.edu/logo.cgi) was used to present six multiple se-
quence alignments of S. maximus.

2.4. Phylogenetic Analyses of SoxE. A total of 59 full-length
sequences of SoxE proteins were downloaded from NCBI and
Ensembl. Te sequences of diferent organisms, such as
M. musculus, H. sapiens, G. domesticus, X. laevis, O. Latipes,
D. rerio, I. punctatus, P. olivaceus, C. semilaevis, T. rubripes, O.
niloticus, and C. carpio, were downloaded. SMARTwas used to
identify and retrieve HMG domains for phylogenetic analysis.
ClustalW was used to align HMG-box sequences, followed by
phylogenetic tree construction by using the neighbor-joining
(NJ) approach. For this, the Poisson model from MEGA 7.0,
with 1000 bootstrapping replicates, was used.

2.5. RNA Isolation and Real-Time Quantitative Reverse
Transcription PCR. Total RNA was extracted from the tis-
sues by using TRIzol (Invitrogen, CA, USA), and frst-strand
cDNA was synthesized using MMLV and oligo (dT)18 re-
verse transcriptase (Termo Fisher Scientifc, USA)
according to the manufacturer’s protocol. Specifc primers
(Table 2) were designed using Oligo 7.0. Primer specifcities
were examined through alignment against S. maximus
transcriptomes (unpublished data) by using BLASTN, with
the E-value being 1e−8 and β-actin being the endogenous
control gene. Figure S1 displays the melting curves of dif-
ferent genes. Real-time quantitative reverse transcription
PCR (qRT-PCR) was performed using the Light Cycler
480 Real-time PCR System (Roche Diagnostics, Mannheim,
Germany) in triplicate. Te reaction volume was 20 μL and
consisted of 10 μL TB Green Premix EX Taq Mix (Takara,
Japan), 1.6 μL cDNA templates, 8 μL ddH2O, and 0.2 μL
respective primers. PCR conditions were 30 s at 94°C; 10 s at
94°C; 30 s at 60°C; and 30 s at 72°C for 35 cycles. Te 2−ΔΔCt

approach was used to determine SoxE expression, which was
consistent with the previous method of calculating gene
expression [28, 29]. SPSS 19.0 was employed for statistical
analysis through an independent sample t-test. P< 0.05 was
considered statistically signifcant.

3. Results and Discussion

3.1. SoxE Identifed in the S. maximus Genome. Six SoxE
genes were identifed in the S. maximus genome by using
Ensembl and NCBI (Table 3). Te cDNA length in
S. maximus ranged from 2211 to 4592 bp, while the corre-
sponding gene-encoded proteins were 464–499 aa in length.
In addition, the predicted MWs were 50.88–54.42 kDa, and
the pIs were 6.14–7.17. Te S. maximus SoxE number is
similar to those of P. olivaceus, C. semilaevis, T. fuviatilis,
and O. niloticus (Table 1). In these teleost mentioned above,
members of the SoxE subfamily all evolved into two
orthologs in their genome (including Sox8a, Sox8b, Sox9a,
Sox9b, Sox10a, and Sox10b). Te reason for this
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phenomenon may be that these bony fsh have undergone
whole-genome duplication (3R-WGD events) during evo-
lution, resulting in a signifcant expansion of members of the
SoxE subfamily [30–32]. A similar phenomenon of double
copies of members of the SoxE subfamily has also been seen
in other teleost, such as the large yellow croaker and spi-
nyhead croaker [33, 34]. However, Cyprinus carpio has more
SoxE (including CySox8a, CySox8b, CySox8c, CySox8d,
CySox9a, CySox9b, CySox9c, CySox9d, CySox10a, and
CySox10b) compared with S. maximus and other afore-
mentioned fsh, implying that C. carpio underwent addi-
tional genome duplication events during evolution
(4R-WGD events) [14].

3.2. Genomic Structure and Sequence Alignment of Turbot
SoxE. Te genomic structure of S. maximus SoxE was in-
vestigated and constructed using an online analysis tool
(https://gsds.gao-lab.org). Relatively conserved exon-intron
structures were observed in a SoxE subgroup [10]. On the
basis of the structural distribution characteristics of introns
and exons, turbot SoxE can be divided into two categories,
those consisting of two and three introns, respectively.
Specifcally, SmSox8a, SmSox8b, SmSox9a, and SmSox9b
have two introns, whereas SmSox10a and SmSox10b have
three introns (Figure 1(a)). Intron insertion occurred in the
HMG domain of all SmSoxE genes. Te presence of introns
in HMG boxes has also been observed in SoxE of other fsh,
such as Lateolabrax maculatus (LmSox8a, LmSox8b, and
LmSox10),Danio rerio (DrSox10), and Paralichthys olivaceus
(PoSox8a, PoSox8b, PoSox9a, PoSox9b, PoSox10a, and

PoSox10b) [10, 13, 21]. Because of the genetic diversity
among species, only the insertion state of founder is
completely consistent with that of turbot; however, only
some SoxE in other fshes exhibit this phenomenon. We
further aligned the six HMG domains and explored the
corresponding intron positions in the domains (Figure 2).
Te logo plots of the HMG-box domain revealed relatively
conserved genes. Moreover, all HMG domains comprised
a core motif of RPMNAFMVW, which recognized and
bound to cis-regulatory elements in relevant target genes’
promoters [12, 35] located at residues 5 to 13 (Figures 2(a)
and 2(b)). Te insertion locations of introns in the HMG
domain of all SmSoxE genes were identical (Figure 2(a)).
Terefore, the intron positions are evolutionarily conserved
in the SoxE subgroup among species, a result consistent with
those of previous studies [3, 13, 21].

3.3. Phylogenetic Analysis of Turbot SoxE. To identify six SoxE
members and their clade, we used MEGA 7.0 to construct
a nonrooted phylogenetic tree with 59 full-length sequences of
SoxE proteins in twelve species. Turbot SoxE were clustered
with corresponding counterparts, and three clades, namely
Sox8, Sox9, and Sox10, were identifed, conforming to prior
classifcation results (Figure 3). Interestingly, most SoxE, in-
cluding Sox9a, Sox9b, Sox10a, and Sox10b, can be clustered into
their respective branches, indicating that SoxE of diferent
species may have a common evolutionary origin. However,
phylogenetic trees have some anomalies. For example, most
Sox8a and Sox8b are clustered into diferent branches, which
are close to Sox10 and Sox9 in the evolutionary tree structure

Table 2: Primers for qRT-PCR.

Gene name Primer sequence (5′-3′) Tm (°C) Amplicon length (bp)

β-actin F: TGAACCCCAAAGCCAACAGG 60 107R: AGAGGCATACAGGGACAGCAC

Sox8a F: CCCGCCACAGACCTCAGATA 60 147R: AAGACGACGAGGAGGAGGTG

Sox8b F: CGCAGCTTCTTTCTCCAGCA 60 129R: TAGGGCCGTCTGGATGAGTG

Sox9a F: CTGCCGTTTTCTGTCCACTTC 60 204R: TCTTGTTCCTCCGTCATCTTC

Sox9b F: CCGGGAGAACACTCAGGTCA 60 87R: CAGGTCAGCTTTGCTGGAGG

Sox10a F: ACACAGAGCAGGCATTCATACTTGG 60 87R: GAATCCGTGAGTTCCCGAGTTTCC

Sox10b F: ATCAGAGAAGCGGTCAGTCAG 60 288R: GTCCTTCTTGTGCTGTTTCCT

Table 3: Basic information on the turbot SoxE subfamily.

Gene Intron number cDNA length (bp) Protein length (aa) HMG position pI Molecular weight (Da) Accession number
SmSox8a 2 2211 481 96–168 7.17 52349.86 XM.035613581
SmSox8b 2 3294 464 100–172 6.48 50880.02 XM.035614518
SmSox9a 2 3246 479 104–176 6.2 52589.18 XM.035613389
SmSox9b 2 3470 499 107–179 6.14 54416.22 XM.035615649
SmSox10a 3 4592 496 106–178 6.45 52785.02 XM.035614967
SmSox10b 3 4305 498 104–176 6.37 52493.78 XM.035637005.2
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branches. Similar results were also reported in the closely
related species of Japanese founder (P. japonicus) and tongue
sole (C. semilaevis) [13, 36]. Tis may be attributable to the
thirdWGDevent, leading to all members of the SoxE subfamily
having two parallel homologous genes.Te Sox8a and Sox8b of
founder fsh are more likely to act as substitutes for Sox10 and
Sox9, respectively, thereby supplementing evolutionary adap-
tation and innovation.

3.4. Gene Patterns for Turbot SoxE in Diferent Tissues.
SoxE TFs are involved in diferent physiological and bio-
chemical events through the activation or inhibition of
specifc targets, depending on tissue and development

[6, 21]. Tis study analyzed gene patterns for six turbot SoxE
genes in 11 adult tissues. Expression patterns were observed
for all turbot SoxE genes (Figures 4(a)–4(f)). Results showed
that turbot Sox9a and Sox9b had higher levels in the gill,
while the other SoxE genes had very low or negligible ex-
pression levels in the liver and gill. Notably, most SoxE genes
expressed relatively higher in brain and intestine, and Sox8b
as well as Sox10b expressed highest in brain compared with
their expression in other tissues. In addition, expression of
Sox8a in muscle, Sox9a in gill, Sox9b in stomach and Sox10a
in testis were all relatively higher in their own expression
profles. We also observed the weak expression levels of all
SoxE genes in the heart, spleen, and kidney, indicating the
role of SoxE genes in these organs’ development needed
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Figure 1: Exon-intron structures in Sox together with motif analysis in Scophthalmus maximus. (a) Exon-intron structures in SoxE from
Scophthalmus maximus. Yellow boxes, black horizontal lines, and blue boxes indicate the exons, introns, and noncoding regions, re-
spectively. Te fuchsia box indicates the HMG-box domain. (b) Motif structures in SoxE from Scophthalmus maximus. MEME was
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sequence patterns and relative frequencies at diverse positions in the HMG-box domain. Horizontal axis numbers represent the numbers of
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further investigation. Generally, Sox8, Sox9, and Sox10, the
TFs belonging to the subgroup E Sox protein family, exert
crucial efects on numerous nervous system developmental
processes in vertebrates.Tese TFs participate in the original
neural crest occurrence and ensure pluripotency mainte-
nance and survival in migratory neural crest stem cells.
Moreover, they are crucial regulatory factors for glial norms
in the CNS and peripheral NS [7, 37].Terefore, several SoxE
genes are simultaneously expressed in an organ, suggesting
their coordinating activity in performing a function. Such
activity is possibly essential for neurogenesis or for main-
taining bioprocesses in the turbot brain.

In vertebrates, all three SoxE proteins (SOX8, SOX9, and
SOX10) from diverse species exhibit high similarity in HMG
nonbox structural conservation and box homology, with

95% similarity in amino acid sequence. Tis may be the
reason behind the conserved function of SoxE among species
[6, 7]. For example, SoxE proteins play multiple roles in the
specifcation and diferentiation of mammalian sex. Among
the SoxE proteins, Sox9 is the most important and conserved
sex-determining protein. After sex determination, a com-
plicated positive feedback pathway exists among Sox8, Sox9,
and Sox10; the pathway is necessary to maintain sper-
matogenesis and fertility in males [38]. SoxE paralogs Sox8,
Sox9, and Sox10 have been isolated from many fsh, and the
research on gonad function has also made some progress. In
adult Japanese founder, Sox8b, Sox9a, Sox9b, and Sox10a
are expressed in the testis and also in the ovary to a certain
extent [13]. In adult spotted sea bass, Sox8a, Sox8b, Sox9b,
and Sox10 are highly expressed in the testis and ovaries,
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Figure 4: Spatial expression patterns for six SoxE genes in 11 tissues. Te expression of one gene was determined on the basis of its
minimum expression level across diverse tissues. Vertical bars indicate the mean± S.E. P values were determined using the SPSS 20.0
through an independent sample t-test. Diferent letters represent statistical signifcance (P< 0.05) or the common letters across diverse
groups represent nonsignifcance.
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whereas Sox9a is almost not expressed in both testis and
ovaries [14]. According to our results, Sox8a, Sox9a, and
Sox10a are upregulated in testis. Te Sox9b upregulation in
the ovary indicated its critical regulatory efect on testis and
ovary development. Te role of SoxE in turbot sex de-
termination and development requires further exploration
in gonads at diferent development stages and should be
verifed using gene knockout or RNAi. In addition, almost
all SoxE genes were expressed at low levels in the spleen and
kidney, indicating that these genes may not participate in
spleen or kidney development and function maintenance,
a result consistent with those of previous reports [3, 13, 14].

4. Conclusion

Te present work identifed six SoxE genes in S. maximus.
Gene expression patterns in adult tissues provide crucial
data regarding turbot SoxE activities, and the data should be
verifed using technologies such as gene knockout and
RNAi. Tese fndings would assist in the understanding of
fsh SoxE subfamily activity and evolution.
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