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By using the variational method, some existence theorems are obtained for periodic solutions of
autonomous (q, p)-Laplacian system with impulsive effects.

1. Introduction

Let B = {1, 2, . . . , l}, C = {1, 2, . . . , k}, l, k ∈ N.
In this paper, we consider the following system:

d

dt
Φq(u̇1(t)) = ∇u1F(u1(t), u2(t)), a.e. t ∈ [0, T],

d

dt
Φp(u̇2(t)) = ∇u2F(u1(t), u2(t)), a.e. t ∈ [0, T],

u1(0) − u1(T) = u̇1(0) − u̇1(T) = 0,

u2(0) − u2(T) = u̇2(0) − u̇2(T) = 0,

ΔΦq

(
u̇1
(
tj
))

= Φq

(
u̇1
(
t+j

))
−Φq

(
u̇1
(
t−j
))

= ∇Ij
(
u1
(
tj
))
, j ∈ B,

ΔΦp(u̇2(sm)) = Φp(u̇2(s+m)) −Φp

(
u̇2
(
s−m
))

= ∇Km(u2(sm)), m ∈ C,

(1.1)

where p > 1, q > 1, T > 0, u(t) = (u1(t), u2(t)) = (u11(t), u
2
1(t), . . . , u

N
1 (t), u12(t), u

2
2(t), . . . ,

uN2 (t))τ , tj(j = 1, 2, . . . , l), and sm(m = 1, 2, . . . , k) are the instants where the impulses occur
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and 0 = t0 < t1 < t2 < · · · < tl < tl+1 = T, 0 = s0 < s1 < s2 < · · · < sk < sk+1 = T ,
Ij : R

N → R (j ∈ B), and Km : R
N → R (m ∈ C) are continuously differentiable

Φμ(z) = |z|μ−2z =

(
N∑

i=1

z2i

)(μ−2)/2
⎛

⎜
⎜
⎜
⎝

z1

...

zN

⎞

⎟
⎟
⎟
⎠
, μ ∈ R, μ > 1,

∇Ij(x) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂Ij

∂x1
...

∂Ij

∂xN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, ∇Km(x) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂Km

∂x1
...

∂Km

∂xN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(1.2)

and F : R
N × R

N → R satisfies the following assumption.
(A) F(x) is continuously differentiable in (x1, x2), and there exist a1, a2 ∈ C(R+,R+) such

that

|F(x1, x2)| ≤ a1(|x1|) + a2(|x2|) , |∇F(x1, x2)| ≤ a1(|x1|) + a2(|x2|),
∣∣Ij(x1)

∣∣ ≤ a1(|x1|),
∣∣∇Ij(x1)

∣∣ ≤ a1(|x1|), j ∈ B,
|Km(x2)| ≤ a2(|x2|), |∇Km(x2)| ≤ a2(|x2|), m ∈ C,

(1.3)

for all x = (x1, x2) ∈ R
N × R

N .
When p = q = 2, Ij ≡ 0 (j ∈ B), Km ≡ 0 (m ∈ C), and F(u1, u2) = F1(u1), system (1.1)

reduces to the following autonomous second-order Hamiltonian system:

ü1(t) = ∇u1F1(u1(t)), a.e. t ∈ [0, T],

u1(0) − u1(T) = u̇1(0) − u̇1(T) = 0.
(1.4)

There have been lots of results about the existence of periodic solutions for system (1.4) and
nonautonomous second order Hamiltonian system

ü1(t) = ∇u1F1(t, u1(t)), a.e. t ∈ [0, T],

u1(0) − u1(T) = u̇1(0) − u̇1(T) = 0,
(1.5)

(e.g., see [1–21]). Many solvability conditions have been given, for instance, coercive condi-
tion, subquadratic condition, superquadratic condition, convex condition, and so on.
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When p = q = 2, ∇Ij /≡ 0 (j ∈ B), Km ≡ 0 (m ∈ C), and F(u1, u2) = F1(u1), system
(1.1) reduces to the following autonomous second-order Hamiltonian system with impulsive
effects:

ü1(t) = ∇u1F1(u1(t)), a.e. t ∈ [0, T],

u1(0) − u1(T) = u̇1(0) − u̇1(T) = 0,

u̇1
(
t+j

)
− u̇1

(
t−j
)
= ∇Ij

(
u1
(
tj
))
.

(1.6)

Recently, many authors studied the existence of periodic solutions for impulsive differential
equations by using variational methods, and lots of interesting results have been obtained.
For example, see [22–28]. Especially, nonautonomous second-order Hamiltonian systemwith
impulsive effects is considered in [25, 26] by using the least action principle and the saddle
point theorem.

When Ij ≡ 0 (j ∈ B) andKm ≡ 0 (m ∈ C), system (1.1) reduces to the following system:

d

dt
Φq(u̇1(t)) = ∇u1F(u1(t), u2(t)), a.e. t ∈ [0, T],

d

dt
Φp(u̇2(t)) = ∇u2F(u1(t), u2(t)), a.e. t ∈ [0, T],

u1(0) − u1(T) = u̇1(0) − u̇1(T) = 0,

u2(0) − u2(T) = u̇2(0) − u̇2(T) = 0.

(1.7)

In [29, 30], Paşca and Tang obtained some existence results for system (1.7) by using the least
action principle and saddle point theorem. Motivated by [17, 22–30], in this paper, we are
concerned with system (1.1) and also use the least action principle and saddle point theorem
to study the existence of periodic solution. Our results still improve those in [17] even if
system (1.1) reduces to system (1.4).

A function G : R
N → R is called to be (λ, μ)-quasiconcave if

G
(
λ
(
x + y

)) ≥ μ(G(x) +G(y)), (1.8)

for some λ, μ > 0 and x, y ∈ R
N .

Next, we state our main results.

Theorem 1.1. Let q′ and p′ be such that 1/q + 1/q′ = 1 and 1/p + 1/p′ = 1. Suppose F satisfies
assumption (A) and the following conditions:

(F1) there exist

0 < r1 <

(
q′ + 1

)q/q′

TqΘ
(
q, q′

) , 0 < r2 <

(
p′ + 1

)p/p′

TpΘ
(
p, p′

) , (1.9)
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such that

(∇x1F(x1, x2) − ∇y1F
(
y1, y2

)
, x1 − y1

) ≥ −r1
∣
∣x1 − y1

∣
∣q, ∀(x1, x2),

(
y1, y2

) ∈ R
N × R

N,

(∇x2F(x1, x2) − ∇y2F
(
y1, y2

)
, x2 − y2

) ≥ −r2
∣
∣x2 − y2

∣
∣p, ∀(x1, x2),

(
y1, y2

) ∈ R
N × R

N,

(1.10)

where

Θ
(
q, q′

)
=
∫1

0

[
sq

′+1 + (1 − s)q′+1
]q/q′

ds,

Θ
(
p, p′

)
=
∫1

0

[
sp

′+1 + (1 − s)p′+1
]p/p′

ds,

(1.11)

(F2) F(x) → +∞, as |x| → ∞, where x = (x1, x2),

(I1) there exists β ∈ R such that

Ij(x) ≥ β, ∀x ∈ R
N, j ∈ B,

Km(x) ≥ β, ∀x ∈ R
N, m ∈ C.

(1.12)

Then, system (1.1) has at least one solution inW1,q
T ×W1,p

T , whereW1,s
T = {u : [0, T] → R

N | u is
absolutely continuous, u(0) = u(T) and u̇ ∈ Ls (0, T ;RN)}, s ∈ R.

Furthermore, if Ij ≡ 0 (j ∈ B), Km ≡ 0 (m ∈ C) and the following condition holds:

(F3) there exist δ > 0, a ∈ [0, (q′ + 1)q/q
′
/qTqΘ(q, q′)) and b ∈ [0, (p′ + 1)p/p

′
/

(pTpΘ(p, p′))) such that

−a|x1|q − b|x2|p ≤ F(x1, x2) ≤ 0, ∀|x1| ≤ δ, |x2| ≤ δ, (1.13)

then system (1.7) has at least two nonzero solutions inW1,q
T ×W1,p

T .

When p = q = 2, F(x1, x2) = F1(x1), by Theorem 1.1, it is easy to get the following
corollary.

Corollary 1.2. Suppose F1 satisfies the following conditions:

(A)′ F1(z) is continuously differentiable in z and there exists a1 ∈ C(R+,R+) such that

|F1(z)| ≤ a1(|z|), |∇F1(z)| ≤ a1(|z|),
∣∣Ij(z)

∣∣ ≤ a1(|z|),
∣∣∇Ij(z)

∣∣ ≤ a1(|z|), j ∈ B,
(1.14)

for all z ∈ R
N .
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(F1)′ there exists 0 < r < 6/T2 such that

(∇zF1(z) − ∇wF1(w), z −w) ≥ −r|z −w|2, ∀z,w ∈ R
N, (1.15)

(F2)′ F1(z) → +∞, as |z| → ∞, z ∈ R
N ;

(I1)′ there exists β ∈ R such that

Ij(z) ≥ β, ∀z ∈ R
N, j ∈ B. (1.16)

Then, system (1.6) has at least one solution inW1,2
T . Furthermore, if Ij ≡ 0 (j ∈ B) and the following

condition holds:

(F3)′ there exist δ > 0 and a ∈ [0, (3/T2)) such that

−a|z|2 ≤ F1(z) ≤ 0, ∀z ∈ R
N, |z| ≤ δ, (1.17)

then system (1.4) has at least two nonzero solutions inW1,2
T .

For the Sobolev space W̃1,2
T , one has the following sharp estimates (see in [3,

Proposition 1.2]):

∫T

0
|u(t)|2dt ≤ T2

4π2

∫T

0
|u̇(t)|2dt (

Wirtinger′s inequality
)
, (1.18)

‖u‖2∞ ≤ T

12

∫T

0
|u̇(t)|2dt (

Sobolev′s inequality
)
. (1.19)

By the above two inequalities, we can obtain the following better results than by Corollary 1.2.

Theorem 1.3. Suppose F1 satisfies assumption (A)′, (F2)′, (I1)′ and

(F1)′′ there exists 0 < r < 4π2/T2 such that (1.15) holds.

Then, system (1.6) has at least one solution inW1,2
T . Furthermore, if Ij ≡ 0 (j ∈ B) and the following

condition holds:

(F3)′′ there exist δ > 0 and a ∈ [0, (2π2)/T2) such that

−a|z|2 ≤ F1(z) ≤ 0, ∀z ∈ R
N, |z| ≤ δ, (1.20)

then system (1.4) has at least two nonzero solutions inW1,2
T .

Moreover, for system (1.6), we have the following additional result.

Theorem 1.4. Suppose F1 satisfies assumption (A)′, (F1)′′ and the following conditions:

(F4) F1(z) is (λ, μ)-quasiconcave on R
N ,
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(F5) F1(z) → −∞ as |z| → +∞, z ∈ R
N ,

(I2) there exist dj > 0 (j ∈ B) such that
∣
∣∇Ij(z)

∣
∣ ≤ dj, ∀z ∈ R

N, j ∈ B, (1.21)

(I3) there exist bj > 0, cj > 0, γj ∈ R, αj ∈ [0, 2)(j ∈ B) such that

−bj |z|αj − cj ≤ Ij(z) ≤ γj , ∀z ∈ R
N, j ∈ B. (1.22)

Then, system (1.6) has at least one solution inW1,2
T .

Remark 1.5. In [17], Yang considered the second-order Hamiltonian systemwith no impulsive
effects, that is, system (1.4). When Ij ≡ 0 (j ∈ B), our Theorems 1.3 and 1.4 still improve those
results in [17]. To be precise, the restriction of r is relaxed, and some unnecessary conditions
in [17] are deleted. In [17], the restriction of r is 0 < r < T/12, which is not right. In fact,
from his proof, it is easy to see that it should be 0 < r < 12/T2. Obviously, our restriction
0 < r < 4π2/T2 is better. Moreover, in our Theorem 1.4, we delete such conditions (of in [17,
Theorem 1]): ∇F1(0) = 0, and there exist positive constantsM,N such that

F1(z) ≥ −M |z|2 −N, z ∈ R
N. (1.23)

Finally, it is remarkable that Theorems 1.3 and 1.4 are also different from those results in
[1–16]. We can find an example satisfying our Theorem 1.3 but not satisfying the results in
[1–21]. For example, let

F1(z) =
π2

2T2

(
|z1|4 + |z2|4 + · · · + |zN |4

)
− π2

4T2 |z|
2, (1.24)

where z = (z1, . . . , zN)τ . We can also find an example satisfying our Theorem 1.4 but not
satisfying the results in [1–21]. For example, let

F1(z) = − r
2
|z|2, (1.25)

where 12/T2 < r < 4π2/T2.

2. Variational Structure and Some Preliminaries

The norm inW1,p
T is defined by

‖u‖
W

1,p
T

=

[∫T

0
|u(t)|pdt +

∫T

0
|u̇(t)|pdt

]1/p
. (2.1)
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Set

‖u‖p =
(∫T

0
|u(t)|pdt

)1/p

, ‖u‖∞ = max
t∈[0,T]

|u(t)|. (2.2)

Let

W̃
1,p
T =

{

u ∈W1,p
T |

∫T

0
u(t)dt = 0

}

. (2.3)

Obviously,W1,p
T is a reflexive Banach space. It is easy to know that W̃1,p

T is a subset ofW1,p
T and

W
1,p
T = R

N ⊕ W̃1,p
T . In this paper, we will use the spaceW defined by

W =W1,q
T ×W1,p

T , u(t) = (u1(t), u2(t)), (2.4)

with the norm ‖(u1, u2)‖W = ‖u1‖W1,q
T

+ ‖u2‖W1,p
T
. It is clear thatW is a reflexive Banach space.

Let W̃ = W̃1,q
T × W̃1,p

T . Then,W = (W̃1,q
T × W̃1,p

T ) ⊕ (RN × R
N).

Lemma 2.1 (see [31] or [32]). Each u ∈ W1,p
T and each v ∈ W1,q

T can be written as u(t) = u + ũ(t)
and v(t) = v + ṽ(t) with

u =
1
T

∫T

0
u(t)dt,

∫T

0
ũ(t)dt = 0,

v =
1
T

∫T

0
v(t)dt,

∫T

0
ṽ(t)dt = 0.

(2.5)

Then,

‖ũ‖∞ ≤
(

T

p′ + 1

)1/p′
(∫T

0
|u̇(s)|pds

)1/p

, ‖ṽ‖∞ ≤
(

T

q′ + 1

)1/q′
(∫T

0
|v̇(s)|qds

)1/q

,

(2.6)
∫T

0
|ũ(s)|pds ≤ TpΘ

(
p, p′

)

(
p′ + 1

)p/p′

∫T

0
|u̇(s)|pds,

∫T

0
|ṽ(s)|qds ≤ TqΘ

(
q, q′

)

(
q′ + 1

)q/q′

∫T

0
|v̇(s)|qds, (2.7)

where

Θ
(
p, p′

)
=
∫1

0

[
sp

′+1 + (1 − s)p′+1
]p/p′

ds, Θ
(
q, q′

)
=
∫1

0

[
sq

′+1 + (1 − s)q′+1
]q/q′

ds. (2.8)

Note that if u ∈ W1,p
T , then u is absolutely continuous. However, we cannot guarantee

that u̇ is also continuous. Hence, it is possible that ΔΦp(u̇(t)) = Φp(u̇(t+)) − Φp(u̇(t−))/= 0,
which results in impulsive effects.
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Following the idea in [22], one takes v1 ∈W1,q
T and multiplies the two sides of

d

dt

(
|u̇1(t)|q−2u̇1(t)

)
− ∇x1F(u1(t), u2(t)) = 0, (2.9)

by v1 and integrate from 0 to T , one obtains

∫T

0

[
d

dt

(
|u̇1(t)|q−2u̇1(t)

)
− ∇x1F(u1(t), u2(t))

]
v1(t)dt = 0. (2.10)

Note that v1(t) is continuous. So, v1(t−j ) = v1(t+j ) = v1(tj). Combining u̇1(0) − u̇1(T) = 0, one
has

∫T

0

(
dΦq(u̇1(t))

dt
, v1(t)

)

dt =
l∑

j=0

∫ tj+1

tj

(
d
(
Φq(u̇1(t))

)

dt
, v1(t)

)

dt

=
l∑

j=0

[(
Φq

(
u̇1
(
t−j+1

))
, v1

(
t−j+1

))
−
(
Φq

(
u̇1
(
t+j

))
, v1

(
t+j

))]
dt

−
l∑

j=0

∫ tj+1

tj

(
Φq(u̇1(t)), v̇1(t)

)
dt

=
(
Φq(u̇1(T)), v1(T)

) − (Φq(u̇1(0)), v1(0)
)

−
l∑

j=1

(
ΔΦq

(
u̇1
(
tj
))
, v1

(
tj
)) −

∫T

0

(
Φq(u̇1(t)), v̇1(t)

)
dt

= −
l∑

j=1

(∇Ij
(
u1
(
tj
))
, v1

(
tj
)) −

∫T

0

(
Φq(u̇1(t)), v̇1(t)

)
dt.

(2.11)

Combining with (2.10), one has

∫T

0

(
Φq(u̇1(t)), v̇1(t)

)
dt +

l∑

j=1

(∇Ij
(
u1
(
tj
))
, v1

(
tj
))

+
∫T

0
(∇x1F(u1(t), u2(t)), v1(t))dt = 0.

(2.12)
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Similarly, one can get

∫T

0

(
Φp(u̇2(t)), v̇2(t)

)
dt +

k∑

m=1

(∇Km(u2(sm)), v2(sm))

+
∫T

0
(∇x2F(u1(t), u2(t)), v2(t))dt = 0,

(2.13)

for all v2 ∈ W
1,p
T . Considering the above equalities, one introduces the following concept of

the weak solution for system (1.1).

Definition 2.2. We say that a function u = (u1, u2) ∈W1,q
T ×W1,p

T is a weak solution of system (1.1) if

∫T

0

(
Φq(u̇1(t)), v̇1(t)

)
dt +

l∑

j=1

(∇Ij
(
u1
(
tj
))
, v1

(
tj
))

= −
∫T

0
(∇x1F(u1(t), u2(t)), v1(t))dt,

∫T

0

(
Φp(u̇2(t)), v̇2(t)

)
dt +

k∑

m=1

(∇Km(u2(sm)), v2(sm)) = −
∫T

0
(∇x2F(u1(t), u2(t)), v2(t))dt

(2.14)

holds for any v = (v1, v2) ∈W1,q
T ×W1,p

T .
Define the functional ϕ :W1,q

T ×W1,p
T → R by

ϕ(u1, u2) =
1
q

∫T

0
|u̇1(t)|qdt + 1

p

∫T

0
|u̇2(t)|pdt +

∫T

0
F(u1(t), u2(t))dt

+
l∑

j=1

Ij
(
u1
(
tj
))

+
k∑

m=1

Km(u2(sm))

= φ(u1, u2) + ψ(u1, u2),

(2.15)

where (u1, u2) ∈W1,q
T ×W1,p

T ,

φ(u1, u2) =
1
q

∫T

0
|u̇1(t)|qdt + 1

p

∫T

0
|u̇2(t)|pdt +

∫T

0
F(u1(t), u2(t))dt,

ψ(u1, u2) =
l∑

j=1

Ij
(
u1
(
tj
))

+
k∑

m=1

Km(u2(sm)).

(2.16)
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By assumption (A) and [33], we know that φ ∈ C1(W1,q
T ×W1,p

T ,R). The continuity of Ij(j ∈ B)
andKm(m ∈ C) implies that ψ ∈ C1(W1,p

T ×W1,p
T ,R). So, ϕ ∈ C1(W1,p

T ,R), and for all (v1, v2) ∈
W

1,q
T ×W1,p

T , we have

〈
ϕ′(u1, u2), (v1, v2)

〉
=
∫T

0

(
Φq(u̇1(t)), v̇1(t)

)
dt +

∫T

0

(
Φp(u̇2(t)), v̇2(t)

)
dt

+
∫T

0
(∇x1F(u1(t), u2(t)), v1(t))dt +

∫T

0
(∇x2F(u1(t), u2(t)), v2(t))dt

+
l∑

j=1

(∇Ij
(
u1
(
tj
))
, v1

(
tj
))

+
k∑

m=1

(∇Km(u2(sm)), v2(sm)).

(2.17)

Definition 2.2 shows that the critical points of ϕ correspond to the weak solutions of system
(1.1).

We will use the following lemma to seek the critical point of ϕ.

Lemma 2.3 (see [3, Theorem 1.1]). If ϕ is weakly lower semicontinuous on a reflexive Banach space
X and has a bounded minimizing sequence, then ϕ has a minimum on X.

Lemma 2.4 (see [34]). Let ϕ be a C1 function on X = X1 ⊕ X2 with ϕ(0) = 0, satisfying (PS)
condition, and assume that for some ρ > 0,

ϕ(u) ≥ 0, for u ∈ X1, ‖u‖ ≤ ρ,
ϕ(u) ≤ 0, for u ∈ X2, ‖u‖ ≤ ρ.

(2.18)

Assume also that ϕ is bounded below and infXϕ < 0, then ϕ has at least two nonzero critical points.

Lemma 2.5 (see [35, Theorem 4.6]). LetX = X1⊕X2, whereX is a real Banach space andX1 /= {0}
and is finite dimensional. Suppose that ϕ ∈ C1(X,R) satisfies (PS)-condition and

(ϕ1) there is a constant α and a bounded neighborhood D of 0 in X1 such that ϕ|∂D ≤ α,
(ϕ2) there is a constant β > α such that ϕ|X2

≥ β.
Then, ϕ possesses a critical value c ≥ β. Moreover, c can be characterized as

c = inf
h∈Γ

max
u∈D

ϕ(h(u)), (2.19)

where,

Γ =
{
h ∈ C

(
D,X

)
| h = id on ∂D

}
. (2.20)

3. Proof of Theorems

Lemma 3.1. Under assumption (A), ϕ is weakly lower semicontinuous onW1,q
T ×W1,p

T .
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Proof. Let

φ1(u1, u2) =
1
q

∫T

0
|u̇1(t)|qdt + 1

p

∫T

0
|u̇2(t)|pdt,

φ2(u1, u2) =
∫T

0
F(u1(t), u2(t))dt.

(3.1)

Since

φ1

(u1 + v1
2

,
u2 + v2

2

)
=

1
q

∫T

0

∣
∣
∣
∣
u̇1(t) + v̇1(t)

2

∣
∣
∣
∣

q

dt +
1
p

∫T

0

∣
∣
∣
∣
u̇2(t) + v̇2(t)

2

∣
∣
∣
∣

p

dt

≤ 2q−1

q

∫T

0

1
2q

|u̇1(t)|q dt + 2q−1

q

∫T

0

1
2q

|v̇1(t)|qdt

+
2p−1

p

∫T

0

1
2p

|u̇2(t)|pdt + 2p−1

p

∫T

0

1
2p

|v̇2(t)|pdt

≤ 1
2q

∫T

0
|u̇1(t)|qdt + 1

2q

∫T

0
|v̇1(t)|qdt

+
1
2p

∫T

0
|u̇2(t)|pdt + 1

2p

∫T

0
|v̇2(t)|pdt

=
φ1(u1, u2) + φ1(v1, v2)

2
,

(3.2)

then φ1 is convex. Moreover, by [33], we know that φ1 is continuous, and so, it is lower
semicontinuous. Thus, it follows from [3, Theorem 1.2] that φ1 is weakly lower continuous.
By assumption (A), it is easy to verify that φ2(u1, u2) is weakly continuous. We omit the
details. Let

ψ1(u1) =
l∑

j=1

Ij
(
u1
(
tj
))
, ψ2(u2) =

k∑

m=1

Km(u2(sm)). (3.3)

Next, we show that ψ1 and ψ2 are weakly continuous onW1,q
T andW1,p

T , respectively. In fact,
if

u1n ⇀ u1 weakly in W
1,p
T , as n −→ ∞, (3.4)

then by in [3, Proposition 1.2], we know that

u1n −→ u1 strongly in C
(
0, T ;RN

)
, as n −→ ∞. (3.5)
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So, there existsM1 > 0 such that ‖u1‖∞ ≤M1 and ‖u1n‖∞ ≤M1, for all n ∈ N. Thus, we have

∣
∣ψ1(u1n) − ψ1(u1)

∣
∣ =

∣
∣
∣
∣
∣
∣

l∑

j=1

Ij
(
u1n

(
tj
)) −

l∑

j=1

Ij
(
u1
(
tj
))
∣
∣
∣
∣
∣
∣

≤
l∑

j=1

∣
∣Ij
(
u1n

(
tj
)) − Ij

(
u1
(
tj
))∣∣

=
l∑

j=1

∣
∣
∣
∣
∣

∫1

0

(∇Ij
(
u1
(
tj
)
+ s

(
u1n

(
tj
) − u1

(
tj
)))

, u1n
(
tj
) − u1

(
tj
))
ds

∣
∣
∣
∣
∣

≤ ‖u1n − u1‖∞
l∑

j=1

max
t∈[0,3M1]

a1(t) −→ 0.

(3.6)

Hence, ψ1 is weakly continuous on W
1,q
T . Similarly, we can prove that ψ2 is also weakly

continuous onW1,p
T . Thus, we complete the proof.

Proof of Theorem 1.1. It follows from (F1) and (2.7) that

∫T

0
[F(u1(t), u2(t)) − F(u1(t), u2)]

=
∫T

0

∫1

0

1
s
(∇Fx2(u1(t), u2 + sũ2(t)), sũ2(t))dsdt

=
∫T

0

∫1

0

1
s
(∇Fx2(u1(t), u2 + sũ2(t)) − ∇Fx2(u1, u2), sũ2(t))dsdt

≥ −r2
p

∫T

0
|ũ2(t)|pdt

≥ −r2T
pΘ

(
p, p′

)

p
(
p′ + 1

)p/p′

∫T

0
|u̇2(t)|pdt, ∀(u1, u2) ∈W,

(3.7)

∫T

0
[F(u1(t), u2) − F(u1, u2)]dt

=
∫T

0

∫1

0

1
s
(∇x1F(u1 + sũ1(t), u2), sũ1(t))dsdt

=
∫T

0

∫1

0

1
s
(∇x1F(u1 + sũ1(t), u2) − ∇x1F(u1, u2), sũ1(t))dsdt
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≥ −r1
q

∫T

0
|ũ1(t)|qdt

≥ − r1T
qΘ
(
q, q′

)

q
(
q′ + 1

)q/q′

∫T

0
|u̇1(t)|qdt, ∀(u1, u2) ∈W.

(3.8)

Hence, by (I1), (3.7), and (3.8), we have

ϕ(u1, u2) =
1
q

∫T

0
|u̇1(t)|qdt + 1

p

∫T

0
|u̇2(t)|pdt +

∫T

0
[F(u1(t), u2(t)) − F(u1(t), u2)]dt

+
∫T

0
[F(u1(t), u2) − F(u1, u2)]dt + TF(u1, u2) +

l∑

j=1

Ij
(
u1
(
tj
))

+
k∑

m=1

Km(u2(sm))

≥
(

1
p
− r2T

pΘ
(
p, p′

)

p
(
p′ + 1

)p/p′

)∫T

0
|u̇2(t)|pdt +

(
1
q
− r1T

qΘ
(
q, q′

)

q
(
q′ + 1

)q/q′

)∫T

0
|u̇1(t)|qdt

+ TF(u1, u2) − (l + k)
∣∣β
∣∣.

(3.9)

Note that for u ∈W1,p
T ,

‖u‖
W

1,p
T

−→ ∞ ⇐⇒
(

|u|p +
∫T

0
|u̇(t)|pdt

)1/p

−→ ∞, (3.10)

and for v ∈W1,q
T ,

‖v‖
W

1,q
T

−→ ∞ ⇐⇒
(

|v|q +
∫T

0
|v̇(t)|qdt

)1/q

−→ ∞. (3.11)

So, (F2) and (3.9) imply that

ϕ(u1, u2) −→ +∞, as ‖(u1, u2)‖W −→ ∞. (3.12)

Thus, by Lemma 2.3, we know that ϕ has at least one critical point which minimizes ϕ onW .
Furthermore, if Ij(u1(tj)) ≡ 0 (j ∈ B) and Km(u2(sm)) ≡ 0 (m ∈ C), then system (1.1)

reduces to (1.7). When (F3) also holds, we will use Lemma 2.4 to obtain more critical points
of ϕ. Let X =W , X2 = R

N × R
N and X1 = W̃ = W̃1,q

T × W̃1,p
T .

By (3.9), we know that ϕ(u1, u2) → +∞ as ‖(u1, u2)‖W → ∞. So, ϕ satisfies (PS)
condition and is bounded below. Take ρ = δ/c1, where c1 is a positive constant such that
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‖u1‖∞ ≤ c1‖u1‖W1,q
T

≤ c1‖u‖W and ‖u2‖∞ ≤ c1‖u2‖W1,p
T

≤ c1‖u‖W for all (u1, u2) ∈ W . It follows
from (F3) and Lemma 2.1 that

ϕ(u1, u2) =
1
q

∫T

0
|u̇1(t)|qdt + 1

p

∫T

0
|u̇2(t)|pdt +

∫T

0
F(u1(t), u2(t))dt

≥ 1
q

∫T

0
|u̇1(t)|qdt + 1

p

∫T

0
|u̇2(t)|pdt − a

∫T

0
|u1(t)|qdt − b

∫T

0
|u2(t)|pdt

≥ 1
q

∫T

0
|u̇1(t)|qdt + 1

p

∫T

0
|u̇2(t)|pdt − a

TqΘ
(
q, q′

)

(
q′ + 1

)q/q′

∫T

0
|u̇1(t)|qdt

− b T
pΘ

(
p, p′

)

(
p′ + 1

)p/p′

∫T

0
|u̇2(t)|pdt, ∀(u1, u2) ∈ X1.

(3.13)

Since a ≤ (q′ + 1)q/q
′
/(qTqΘ(q, q′)) and b ≤ (p′ + 1)p/p

′
/(pTpΘ(p, p′)), (3.13) implies that

ϕ(u1, u2) ≥ 0 for all (u1, u2) ∈ X1 with ‖u‖W ≤ ρ. By (F3), it is easy to obtain that ϕ(u1, u2) ≤ 0,
for all (u1, u2) ∈ X2 with ‖u‖W ≤ ρ.

If inf{ϕ(u1, u2) : (u1, u2) ∈ W} = 0, then from above, we have ϕ(u1, u2) = 0 for all
(u1, u2) ∈ X2 with ‖(u1, u2)‖W ≤ ρ. Hence, all (u1, u2) ∈ X2 with ‖(u1, u2) ‖W ≤ ρ are
minimal points of ϕ, which implies that ϕ has infinitely many critical points. If inf{ϕ(u1, u2) :
(u1, u2) ∈ W} < 0, then by Lemma 2.4, ϕ has at least two nonzero critical points. Hence,
system (1.7) has at least two nontrivial solutions inW . We complete our proof.

Proof of Theorem 1.3. We only need to use (1.18) and (1.19) to replace (2.6) and (2.7) in the
proof Theorem 1.1 with p = q = 2, F(t, u1, u2) = F1(u1) and Km(u2) ≡ 0 (m ∈ C). It is easy. So,
we omit it.

Lemma 3.2. Under the assumptions of Theorem 1.4, the functional ϕ1 defined by

ϕ1(u1) =
1
2

∫T

0
|u̇1(t)|2dt +

∫T

0
F1(u1(t))dt +

l∑

j=1

Ij
(
u1
(
tj
))
dt (3.14)

satisfies (PS) condition.

Proof. Suppose that {u1n} is a (PS) sequence for ϕ1; that is, there exists D1 > 0 such that

∣∣ϕ(u1n)
∣∣ ≤ D1, ∀n ∈ N, ϕ′(u1n) −→ 0, as n −→ ∞. (3.15)

Hence, for n large enough, we have ‖ϕ′(u1n)‖ ≤ 1. It follows from (F1)′′, (I2), and (1.18) that

‖ũ1n‖ W1,2
T

≥ 〈ϕ′
1(u1n), ũ1n

〉
=
∫T

0
|u̇1n(t)|2dt +

∫T

0
(∇x1F1(u1n(t)), ũ1n(t))dt

+
l∑

j=1

(∇Ij
(
u1n

(
tj
))
, ũ1n

(
tj
))
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=
∫T

0
|u̇1n(t)|2dt +

∫T

0
(∇x1F1(u1n(t)) − ∇x1F1(u1n(t)), ũ1n(t))dt

+
l∑

j=1

(∇Ij
(
u1n

(
tj
))
, ũ1n

(
tj
))

≥
∫T

0
|u̇1n(t)|2dt − r T

2

4π2

∫T

0
|u̇1n(t)|2dt − ‖ũ1n‖∞

l∑

j=1

dj

≥
[

1 − r T
2

4π2

]∫T

0
|u̇1n(t)|2dt −

(
T

12

)1/2
(∫T

0
|u̇1n(t)|2dt

)1/2 l∑

j=1

dj,

(3.16)

for n large enough. By (1.18), we have

‖ũ1n‖W1,2
T

≤
[
T2

4π2
+ 1

]1/2(∫T

0
|u̇1n(t)|2dt

)1/2

, (3.17)

and (3.16), (3.17), and r < 4π2/T2 imply that there exists D2, D3 > 0 such that

∫T

0
|u̇1n(t)|2dt ≤ D2, ‖ũ1n‖W1,2

T
≤ D3. (3.18)

It follows from (F4), (3.15), (I3), (1.18), and (3.18) that

−D1 ≤ ϕ1(u1n) =
1
2

∫T

0
|u̇1n(t)|2dt +

∫T

0
F1(u1n(t))dt +

l∑

j=1

Ij
(
u1
(
tj
))

≤ 1
2

∫T

0
|u̇1n(t)|2dt + 1

μ

∫T

0
F1(λu1n)dt −

∫T

0
F1(−ũ1n(t))dt +

l∑

j=1

γj

=
1
2

∫T

0
|u̇1n(t)|2dt + T

μ
F1(λu1n) − TF1(0) −

∫T

0
[F1(−ũ1n(t)) − F1(0)]dt +

l∑

j=1

γj

=
1
2

∫T

0
|u̇1n(t)|2dt + T

μ
F1(λu1n) − TF1(0) +

l∑

j=1

γj
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−
∫T

0

∫1

0

1
s
(∇F1(−sũ1n(t)) − ∇F1(0),−sũ1n(t))dsdt

≤ 1
2

∫T

0
|u̇1n(t)|2dt + T

μ
F1(λu1n) + r

∫T

0

∫1

0
s|ũ1n(t)|2dsdt − TF1(0) +

l∑

j=1

γj

≤ 1
2

∫T

0
|u̇1n(t)|2dt + T

μ
F1(λu1n) +

r

2

∫T

0
|ũ1n(t)|2dt − TF1(0) +

l∑

j=1

γj

≤ max{1, r}
2

‖ũ1n‖2W1,2
T

+
T

μ
F1(λu1n) − TF1(0) +

l∑

j=1

γj

≤ max{1, r}
2

D
q

3 +
T

μ
F1(λu1n) − TF1(0) +

l∑

j=1

γj ,

(3.19)

for all n and (3.19) and (F5) imply that {u1n} is bounded. Combining (3.18), we know that
{u1n} is a bounded sequence. Similar to the argument in [25], it is easy to obtain that ϕ satisfies
(PS) condition.

Proof of Theorem 1.4. From (I3) and (F5), it is easy to see that for x1 ∈ R
N ,

ϕ1(x1) −→ −∞, as |x1| −→ ∞. (3.20)

For all u1 ∈ W̃1,2
T , by (1.18), (F1)′′ and (I3), we have

ϕ1(u1) =
1
2

∫T

0
|u̇1(t)|2dt +

∫T

0
F1(u1(t))dt +

l∑

j=1

Ij
(
u1
(
tj
))

=
1
2

∫T

0
|u̇1(t)|2dt +

∫T

0
[F1(u1(t)) − F1(0)]dt + TF1(0) +

l∑

j=1

Ij
(
u1
(
tj
))

=
1
2

∫T

0
|u̇1(t)|2dt +

∫T

0

∫1

0
(∇F1x1(su1(t)), u1(t))dsdt +

l∑

j=1

Ij
(
u1
(
tj
))

+ TF1(0)

=
1
2

∫T

0
|u̇1(t)|2dt +

∫T

0

∫1

0

1
s
(∇F1x1(su1(t)) − ∇F1x1(0), su1(t))dsdt

+
l∑

j=1

Ij
(
u1
(
tj
))

+ TF1(0)
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≥ 1
2

∫T

0
|u̇1(t) |2dt − r1

2

∫T

0
|u1(t)|2dt + TF1(0) −

l∑

j=1

bj
∣
∣u1

(
tj
)∣∣αj −

l∑

j=1

cj

≥ 1
2

∫T

0
|u̇1(t)|2dt − r1T

2

4π2

∫T

0
|u̇1(t)|2dt + TF1(0) −

l∑

j=1

bj‖u1‖αj∞ −
l∑

j=1

cj

≥
(

1
2
− r1T

2

4π2

)∫T

0
|u̇1(t)|2dt + TF1(0)

−
(
T

12

)αj/2 l∑

j=1

bj

(∫T

0
|u̇1(t)|2dt

)αj/2

−
l∑

j=1

cj .

(3.21)

Note that for all u1 ∈ W̃1,2
T , ‖u1‖W1,2

T
is equivalent to ‖u̇1‖L2 . Then, r1 < 4π2/T2, αj < 2(j ∈ B)

and (3.21) imply that

ϕ1(u1) −→ +∞, as ‖u1‖W1,2
T

−→ ∞, u1 ∈ W̃1,2
T . (3.22)

It follows from (3.20) and (3.22) that ϕ1 satisfies (ϕ1) and (ϕ2) in Lemma 2.5. Combining with
Lemma 3.2, Lemma 2.5 shows that ϕ1 has at least one critical point. Thus, we complete the
proof.

4. Examples

Example 4.1. Let q = 4, p = 2, T = π , t1 = 1, and s1 = 2. Consider the following system:

d

dt
Φ4(u̇1(t)) = ∇u1F(u1(t) , u2(t)), a.e. t ∈ [0, π],

d

dt
Φ2(u̇2(t)) = ∇u2F(u1(t), u2(t)), a.e. t ∈ [0, π],

u1(0) − u1(π) = u̇1(0) − u̇1(π) = 0,

u2(0) − u2(π) = u̇2(0) − u̇2(π) = 0,

ΔΦ4(u̇1(1)) = Φq(u̇1(1+)) −Φq(u̇1(1−)) = ∇I1(u1(1)),
ΔΦ2(u̇2(2)) = Φp(u̇2(2+)) −Φp(u̇2(2−)) = ∇K1(u2(2)),

(4.1)

where F(x1, x2) = x4
11 + x4

12 + · · · + x4
1N + (1/π2)(x4

21 + x2
22 + · · · + x2

2N) − (1/2π2)|x2|2,
x1 = (x11, x12, . . . , x1N), x2 = (x21, x22, . . . , x2N), I1(x) = e|x|

2
, K1(x) = e|x|

2
, x ∈ R

N . It
is easy to verify that all conditions of Theorem 1.1 hold so that system (4.1) has at least
one weak solution. Moreover, if F(x1, x2) = (1/π2)(x4

21 + x4
22 + · · · + x4

2N) − 1/2π2|x2|2,
x2 = (x21, x22, . . . , x2N), I1(x) = 0 and K1(x) = 0, x ∈ R

N , then system (4.1) has at least
two nonzero solutions.
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Example 4.2. Let T = 2, t1 = 1. Consider the following autonomous second-order Hamiltonian
system with impulsive effects:

ü(t) = ∇uF(u(t)), a.e. t ∈ [0, 2],

u(0) − u(2) = u̇(0) − u̇(2) = 0,

u̇(1+) − u̇(1−) = ∇I1(u(1)),
(4.2)

where F(z) = z41 +z
2
2 + · · ·+z2N −1/2|z|2,I1(z) = e|z|2 , z = (z1, . . . , zN)τ ∈ R

N . It is easy to verify
that all conditions of Theorem 1.3 hold so that system (4.2) has at least one weak solution.
Moreover, if F(z) = z41 + z

4
2 + · · · + z4N − 1/2|z|2 and I1(z) = 0, z ∈ R

N , then system (4.2) has at
least two nonzero solutions.

Example 4.3. Let T = π , t1 = 2. Consider the following autonomous second-order Hamiltonian
system with impulsive effects:

ü(t) = ∇uF(u(t)), a.e. t ∈ [0, π],

u(0) − u(π) = u̇(0) − u̇(π) = 0,

u̇(2+) − u̇(2−) = ∇I1(u(2)),
(4.3)

where F(z) = −|z|2, I1(z) = 2 sin z1, z = (z1, . . . , zN)τ ∈ R
N . It is easy to verify that all con-

ditions of Theorem 1.4 hold so that system (4.3) has at least one weak solution.
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