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We establish an inclusion relation between two known inclusion intervals of matrix singular values
in some special case. In addition, based on the use of positive scale vectors, a known inclusion
interval of matrix singular values is also improved.

1. Introduction

The set of all n-by-n complex matrices is denoted by C
n×n. Let A = (aij) ∈ C

n×n. Denote the
Hermitian adjoint of matrix A by A∗. Then the singular values of A are the eigenvalues of
(AA∗)1/2. It is well known that matrix singular values play a very key role in theory and
practice. The location of singular values is very important in numerical analysis and many
other applied fields. For more review about singular values, readers may refer to [1–9] and
the references therein.

Let N = {1, 2, . . . , n}. For a given matrix A = (aij) ∈ C
n×n, we denote the deleted

absolute row sums and column sums of A by

ri =
n∑

j=1, /= i

∣∣aij

∣∣, ci =
n∑

j=1, /= i

∣∣aji

∣∣, i ∈ N, (1.1)

respectively. On the basis of ri and ci, the Geršgorin’s disk theorem, Brauer’s theorem and
Brualdi’s theorem provide some elegant inclusion regions of the eigenvalues of A (see [10–
12]). Recently, some authors have made efforts to establish analogues to these theorems for
matrix singular values, for example, as follows.
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Theorem A (Geršgorin-type [8]). LetA = (aij) ∈ C
n×n. Then all singular values ofA are contain-

ed in

G(A) ≡
n⋃

i=1

Bi, with Bi = {z ≥ 0 : |z − ai| ≤ si}, (1.2)

where si = max{ri, ci} and ai = |aii| for each i ∈ N.

Theorem B (Brauer-type [5]). Let A = (aij) ∈ C
n×n. Then all singular values of A are contained

in

B(A) ≡
n⋃

i,j=1,i /= j

{
z ≥ 0 : |z − ai|

∣∣z − aj

∣∣ ≤ sisj
}
. (1.3)

Let S denote a nonempty subset of N, and let S = N \ S denote its complement in N.
For a given matrix A = (aij) ∈ C

n×n with n ≥ 2, define partial absolute deleted row sums and
column sums as follows:

rSi (A) =
∑

j∈S\{i}

∣∣aij

∣∣, rSi (A) =
∑

j∈S\{i}

∣∣aij

∣∣;

cSi (A) =
∑

j∈S\{i}

∣∣aji

∣∣, cSi (A) =
∑

j∈S\{i}

∣∣aji

∣∣.
(1.4)

Thus, one splits each row sum ri and each column sum ci from (1.1) into two parts, depending
on S and S, that is,

ri = rSi (A) + rSi (A), ci = cSi (A) + cSi (A). (1.5)

Define, for each i ∈ S, j ∈ S,

GS
i (A) =

{
z ≥ 0 : |z − ai| ≤ sSi

}
,

GS
j (A) =

{
z ≥ 0 :

∣∣z − aj

∣∣ ≤ sSj

}
,

VS
ij(A) =

{
z ≥ 0 :

(
|z − ai| − sSi

)(∣∣z − aj

∣∣ − sSj

)
≤ sSi s

S
j ,

(1.6)

where

sSi = max
{
rSi (A), cSi (A)

}
, sSi = max

{
rSi (A), cSi (A)

}
. (1.7)

For convenience, we will sometimes use rSi (cSi , r
S
i , c

S
i ) to denote rSi (A) (cSi (A), rSi (A), cSi (A),

resp.) unless a confusion is caused.
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Theorem C (modified Brauer-type [7]). Let A = (aij) ∈ C
n×n with n ≥ 2. Then all singular

values of A are contained in

σ(A) ⊆ GVS(A) ≡ GS(A) ∪ VS(A), (1.8)

where

GS(A) =

(
⋃

i∈S
GS
i (A)

)
∪
⎛

⎝
⋃

j∈S
GS

j (A)

⎞

⎠,

VS(A) =
⋃

i∈S,j∈S
VS

ij(A).
(1.9)

A simple analysis shows that Theorem B improves Theorem A. On the other hand,
Theorem C reduces to Theorem A if S = ∅ or S = ∅ (see Remark 2.3 in [7]).

Now it is natural to ask whether there exists an inclusion relation between Theorem B
and Theorem C or not. In this note, we establish an inclusion relation between the inclusion
interval of Theorem B and that of Theorem C in a particular situation. In addition, based
on the use of positive scale vectors and their intersections, the inclusion interval of matrix
singular values in Theorem C is also improved.

2. Main Results

In this section, we will establish an inclusion relation between the inclusion interval of
Theorem B and that of Theorem C in a particular situation. We firstly remark that Theorem B
and Theorem C are incomparable, for example, as follows.

Example 2.1. Consider the following matrix:

A =

⎛
⎜⎜⎝

1 0.1 0.1 0
0 2 0 0.1
1 0 3 0.1
0 1 0 4

⎞
⎟⎟⎠. (2.1)

Let S = {1} and S = {2, 3, 4}. Applying Theorem C, one gets

GS
1 (A) = {z ≥ 0 : |z − 1| ≤ 0} = {1},

GS
2 (A) = {z ≥ 0 : |z − 2| ≤ 1} = [1, 3],

GS
3 (A) = {z ≥ 0 : |z − 3| ≤ 0.1} = [2.9, 3.1],

GS
4 (A) = {z ≥ 0 : |z − 4| ≤ 1} = [3, 5],

VS
12(A) = {z ≥ 0 : (|z − 1|)(|z − 2| − 1) ≤ 0.1} = [0.6838, 3.0488],

VS
13(A) = {z ≥ 0 : (|z − 1|)(|z − 3| − 0.1) ≤ 1} = [0.5707, 3.5000],

VS
14(A) = {z ≥ 0 : (|z − 1|)(|z − 4| − 1) ≤ 0} = {1} ∪ [3, 5].

(2.2)

Hence, the inclusion interval of σ(A) is [0.5707, 5].
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Now applying Theorem B, one gets

{z ≥ 0 : |z − 1| |z − 2| ≤ 1.1} = [0.3381, 2.6619],

{z ≥ 0 : |z − 1| |z − 3| ≤ 1.1} = [0.5509, 3.4491],

{z ≥ 0 : |z − 1| |z − 4| ≤ 1} = [0.6972, 1.3820] ∪ [3.6180, 4.3028],

{z ≥ 0 : |z − 2| |z − 3| ≤ 1.21} = [1.2917, 3.7083],

{z ≥ 0 : |z − 2| |z − 4| ≤ 1.1} = [1.5509, 4.4491],

{z ≥ 0 : |z − 3| |z − 4| ≤ 1.1} = [2.3381, 4.6619].

(2.3)

Therefore, the inclusion interval of σ(A) is [0.3381, 4.6619].
Example 2.1 shows that Theorem B and Theorem C are incomparable in the general

case, but Theorem C may be better than Theorem B whenever the set S is chosen suitably, for
example, as follows.

Example 2.2. Take S = {1, 2} and S = {3, 4} in Example 2.1. Applying Theorem C, one gets

GS
1 (A) = {z ≥ 0 : |z − 1| ≤ 0.1} = [0.9, 1.1],

GS
2 (A) = {z ≥ 0 : |z − 2| ≤ 0.1} = [1.9, 2.1],

GS
3 (A) = {z ≥ 0 : |z − 3| ≤ 0.1} = [2.9, 3.1],

GS
4 (A) = {z ≥ 0 : |z − 4| ≤ 0.1} = [3.9, 4.1],

VS
13(A) = {z ≥ 0 : (|z − 1| − 0.1)(|z − 3| − 0.1) ≤ 1} = [0.4858, 3.5142],

VS
23(A) = {z ≥ 0 : (|z − 2| − 0.1)(|z − 3| − 0.1) ≤ 1} = [1.2820, 3.7180],

VS
14(A) = {z ≥ 0 : (|z − 1| − 0.1)(|z − 4| − 0.1) ≤ 1} = [0.5972, 1.5202] ∪ [3.4798, 4.4028],

VS
24(A) = {z ≥ 0 : (|z − 2| − 0.1)(|z − 4| − 0.1) ≤ 1} = [1.4858, 4.5142].

(2.4)

Hence, the inclusion interval of σ(A) is [0.4858, 4.5142]. However, applying Theorem B, we
get that the inclusion interval of σ(A) is [0.3381, 4.6619] (see Example 2.1).

Example 2.2 shows that Theorem C is an improvement on Theorem B in some cases,
but Theorem C is complex in calculation. In order to simplify our calculations, we may
consider the following special case that the set S is a singleton, that is, Si = {i} for some
i ∈ N. In this case, the associated sets from (1.6)may be defined as the following sets:

GSi

i (A) = {z ≥ 0 : |z − ai| ≤ 0},

GSi

j (A) =
{
z ≥ 0 :

∣∣z − aj

∣∣ ≤ sSi

j

}
,

(2.5)

VSi

ij (A) =
{
z ≥ 0 : (|z − ai|)

(∣∣z − aj

∣∣ − sSi

j

)
≤ si max

{∣∣aij

∣∣,
∣∣aji

∣∣}
}
. (2.6)
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By a simple analysis, GSi

i (A) and GSi

j (A) are necessarily contained in VSi

ij (A) for any j /= i, we
can simply write from (1.8) that, for any i ∈ N,

σ(A) ⊆ VSi(A) ≡
⋃

j∈N\{i}
VSi

ij (A). (2.7)

This shows that VSi(A) is determined by (n − 1) sets VSi

ij (A). The associated Geršgorin-type
set G(A) from (1.2) is determined by n sets Bi (i ∈ N) and the associated Brauer-type set
B(A) from (1.3) is determined by n(n − 1)/2 sets. The following corollary is an immediate
consequence of Theorem C.

Corollary 2.3. Let A = (aij) ∈ C
n×n with n ≥ 2. Then all singular values of A are contained in

σ(A) ⊆ V(A) ≡
⋂

i∈N
VSi(A). (2.8)

Proof. From (2.7), we get the required result.

Notice that VS1(A) = VS2(A) = B(A)whenever n = 2. Next, we will assume that n ≥ 3.
It is interesting to establish their relations betweenVSi(A) andG(A), as well as betweenV(A)
and B(A).

Definition 2.4 (see [9]). A = (aij) ∈ C
n×n is called a matrix with property AS (absolute symmetry)

if |aij | = |aji| for any i, j ∈ N.

Note that a matrix A with property AS is said as A with property B in [9].

Theorem 2.5. Let A = (aij) ∈ C
n×n with n ≥ 3. If A is a matrix with property AS, then for each

i ∈ N

VSi(A) ⊆ G(A), V(A) ⊆ B(A). (2.9)

Proof. Fix some i ∈ N and consider any z ∈ VSi(A). Then from (2.7), there exists a j ∈ N \ {i}
such that z ∈ VSi

ij (A), that is, from (2.6),

(|z − ai|)
(∣∣z − aj

∣∣ − sSi

j

)
≤ sSi

i max
{∣∣aij

∣∣,
∣∣aji

∣∣} = si ·
∣∣aij

∣∣, (2.10)

where the last equality holds as A has the property AS (i.e., |aij | = |aji| for any i, j ∈ N).
Now assume that z /∈ G(A), then |z − ak| > sk for each k ∈ N, implying that |z − ai| >

si ≥ 0 and |z − aj | > sj ≥ 0 for above i, j ∈ N. Thus, the left part of (2.10) satisfies

(|z − ai|)
(∣∣z − aj

∣∣ − sSi

j

)
> si
(
sj − sSi

j

)
= si ·

∣∣aij

∣∣, (2.11)

which contradicts the inequality (2.10). Hence, z ∈ VSi(A) implies z ∈ G(A), that is, VSi(A) ⊆
G(A).
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Next, we will show that V(A) ⊆ B(A). Since VSi(A) ⊆ G(A) for any i ∈ N, then, from
(2.8), we get V(A) ⊆ G(A). Now consider any z ∈ V(A), so that z ∈ VSi(A) for each i ∈ N.
Hence, for each i ∈ N, there exists a j ∈ N \ {i} such that z ∈ VSi

ij (A), that is, the inequality
(2.10) holds. Since V(A) ⊆ G(A), there exists a k ∈ N such that |z − ak| ≤ sk. For this index k,
there exists a l ∈ N \ {k} such that z ∈ VSk

kl
(A), that is,

(|z − ak|)
(
|z − al| − sSk

l

)
≤ sSk

k max{|akl|, |alk|} = sk · |akl|. (2.12)

Hence,

|z − ak| |z − al| ≤ |z − ak|sSk

l + sk · |akl| ≤ sk
(
sSk

l + |akl|
)
= sksl, (2.13)

which implies z ∈ B(A). Since this is true for any z ∈ V(A). Then V(A) ⊆ B(A). This com-
pletes our proof.

Remark that the condition “the matrix A has the property AS” is necessary in
Theorem 2.5, for example, as follows.

Example 2.6. Consider the following matrix:

A =

⎛

⎝
1 2 0
1 2 1
1 0 3

⎞

⎠. (2.14)

Let Si = {1}, Si = {2}, and Si = {3}. From (2.7), we get that the inclusion intervals of σ(A) are
[0, 4.5616], [0, 4.7321] and [0, 4.6180], respectively. Hence, applying Corollary 2.3, we have
σ(A) ⊆ [0, 4.5616]. However, applying Theorem A and Theorem B, we get σ(A) ⊆ G(A) =
B(A) = [0, 4], which implies Theorem 2.5 is failling if the condition “the matrix A has the
property AS” is omitted.

In the following, we will give a new inclusion interval for matrix singular values,
which improves that of Theorem C. The proof of this result is based on the use of scaling
techniques. It is well known that scaling techniques pay important roles in improving inclu-
sion intervals for matrix singular values. For example, using positive scale vectors and their
intersections, Qi [8] and Li et al. [6] obtained two new inclusion intervals (see Theorem 4 in
[8] and Theorem 2.2 in [6], resp.), which improve these of Theorems A and B, respectively.
Recently, Tian et al. [9], using this techniques, also obtained a new inclusion interval (see
Theorem 2.4 in [9]), which is an improvement on these of Theorem 2.2 in [6] and Theorem B.

Theorem 2.7. LetA = (aij) ∈ C
n×n with n ≥ 2 and k = (k1, k2, . . . , kn)

T be any vector with positive

components. Then Theorem C remains true if one replaces the definition of sSi (A) and sSi (A) by

SS
i (A) = max

{
RS

i , C
S
i

}
, SS

i (A) = max
{
RS

i , C
S
i

}
, (2.15)
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where

RS
i =

1
ki

∑

j∈S\{i}

∣∣aij

∣∣kj , RS
i =

1
ki

∑

j∈S\{i}

∣∣aij

∣∣kj ;

CS
i =

1
ki

∑

j∈S\{i}

∣∣aji

∣∣kj , CS
i =

1
ki

∑

j∈S\{i}

∣∣aji

∣∣kj .
(2.16)

Proof. Suppose that σ is any singular value of A. Then there exist two nonzero vectors x =
(x1, x2, . . . , xn)

T and y = (y1, y2, . . . , yn)
T such that

Ax = σy, A∗y = σx, (2.17)

(see Problem 5 of Section 7.3 in [11]).
The fundamental equation (2.17) implies that, for each i ∈ N,

σxi − aiiyi =
∑

j∈S\{i}
ajiyj +

∑

j∈S\{i}
ajiyj ,

σyi − aiixi =
∑

j∈S\{i}
aijxj +

∑

j∈S\{i}
aijxj .

(2.18)

Let xi = kix̂i, yi = kiŷi for each i ∈ N. Then our fundamental equation (2.18) and
become into, for each i ∈ N,

σx̂i − aiiŷi =
1
ki

∑

j∈S\{i}
ajikj ŷj +

1
ki

∑

j∈S\{i}
ajikj ŷj ,

σŷi − aiix̂i =
1
ki

∑

j∈S\{i}
aijkj x̂j +

1
ki

∑

j∈S\{i}
aijkj x̂j .

(2.19)

Denote zi = max{|x̂i|, |ŷi|} for each i ∈ N. Now using the similar technique as the proof
of Theorem 2.2 in [7], one gets the required result.

Remarks. Write the inclusion intervals in Theorem 2.7 as GVS(A). Since k = (k1, k2, . . . , kn)
T

is any vector with positive components, then all singular values of A are contained in

σ(A) ⊆
⋂

k>0

GVS(A). (2.20)

Obviously, Theorem 2.7 reduces to Theorem Cwhenever k = (1, 1, . . . , 1)T , which implies that

⋂

k>0

GVS(A) ⊆ GVS(A). (2.21)

Hence, the inclusion interval (2.20) is an improvement on that of (1.8).
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