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We introduce an iterative method for finding a common element of set of fixed points of
nonexpansive mappings, the set of solutions of a finite family of variational inclusion with set-
valued maximal monotone mappings and inverse strongly monotone mappings, and the set of
solutions of a mixed equilibrium problem in Hilbert spaces. Under suitable conditions, some
strong convergence theorems for approximating this common elements are proved. The results
presented in the paper improve and extend the main results of Plubtemg and Sripard and many
others.

1. Introduction

Let H be a real Hilbert space whose inner product and norm are denoted by (-,-) and || - ||,
respectively. Let C be a nonempty closed convex subset of H, and let F be a bifunction of
C x C into R which is the set of real numbers. The equilibrium problem for F : C x C — Riis
to find x € C such that

F(x,y) >0, VyeC. (1.1)

The set of solutions of (1.1) is denoted by EP(F). The mixed equilibrium problem for two
bifunction of F1,F, : C x C — Ris to find x € C such that

Fi(x,y) + F2(x,y) + (Ax,x—y) >0, VyeC. (1.2)
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In the sequel we will indicate by MEP(Fj, F, A) the set of solution of our mixed equilibrium
problem. If A = 0 we denote MEP(F;, F»,0) with MEP(F;, F).

In 2005, Combettes and Hirstoaga [1] introduced an iterative scheme of finding
the best approximation to the initial data when EP(F) is nonempty and proved a strong
convergence theorem. Let A : C — H be a nonlinear mapping. The classical variational
inequality which is denoted by VI(A, C) is to find x € C such that

(Ax,y-x)>0, VyeC. (1.3)

The variational inequality has been extensively studied in the literature; see, for example,
[2, 3] and the reference therein. Recall that mapping T of C into itself is called nonexpansive
if

[Tx-Ty|| < [lx-y], VxyeC (14)

A mapping f : C — Cis called contractive if there exists a constant f§ € (0,1) such that

Ifx=fyl <Plx-vl, vxyeC (1.5)

We denote by Fi,(T) the set of fixed points of T.

Some methods have been proposed to solve the equilibrium problem and fixed point
problem of nonexpansive mapping; see, for instance, [2, 4-6] and the references therein. In
2007, Plubtieng and Punpaeng [6] introduced the following iterative scheme. Let x; € H and
let {x,} and {u,} be sequences generated by

1
F(u,,v)+ —{(y—u,u,—x,)>0, VYye&H,
(tn, y) + -y ) y 16

Xn+1 = OnY f(x0) + (I — 2, A)Tu,, VneN.

They proved that if the sequences {a,} and {r,} of parameters satisfy appropriate conditions,
then the sequences {x,} and {u,} both converge strongly to the unique solution of the
variational inequality

((A-yf)z,z-x)>0, VxeFy(T)NEP(F), (1.7)
which is the optimality condition for the minimization problem

1
ey 2 A% 1.
XEFixr(ll’})lfl;EP(F) 2 < X, x> h(x)/ ( 8)

where h is a potential function for yf.

Let A: H — H be a single-valued nonlinear mapping, and let M : H — 2H be a
set-valued mapping. We consider the following variational inclusion, which is to find a point
u € H such that

0 A(u) + M(u), (1.9)
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where 0 is the zero vector in H. The set of solutions of problem (1.9) is denoted by
I(A,M). Let A; : H — H, i = 1,2,... N be single-valued nonlinear mappings, and let
M;:H — 2H i=1,2,...N, be set-valued mappings. If A =0, then problem (1.9) becomes
the variational inclusion problem introduced by Rockafellar [7]. If M = 06¢c, where C is a
nonempty closed convex subset of H and 6c : H — [0, o0] is the indicator function of C, that
is,

0, eC,
Sc(x) = {+OO zg c (1.10)

then the variational inclusion problem (1.9) is equivalent to variational inequality problem
(1.3). It is known that (1.9) provides a convenient framework for the unified study of optimal
solutions in many optimization-related areas including mathematical programming, comple-
mentarity, variational inequalities, optimal control, mathematical economics, equilibria, and
game theory. Also various types of variational inclusions problems have been extended and
generalized (see [8] and the references therein). We introduce following a finite family of
variational inclusions, which are to find a point u € H such that

0eAi(w+Mu), i=12...N, (1.11)

where 0 is the zero vector in H. The set of solutions of problem (1.11) is denoted by
ﬂf\zjl I(Ai, M;). The formulation (1.11) extends this formalism to a finite family of variational
inclusions covering, in particular, various forms of feasibility problems (see, e.g., [9]).

In 2009, Plubtemg and Sripard [10] introduced the following iterative scheme for
finding a common element of set of solutions to the problem (1.9) with multivalued
maximal monotone mapping and inverse-strongly monotone mapping, the set solutions of
an equilibrium problem and the set of fixed points of a nonexpansive mapping in Hilbert
spaces. Starting with an arbitrary x; € H, define sequence {x,}, {y.}, and {u,} by

F(un,y) + %(y—un,un -x,)>0, VyeH,

Yn = Ima(un — VAu,), Yn>0, (1.12)

Xn+l = aan(xn) + (I - “nB)Snyn/

for all n € N, where A € (0,2«], {a,} C [0,1], and {r,} C (0,00); B is a strongly positive
bounded linear operator on H, and {S,,} is a sequence of nonexpansive mappings on H. They
proved that under certain appropriate conditions imposed on {a,} and {r,}, the sequence
{xn}, {yn}, and {u,} generated by (1.12) converge strongly to z € (2, Fix(Si) N I(A, M) N
EP(F), where z = Pz, F, (syni(amnep(p) f(2)-

In 2011, Yao et al. [11] considered the following iterative method for finding a common
element of set of solutions to the problem (1.9) with multi-valued maximal monotone
mapping and inverse-strongly monotone mapping, the set solutions of a mixed equilibrium
problem, and the set of fixed points of an infinite family of nonexpansive mappings in Hilbert
spaces. Let F : Hx H — Rbe a bifunction, A be a strongly positive bounded linear operator,
and By, B, : H — H be inverse strongly monotone and let inverse strongly monotone, and
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¢ : H — Rbe alower semicontinuous and convex function. For any initial xy is selected in
H arbitrarily

1
F(un,y) + () = ¢(un) + —(y =, tn = (xn = 7B13n)) 20, Vy € H,
Xn+l = aan(xn) + ,ann + ((1 - ,Bn)I - anB)Wn]R,J\(un - -)LBZun)/ n> O/

(1.13)

where {a,} and {f,} are two sequences in [0, 1] and W, is an infinite family of nonexpansive
mappings. They study the strong convergence of the iterative algorithm (1.13).

Motivated and inspired by Saeidi [12], Aoyama et al. [13], Plubieng and Punpaeng
[6], Plubtemg and Sripard [10], Peng et al. [14], and Yao et al. [11], we introduce an iterative
scheme for finding a common element of the set of solutions of a finite family of variational
inclusion problems (1.11) with multi-valued maximal monotone mappings and inverse-
strongly monotone mappings, the set of solutions of a mixed equilibrium problem, and the
set of fixed points of nonexpansive mappings in Hilbert space. Starting with an arbitrary
x1 € H, define sequence {x,}, {v,} and {u,} by

Fi(un,y) + F2(tn, y) + %(y —Up,Up—Xy) 20, VyeH,

Yn = IMnyina (I = AN AN) - Ty, (T = M n A1)y,
Xn+1 = €an(xn) +ﬂnxn + ((1 _ﬂn)I - €nB)Snynr

(1.14)

for all n € N, where \;, € (0,2«;],i € {1,2,...,N},{ex} < [0,1], and {r,} C
(0,0), B is a strongly positive bounded linear operator on H, and {S,} is a sequence
of nonexpansive mappings on H. Under suitable conditions, some strong convergence
theorems for approximating to this common elements are proved. Our results extend and
improve some corresponding results in [10, 11, 14] and the references therein.

2. Preliminaries

This section collects some lemmas which will be used in the proofs for the main results in
next section.

Let H be a real Hilbert space with inner product (-, -) and norm || - ||, respectively. It is
well known that for all x,y € H and A € [0, 1], there holds

A + (1= Vy|* = Mxl? + 1= V][y[* =20 =) [|x - y]*- (2.1)

Let C be a nonempty closed convex subset of H. Then, for any x € H, there exists a
unique nearest point of C, denoted by Pcx. such that ||x — Pcx|| < [lx -yl forall y € C.Such a
Pc is called the metric projection from H into C. We know that Pc is nonexpansive. It is also
known that Pcx € C and

(x—=Pcx,Pcx—z)>0, VxeH, zeC. (2.2)
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It is easy to see that (2.2) is equivalent to

x - z||* > |lx — Pex||* + ||Pex — z||>, Vxe€H, zeC. (2.3)

For solving the mixed equilibrium problem for a bifunction F : C x C — R, let us
assume that F satisfies the following conditions:

(A1) F(x,x) =0forall x € C;
(A2) F is monotone, thatis, F(x,y) + F(y,x) <0forall x,y € C;
(A3) foreach x,y,z€ C,

}in&F(tz +(1-txy) <F(x,y); (2.4)

(A4) for each x € C, y — F(x,y) is convex and lower semicontinuous.

Lemma 2.1 (see [15]). Let C be a convex closed subset of a Hilbert spaces H.
Let F1 : C x C — R be a bifunction such that
(f1) Fi(x,x) =0forall x € C;
(f2) Fy is monotone and upper hemicontinuous in the first variable;

(f3) Fi is lower semicontinuous and convex in the second variable.
Let F : C x C — R be a bifunction such that

(hl) Fa(x,x) =0 forall x € C;
(h2) F, is monotone and weakly upper semicontinuous in the first variable;

(h3) F; is convex in the second variable.

Moreover let us suppose that

(H) for fixed r > 0 and x € C there exists a bounded set K C C and a € K such that for all
ze€ C\K,-Fi(a,z)+ F(z,a)+ (1/r){a-z,z—x) <0.

Forr>0and x € H,let T, : H — C be a mapping defined by
T, (x) = {y €eC:Fi(z,y)+Fi(zy) + %(y—z,z—x) >0, Vz € C}. (2.5)

Called resolvent of Fy and F,.
Then,

(1) Trx#0;

2)

(3) T, is firmly nonexpansive;

(4) MEP(Fy, Fy) = Fix(T,x) and it is closed and convex.

T, is a single value;
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Recall that a mapping A : H — H is called a-inverse-strongly monotone, if there
exists a positive number a such that

(Au— Av,u-v) > al|Au- Av|?, Yu,ve H. (2.6)

Let I be the identity mapping on H. It is well known that if A : H — H is a-inverse-
strongly monotone, then A is 1/a-Lipschitz continuous and monotone mapping. In addition,
if 0 < A < 2a, then I — 1A is a nonexpansive mapping.

A set-valued M : H — 2! is called monotone, if for all x,y € H, f € Mx, and
g € My imply (x -y, f — g) > 0. A monotone mapping M : H — 2 is maximal if its graph
GM) : {(x,f) e HxH | f € M(x)} of M is not properly contained in the graph of any other
monotone mapping. It is known that a monotone mapping M is maximal if and only if for
(x,f)e HxH,(x-y, f-g)>0forevery (y,g) € G(H) implies f € Mx.

Let the set-valued M : H — 2H be maximal monotone. we define the resolvent
operator Jjy associated with M and A as follows:

Jva(u) = (I+AM)™(u), VueH, (27)

where 1 is a positive number. It is worth mentioning that the resolvent operator Jr, is single-
valued, nonexpansive, and l-inverse-strongly monotone, see for example [16] and that a
solution of problem (1.9) is a fixed point of the operator Jay (I — AA) for all A > 0, see for
instance, [17]. Furthermore, a solution of a finite family of variational inclusion problems
(1.11) is a common fixed point of Jas 2 (I — AAxk), k€ {1,...,N}, A >0.

Lemma 2.2 (see [16]). Let M : H — 2 be a maximal monotone mapping and A : H — H a
Lipschitz-continuous mapping. Then the mapping S = M + A : H — 2H is a maximal monotone

mapping.
Lemma 2.3 (see [18]). Let H be a Hilbert space, C a nonempty closed subset of H, f : H — H

a contraction with coefficient 0 < a < 1, and B a strongly positive linear bounded operator with
coefficient y > 0. Then,

(1) if0<y<y/athen(x-y,(B-yf)x-(B-yfy) > F-ya)lx-yl* x,y € H;
(2) if0 < p < |B|I"Y, then |I - pB|| < 1 - pF.

Lemma 2.4. For all x,y € H, there holds the inequality

I+ yII” < 12l + 2y, x + ). (28)
Lemma 2.5 (the resolvent identity). Let E be a Banach space, for A >0, p>0and x € E,

Jix = ],,(%x +(1- %) Jax). (2.9)
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Lemma 2.6. Let H be a Hilbert space. Let A; : H — H, i =1,2,...,N be a;-inverse-strongly
monotone mappings, M; : H — 2H i =1,2,..., N maximal monotone mappings, and {wy} be a
bounded sequence in H. Assume Aj,, >0, j=1,2,...,N, satisfy

(H1) Timy, o 35071 [Ajn = Ajna1] < oo,
(H2) lim inf, . Aj, > 0.

Set @ﬁ = M in U =X nAk) - vy, (T =M Ar) fork € {1,2,..., N} and G)?l = I forall n. Then,
forke{1,2,...,N},

o
Y| [SHEICH RS (2.10)
i=1

Proof. From Lemma 2.5, we have, forall k € {1,2,...,N},

”]Mk/)tk,nu (I - )Lk,n+1Ak)wn - ]Mk,)tk/,, (I - /\k,nAk)wn ”

A
T | (W at s (T = Aot Aywn | + flonl])-
k,n+1

(2.11)

<|1-

Furthermore, from the definition of @fl, it follows
Ok = i, (I = M Ax)OK (2.12)
Combining (2.11) and (2.12), we obtain

k k
@n+1 Wn = enwn

< [Tt (I = Y AO 0 = Tt (1 = M AOS o,
< ||]Mk,)tk,n+1 (I - -/\k,n-#lAk)@l;:_%wn - ]Mk,)»k,nﬂ (1 - -)‘k,n-*—lAk)eﬁ_lwn

Mt (T = M1 A 0 = Tt (T = A A)OS 0,
Ain
Mens1
[Tttt (0 = Ui 4O o
Ain

kn+1

k-1 k-1
< | O, 1wy — Oy wy

“(

k-1 k-1
| O, 1wy — O, wy

1-

+

+ llwall)

My

(2.13)

IN

+(1-

)‘l,n

ILn+1

k
+ 1-

M,y

where M; = sup{||wn|| + ZkN:1 1] M A (T = )Lk/n+1Ak)e]:l_lwn” }. According to (H1) and (H2),
then (2.11) holds. O
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Lemma 2.7 (see [19]). Let {x,} and {z,} be bounded sequences in a Banach space X, and let {f,}
be a sequence in [0, 1] with 0 < liminf, , ,f, and limsup,, _, _ p, < 1. Suppose

Xn+l = ﬁnxn + (1 - ﬁn)zn (214)
foralln>0and

limsup(||zns1 = zull = [[Xns1 = xull) <O. (2.15)

n—oo

Then lim,, _, o ||, — z4|| = 0.

Lemma 2.8 (see [20]). Assume {a,} is a sequence of nonnegative real numbers such that

Aps1 < (1 - Yn)an +6,, n20, (2.16)

where {a,} is a sequence in (0,1) and {6,} is a sequence in R such that

(i) X5t yn = o,
(ii) imsup, , _ (6,/yn) <007 377 |64] < 00.

Then lim,, _, ,a, = 0.

3. Main Results

Theorem 3.1. Let H be a real Hilbert space, let Fy and F; be bifunction HxH — R satisfying (A1)-
(A4), and let {S,} be a sequence of nonexpansive mappingson H. Let A;: H — H, i=1,2,...,N,
be aj-inverse-strongly monotone mappings, and let M; : H — 2H i =1,2,...,N be maximal
monotone mappings such that Q := (N, Fix(Sn)) N MEP(Fy, F;) N (ﬂfﬁ1 I(Ai, M;)) #0. Let f
be a contraction of H into itself with a constant a € (0,1), and let B be a strongly positive bounded
linear operator on H with coefficient ¥ > 0and 0 < y <y /a. Let {x,}, {y,}, and {u,} be sequences
generated by x1 € H and

Fi(un,y) + F2(un, y) + %(y —Up,Up—Xn) 20, VyeH,

Yn = Iy, (I = AN AN) - T ag, (I = An A1) U,
Xn+1 = €an(xn) + pnxn + ((1 - ﬁn)I - enB)Snynr

(3.1)

foralln € N, where 8, € (0,1), Xin € (0,2a;],i € {1,2,...,N}, satisfy (H1)-(H2) and {e,} C [0,1]
and {r,} C (0, 00) satisfy

(C1) lim,, . €, =0;

(C2) 3ol €n=00;

(c3 Z:lozl |€n+1 — €n] < 00;

(C4) lim inf, _, 1, > 0;

)
)
)
)
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(C5) X0l [Tne1 — 1| < o0;
(C6) limy, —, o = 0.

Suppose that >,7°; sup{||Sps1z — Snz|| : z € K} < oo for any bounded subset K of H. Let S be a
mapping of H into itself defined by Sx = lim,_,,S,x, for all x € H and suppose that Fi(S) =
M1 Fix(Sn). Then, {xn}, {yn}, and {u,} converge strongly to z, where z = Po(I - B+ yf)(z) isa
unique solution of the variational inequality

(B-yf)z,z-x)<0 xeQ. (3.2)

Proof. Since €, — 0, we will assume that e, < (1 - f3,)|B||} and 1 - €, (y — ay) > 0. Observe
that, if ||u|| = 1, then

(=PI -euB)u,u) = (1-P,) — ex(Bu,u) > (1 - B, — €| B||) > 0. (3.3)
By Lemma 2.3 we have
[ (1= pu)T = enB|| < (1= Bn) - €ny- (3.4)

Moreover, using the definition of OF in Lemma 2.6, we have Yn = ©Nu,,. We divide the proof
into several steps.

Step 1. The sequence {x,} is bounded.
Since €, — 0, we may assume that €, < ||B||™! for all n. Let p € Q. Using the fact that

I, (I = AenAx), k € {1,2,...,N}, is nonexpansive and p = Jar, 1., (I = AknAx)p, we have

lye—pll = O3 un - O] <l pll < 1T~ Tpll < e pll,  35)

for all n > 1. Then, we have

1 = pll = || (1 = Bu)T = €aB) (S4ON 1 = $,0Xp) + €u (F(xa) = £ (p))
+€(yf (p) = Bp) + Pu(xn =)

(3.6)
- — L rfe) - Bp|l
<(1-€,(y—a Xy — +eu(y—ay) ——————-.
(1= en(y=ar)llon —pll +en(y-ar) ===
It follow from (3.6) and induction that
-A
||xn—P||Smax{”?ﬁ—P”,W}, VYn > 1. (3.7)

Hence {x,} is bounded and therefore {u,}, {y.}, { f(x,)}, and {S,y,} are also bounded.



10 Journal of Applied Mathematics

Step 2. We show that ||x,+1 — x,|| — 0.
Define x41 = Bnxy + (1 — pu)v, for each n > 0. From the definition of v,, we obtain

1 1
Un+l —On = 1ot (xn+2 - ﬂn+1xn+1) - m(xm-l - ﬁnxn)

€n+1Yf(xn+1) + ((1 - ﬁn+1>I - €n+1B)Sn+1yn+l B €n}"f(xn) + ((1 - ﬁn)I - €nB)Snyn
1- ﬁn+1 1- ﬁ”
€nn ) f(xni1)  Enyf(Xn)

= — + Sn n 71 n BSn » n+1 Bsn .
1- ﬁ"” 1- ﬂn L _,ﬁ Yn= 1- ,Bn+1 H1Yn
€n+
= L (1 f (xnet) = BSuoatinnt) + T = (rf ()~ BS.)
Ry
+ Sn+1]/n+1 - Sn+1]/n + Sn+1yn - n]/n-
(3.8)

It follows that

on1 = vull = i1 = 2all < 7= 57— ”; (ly f Gne) [ + [[BSusayman )

n]/n”) + ||Sn+l]/n+1 - Sn+1yn”

+ ||Sn+l]/n - Snyn” - |Ixn+l - xn”
€n+1

< 1- (”Yf(xn+1)" + ”Bsn+1yn+1”)

+ m(llrﬂxn)ll F1BSuyall) + Y1 =yl

+ ||Sn+1]/n - Snyn” - ||xn+1 - .’)CnH.

(3.9)

By the suppose of > ;7 sup{||Sn+1z — Snz|| : z € K} < o0, we obtain

nlETOlo”SrHlyn - Sn]/n” =0. (310)

From Lemma 2.6, we obtain

lim [|ON, 11 — O tsa || = 0. (3.11)

n—oo

By O} and T, being nonexpansive, we have

”yn+1 - yn” = ||@ﬁ1un+1 - Gfun

N N
+ ||@n Uy — O, Uy

N N
< ||@n+1un+1 - @n Upi1
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< | @nN+1un+1 - @;]:Ium—l + ”un+1 - un”
< | eﬁlunﬂ - eil\]un-#l + ”Trxn+1 - Trxn”
< [|ON s ttner = Ot | + e = x4l
(3.12)
Substituting (3.12) into (3.9), we get
1Un+1 = Onll = 13041 = Xnl| < 1 n;;l (”Yf(xnﬂ)” + ||BS"+1y71+1”)
e+ 1BStall) + | O ter ~ @Yt 3:13)
+ ||5n+1yn = Suln-
By (3.10), (3.11), and the conditions (C1) and (C6), we imply that
nli_rgo(”vm-l = Ul = [[Xn41 — xal]) = 0. (3.14)
Hence, by Lemma 2.7, we have lim,, _, .»||v,, — x,|| = 0. Consequently, it follows that
Jijr;ollxn+1 = Xn|| = nh—IEo(l - ﬂn) [on = xn|l = 0. (3.15)
From (3.11), (3.12), and (3.15), we also imply that
Tim [|yne1 = yn| = 0. (3.16)
Step 3. We now show that
lim ||©%u, - O u,|l=0, k=1,2,...,N. (3.17)
n— oo

Indeed, let p € Q. It follows from the firmly nonexpansiveness of Jas, 1, (I = AknAx)

that

2 2
_ p” = H]Mk,xk,,, (I- )Lk,nAk)@fz_lun — I, (I = lk,nAk)p“
< (O —p O} ) (318)

1 2
=§(| tn )

foreach k € {1,2,...,N}. Thus we get

k-1 k-1
O, U, - nUn — O

2
nUn _p” +

2

2
k-1 k-1
o, un—p” — |[Onun — Oy Uy

2
b —p| < (3.19)
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which implies that, for each k € {1,2,..., N},

2 2 N 2
lyn =l = || O~ < |[O%un—p|| - 3| Ohten - Ok 14
k=1
N2 k.. _ k-1 2
< lun - p|)* - | ©5tn - ©5 s
2
< = pII* = || ©ken - O M|

Set 0, = y f(xn) — BSpys, and let A > 0 be a constant such that

o> suf{llenllf [k = p|l}-

Using Lemma 2.2 and noting that || - ||? is convex, we derive, from (3.20),

%s =PI = | (L= ) (S = ) + B (xn = P) + €x00’
<1 (1= Bu) (Sutyn = P) + Bu(xn = p) | + 264 (n, X1 — p)
< (1=B)Snyn = I + Bullxn = 2| + 2120
< (1= Bu)lya —pI* + Bullxn = pI* + 212,
< (1 _ﬂ”) (”x" _P”2 - eﬁun - @ﬁ_lun 2> +ﬂn”xn - P”2 + 2)Lz€n

< Jlxen = pll* = (1= )

2
OFu, — Oy, || +20%,.

It follows, by Step 2 and condition (C1), that

1

2
ku, - 01y,

2 2 5
S 1_ﬁn(llxn—Pll = [l = p||* +21%,)
1
1- B,

< <2/\||x,, — Xpe1ll + 2/\2€n> —0, as n— oo.

Step 4. We will prove limy, ., o ||y, — x| = 0.
We note from (3.1)

”xn - Snyn” < ”xn - Sn—lyn—l ” + "Sn—lyn—l - Sn—lyn” + ”Sn—lyn - Snyn”
< €n—1||Yf(xn—1) - BSn—lyn—lll + ”yn—l - yn”
+ ﬂn”xn—l - Sn—l]/n—l” + Sup{ “Sn+1Z - SnZ” HVARS ”yn” }

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

Sincee, — 0,6, — 0asn — oo, limy—,ool|Yn+1=Ynll = 0and sup{(|Sps12=Suz| : z € {yn}} —

0, we get

||xn = Suyn|| — 0 as n — oo.

(3.25)
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Let v € Q. Since u,, = T}, x,, it follows from Lemma 2.1 that

||y, — ZJ||2 =T, xn - T,nv||2 <A(Ty,xn — T}, 0, xp — V) = (U —V, X, — V)
1 (3.26)
< 5 (ltn = 01 + llxn = 01 =l = %I,

and hence ||u,, — v||* < ||x, — ©||* = ||[un — x4 ||*. Therefore, using Lemma 2.6 and (3.22), we have

ni1 = 0l7 < (1= Ba) [y = pII” + Bullxn = pI|* + 20%€,
< (1=B)[[un = pII* + Bullxa — p|I* + 202,

(3.27)
< (1= B0) (It = 01 = lttn = xa]12) + Bl |0 = || + 21%€,
< lxn =02 = (1= Bu) l[ttn = xull* +20%€s,
and hence
1
it =50l < 55 (= 01 = e = 0]+ 20%, )
. (3.28)
<7 =5, { %0 = a1 | (|20 = 2| = [|2ns1 = ©I]) + uzen}.

Since {x,} is bounded, lim, _, €5 = 0, limy, — o |y = Xp41 | = 0, and A > sup, {161, llxx = pll},
it follows that

lim ||x, — u,|| = 0. (3.29)
n—oo

Next we will prove lim,, -, - ||, — Y|l = 0.

lttn =yl = | ONu, —u,
< ||ef;’un —0N Ty, | + | Ny, —eN2y, (3.30)
+--~+'®iun—@}lun +'9}lun—@2un + ||ty — |-
From (2.10), we obtain
nli_r)r;O”un -va| =0. (3.31)

In addition, according to ||x, — Y|l < ||xn — unll + ||ttn — Yull, we have

lim ||x, — ya|| = 0. (3.32)
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It follows from (3.25), (3.32), and the inequality ||y, — Suyall < |Yn — %2l + l1Xn — Snyxll that
limy, ||y — Snyall = 0. Since

1Sy = yull < [|SYn = Sutrul| + ||Suyn — ||

(3.33)
<sup{||Sz - Suzl : z € {yn}} + [|Snyn = yal|,
for all n € N, it follows that
tim [|Sy, — yall = 0. (3.34)

Step 5. We show w € (N2, Fix(Sn)) NMEP(Fy, F) N (NY, I(A;, My)).

Since {x,} is bounded, there exists a subsequence {x,,} of {x,} which converges
weakly to w. From (3.29), we obtain {u,,} which converges weakly to w. From (3.32), it
follows that y,, — w. We show w € MEP(F;, F,). According to (3.1) and (A2), we obtain

1
— (Y =ty U = Xn) 2 Fi (Y, 1) + P2y, 1), (3.35)

and hence

Up, — X,
<y — Uy, . > > Fi(y,un) + F2(y, un). (3.36)

ni

Since (up, — Xn,)/tn, — 0 and u,, — w, from (A4), it follows that 0 > Fi(y,w) + F2(y, w)
forally € H. Fort with0 <t < land y € H, let y; = ty + (1 - t)w, then we obtain
0 > F1(y:, w) + F2(y:, w). So, from (A1) and (A4) we have

0=Fi(yr, 1) + F2(ye, yr)
<tFi(y,y) + A -tFi (v, w) + tF2(ye,v) + (1 - ) Fa(yr, w) (3.37)
<Fi(yny) + B2(y, )

and hence 0 < F1(y:,y) + F2(yt, ). From (A3), we have 0 < Fi(w, y) + Fo(w, y) for all y € H.
Therefore, w € MEP(F, F»).

Next, we show w € ;2 Fix(Sn). Assume w € ;o Fix(Sy); then we have w # Sw. It
follows by the Opial’s condition and (3.34) that

lim inf||y, - w|| < lim inf||y, — Sw||

<lim inf{ ||y, - Sya| + || Syn - Seo|} (338)

< lim inf||y, - w||.

n—oo

This is a contradiction. Hence w € (;2; Fix(Sn).
We now show thatw € ﬂf\zjl I(Ai, M;). In fact, since A; is a;-inverse-strongly monotone,
A, i =1,2,...,N, is a 1/a;-Lipschitz continuous monotone mapping and D(A;) = H,
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i=1,2,...,N. It follows from Lemma 2.2 that M; + A;,i =1,2,..., N, is maximal monotone.
Let (p,g) € G(M; + Aj),i = 1,2,...,N, thatis, g - Ajp € (Myp), i = 1,2,...,N. Since
O,ﬁun = ]Mk;)lk,n (I - )Lk,nAk)@ﬁ_lun, we have @,’;_111" - )Lk,nAk@ﬁ_lun S (I + )Lk,an)(eﬁun),
that is,

1
-)Ln,k

(0% 1y — Ok, = AnuAOE ) € M (O ). (3.39)

By the maximal monotonicity of M; + A;i =1,2,..., N, we have

<p - @ﬁun,g - Axp - % (@ﬁ‘lun - @ﬁun - )Lk,nAk@ﬁ‘lun)> >0, (3.40)

which implies

1
(p-Oku,, g) > <p ~Ofu,, Arp + i <E—)fl’1un - 0ku, - )Lk/nAkG)fflun>>

1
= <p - @flun,Akp - Ak@ﬁun + Ak@’,‘,u,1 - Ak@ﬁ‘lun + 1 <@ﬁ‘1un - @ﬁun>>
kn

> 0+ (p - Ok, AOkuy — AOS M, ) + <p ~ Oy, —Al (0%, - Ofuy) >
k,n
(3.41)

for k € {1,2,...,N}. From (3.17), it follows lim,_[©ku, — ©1u,|| = 0, especially,
@,’jiuni — w. Since Ax, k =1,...,N, are Lipschitz continuous operators, we have ||Ak@’,‘1‘1un -
Ax©ku,|| — 0.So, from (3.41), we have

lim <p - @ﬁiuni,g> =(p-w,g)>0. (342)

Since Ax + My, k € {1,2,..., N} is maximal monotone, this implies that 0 € (M + Ax)(w),
ke ({1,2,...,N}, thatis, w € ﬂf\:jl I(A;, M;). So, we obtain result.

Step 6. We show that

limsup((B-yf)z,z—x,) <0, (3.43)

n— oo

where z = Po(I — B + yf)(2) is unique solution of the variational inequality (3.2).
To show this, we choose a subsequence {xy,} of {x,} such that

lim((B —yf)z,z—xp,) =limsup((B-yf)z, z - x,). (3.44)

n—oo

By the proof of Step 5, we obtain that

limsup((B-yf)z,z—x,) = ili_)&((B—yf)z,z—an =((B-yf)z,z-w) <0.  (3.45)

n—oo



16 Journal of Applied Mathematics

Step 7. We prove that x,, — w.
By using Lemmas 2.3 and 2.4, we have

%ne1 = w|* = || (1= Bu)T = €uB) (Suyn = @) + Pun = w) + €n(y f (xu) = Bw)||?
< [[((1 = )T = €B) (S = @) + Pl = ) || + 2€n(y f (x2) = B, X1 = w)
<10 = )T = aB) (Suyn = @) |I” + Pullcn -
+2e,(y f(xn) = f(w), Xps1 — W) + 2€,(y f (W) — Bw, Xp1 — w)

< ((1=Pu) = ) 1Suyn = @l + Pullxa ~ ol
+ 2epyallx, — wl|||xp — wl| + 2en(y f (W) — Bw, Xpi1 — w)

< ((1 - ﬂ") - €n?)”xn - (AJ||2 + ﬂn“xn - w“2
+ enya<||xn —w|]* + || xXpe1 — w||2> +2e,(y f(w) — Bw, xp11 — w)
< (1= (¥ = ya))llxn — w|* + enyallxni — w|* + 2€4(y f (w) = Bw, Xps1 - w).

(3.46)

It follows that

Y —ay)e, 2e
% ps1 — w]|* < <1 - %) I, — w)|)* + . o;;fe (yf(w) = Bw, xp41 — w). (3.47)

Now, from conditions (C1), (C2), and (C6), Step 6 and Lemma 2.8, we obtain lim,, _, .-||x, —
w|| = 0. Namely, x, — w in norm.

O

Corollary 3.2. Let H be a real Hilbert space, let F be a bifunction H x H — R satisfying (A1)—
(A4), and let { S, } be a sequence of nonexpansive mappingson H. Let A;: H — H, i=1,2,...,N
be a;- inverse-strongly monotone mappings and M; : H — 2H i =1,2,..., N, maximal monotone
mappings such that Q := (N2, Fix(S,)) N EP(F) N ("X, I(A;, M;)) #0. Let f be a contraction of
H into itself with a constant a € (0,1), and let B be a strongly positive bounded linear operator on H
with coefficient y > 0and 0 <y <y/a. Let {x,}, {yn}, and {u,} be sequences generated by x; € H
and

F(un,y) + %(y—un,un—xn> >0, Vy€H,
n

Yn = IMudn, (I = AN2AN) - I, (T = A Ar)uy,
Xn+l = ean(xn) +,6nxn + ((1 _ﬂn)I - €nB)Snyn/

(3.48)

forall n € N, where B, € (0,1)Ain € (0,2a;],i € {1,2,..., N}, satisfy (H1)-(H2) and {e,} C [0,1],
and {r,} C (0, 00) satisfy

(C1) limy —, oen = 0;

(CZ) Zf:l €p = 00,

(C3) Z:ﬁ:l |€ns1 — €l < o0;
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(C4) lim inf, _, 1, > 0;
(C5) 3oy [Tns1 = 1l < 00
(C6) limy,—, o, = 0.

Suppose that > 771 sup{||Sns1z — Spz|| : z € K} < oo for any bounded subset K of H. Let S be a
mapping of H into itself defined by Sx = lim,_,Syx, for all x € H, and suppose that Fi,(S) =
M1 Fix(Sn). Then, {x,}, {yn}, and {u,} converge strongly to z, where z = Po(I - B +yf)(z) isa
unique solution of the variational inequality

(B-yf)z,z-x)<0 xeQ. (3.49)
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