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In this study, a gene positive network is proposed based on a weighted undirected graph, where
the weight represents the positive correlation of the genes. A Pearson agglomerative clustering
algorithm is employed to build a clustering tree, where dotted lines cut the tree from bottom to
top leading to a number of subsets of the modules. In order to achieve better module partitions,
the Pearson correlation coefficient modularity is addressed to seek optimal module decomposition
by selecting an optimal threshold value. For the liver cancer gene network under study, we obtain
a strong threshold value at 0.67302, and a very strong correlation threshold at 0.80086. On the
basis of these threshold values, fourteen strong modules and thirteen very strong modules are
obtained respectively. A certain degree of correspondence between the two types of modules is
addressed as well. Finally, the biological significance of the two types of modules is analyzed and
explained, which shows that these modules are closely related to the proliferation and metastasis
of liver cancer. This discovery of the new modules may provide new clues and ideas for liver
cancer treatment.

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world.
Most of the liver cancer patients are in advanced states when they are firstly clinically
diagnosed, which leads to poor treatment and high mortality. It is known that the nature
of liver cancer is abnormal expression of genes caused by a variety of reasons. There are
a lot of modules in a cell, and these modules work together to implement a function of
the cell. The functional modules are composed of genes which are similar to each other
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in physiological or functional aspects. When the gene functional modules receive impacts,
they may lead to disease [1]. Microarray data are the results of many gene expressions,
which consist in the information of the gene function modules [2]. There is a very important
biological significance to identify gene functional modules in terms of a large-scale gene
expression profiling. Cancer gene therapy has become a new treatment method following
surgical resection, radiotherapy and chemotherapy, and interventional therapy. For instance,
the recently discovered adeno-associated virus AAV3 may be useful for attacking human
liver cancers.

The gene network is a complex dynamic system. Therefore, the process of finding gene
modules is actually a process of discovering community structure from a complex network.
The correlation between genes may be strong or weak, leading to a variant of collections of
genes. Clearly, a strong community of a collection of related genes is what we are looking
for. Currently, there are a number of community discovery methods of complex networks
such as GN-splitting algorithm [3] and NEWSMAN cohesion algorithm [4], both of them
use graphs without weights. In order to reflect the size of the gene intensity, it motivates
us to use graphs with weights. It is worthy to mentions that Pearson values can be used
to measure the correlation between genes. As Pearson values may be positive or negative,
the absolute of Pearson was used to express the weights in [5] so that the intensity of
correlation was obtained. Unfortunately, the positive correlation (mutual promotion) and
negative correlation (mutual inhibition)were not considered in the method [5]. The genes in
functional modules are a collaboration which may have mutually reinforcing relationships.
Therefore it motivates us to use the Pearson values greater than 0 as the weights to reflect the
concerned positive correlations of genes.

In this study, we are looking for the genes with similar function; therefore we will
use an undirected weighted graph to describe gene network relationship. To the best of our
knowledge, the present functions of modules are mainly for gene network graphs without
weights, for example, Q function [6], which are invalid for our weighed graphs. Motivated
by this, we design a PCC modularity algorithm to measure the performance of the modular
decomposition.

According to experiments, if the module decomposition is optimized without
considering the size of the threshold, it may lead to the obtained decompositions make no
practical sense. In order to overcome this drawback, we propose amodified algorithm, that is,
interval PCC modularity (IPM). For instance, in order to obtain a set of very strong modules,
we preset the threshold range at the interval [0.8, 1], and we can find a maximummodularity
in the interval.

2. Construction of the GPN Network

2.1. Definition of Network and Storage

A connection matrix C is used to store gene community networks (GCN), whose element is
cij , defined by

cij =

{
pij i > j

0 i ≤ j,
(2.1)

where pij is the Pearson correlation coefficient of the nodes i and j, and pij ∈ [−1, 1].
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Figure 1: A GPN network: GPN10.

Remark 2.1. (1) pij = 0 indicates there is not linear relationship between two genes.
(2) pij > 0 implies a positive correlation between genes. Particularly when pij = 1, it

indicates a completely positive correlation between genes.
(3) pij < 0 means a negative correlation between genes, and pij = −1 represents a

completely negative correlation between genes.

Therefore from (2.1), one has cij ∈ [−1, 1]. When cij = 0 there is no edge between nodes
i and j.

The connection matrix is a lower triangular matrix, which stores an undirected
weighted graph. It is noticed that no closed loops and no two-directional sides exist in the
graph. This matrix is named as Pearson connection matrix (PCM).

2.2. The Type of the Network

The GCN networks can be divided into three kinds.

(1) Gene positive network (GPN): extract a network from the GCN where the values
of all the edges in the network are greater than 0.

(2) Gene negative network (GNN): remove the edges with the weights greater than 0
to form a network.

(3) Gene absolute network (GAN): the weights of the edges are taken as the absolute
values of the GCN network.

Genes in a module should reinforce mutually, which means the Pearson value of genes
should be greater than 0. As a result, the GPN network will be used in this study, which is
defined as follows:

cij =

{
pij i > j, pij ∈ (0, 1]
0 i ≤ j.

(2.2)

A GPN network of 10 genes is depicted by Figure 1.
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Figure 2: The PAM clustering tree of GNP10.

3. Pearson Agglomerative Method (PAM)

3.1. The Basic Idea of the PAM Algorithm

Hierarchical clustering is a conventional method to find a social network community
structure, which can be classified into two types [7]: agglomerative method and divisive
method. The main principle of the PAM proposed here is to first calculate the functional
similarity between nodes using the Pearsonmethod. Then to add new edges to a raw network
composed of n nodes and 0 edge starting from the node pairs with the most similarity. This
process is repeated and may end in any node. This procedure from an empty graph to form
a resulting graph can be described by Figure 2. In this figure, x-axis is the node and y-axis is
the distance between nodes. We call this tree structure as PAM Clustering tree.

The distance of the genes is defined by [8]

dij =
√
1 − cij , cij ∈ [0, 1]. (3.1)

The larger the distance is, the relationship between genes become farther and vice
versa. In our GPN, the weights are positives. Therefore the definition (3.1) can be used to
measure disturbances of genes in this study.

In Figure 2, when the dashed line moves up from the bottom of the tree gradually, the
variant nodes can be integrated into a greater community. The whole network becomes one
community as the dashed line move up to the top. The tree structure corresponds to different
community structure when it is cutoff from any location using dashed line.

If the red dotted line is placed at 0.775, we can obtain five modules as follows: {G5,
G6, G7}, {G1, G3, G4}, {G2}, {G8, G9}, and {G10}.

3.2. Algorithm Implementation

In terms of the definition of the distance matrix D = [dij], the PAM algorithm can be
addressed in the following steps.

(1) Initialize the network with n communities, where every node is a unique
community.
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(2) Calculate the minimum distance using Dijkstra algorithm [9], and then combine
the minimum distance node pairs.

(3) Repeat step 2 until the whole network is merged to one community. The maximum
execution times are n − 1.

We call this tree structure as “PAM clustering tree”.

4. PCC Modularity Assessments

Similar to the GN algorithm [3] and other decomposition methods, the PAM algorithm
cannot determine what kind of decomposition is optimal. It is of significance to value the
performance of the decompositions. In [6], the modularity Q function was used to measure
the quality of network partitioning. Unfortunately, for communities with big differences, the
Q function is not ideal to assess the performance of module partitioning [9]. For the weighted
networks, we introduce a standard function to measure the quality of network partitioning,
namely, the PCC module function.

Here, the network is assumed to be divided intoN modules: C1, C2, . . . , CN .

4.1. Cohesion (Coh)

Cohesion (Coh) is the measure of the relevance of the internal nodes in a module. For a
module with n nodes, the maximum edges are (n(n − 1))/2 and the maximum weight of the
edge is 1. We use the ownership of the internal value which is divided by (n(n − 1))/2 to
represent the cohesion, described by

Coh(Ci) =

⎧⎨
⎩

I(Ci)
ni(ni − 1)/2

ni > 1

1, ni = 1,
(4.1)

where Ci is the ith module; ni is the number of nodes of the module; I(Ci) is the sum of the
ownership values in the module, expressed as I(Ci) =

∑mi

k=1 wk, where mi is the number of
edges in the module and wk is the weight for the kth edge. The weights are not greater than
1, so I(Ci) ≤ mi. If the module has only one node, its cohesion is defined as 1.

4.2. Coupling (Cou)

The coupling (Cou) is a measure of the degree of association between modules, defined by

Cou(Ci) =

⎧⎨
⎩

O(Ci)
I(Ci) +O(Ci)

, ni > 1

1, ni = 1,
(4.2)

where O(Ci) is the sum of the weights of external edges connected to the module, expressed
as O(Ci) =

∑si
r=1 wr , in which si is the number of external edges connected to the module,

and wr is the weight of the rth edge. If the module has only one node, its coupling is defined
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as 1. When 1/2 < Cou(Ci) < 1, it is equivalent to I(Ci) < O(Ci), which indicates the internal
strength of the module is less than the external strength, and the division of this module is
generally unreasonable.

Equation (4.2) reflects the dependence of a module to the other. The lower is the
coupling, the higher is the independence of the modules.

4.3. PCC Modularity

It is evident that the model partition needs high cohesion and low coupling. The formula
Coh(Ci)[1 − Cou(Ci)] can be used to describe the tightness of connection within the
community Ci and reflect the independence of the community. Thus, the new modularity
is defined as

PCC(Ci) = Coh(Ci)[1 − Cou(Ci)] (4.3)

The PCC can be understood as “Pearson”, “Cohesion”, and “Coupling”. Substitution
(4.1) and (4.2) into (4.3) yields:

PCC(Ci) =

⎧⎪⎨
⎪⎩

2I(Ci)2

ni(ni − 1)[I(Ci) +O(Ci)]
, ni > 1

0, ni = 1.
(4.4)

If a module has only one node, it is called outlier module, whose PCC is 0.
The average of all the modules of PCC is used to measure the division of the entire

network, which is defined as

PCC(C1, C2, . . . , CN) =
∑N

i=1 PCC(Ci)
N

, (4.5)

whereN denotes the number of modules. When the number of nonisolated point modules is
R, the number of outlier modules is N − R. Since the PCC value of outlier module is 0, (4.5)
can be rewritten as

PCC(C1, C2, . . . , CN) =
∑R

i=1 PCC(Ci)
N

. (4.6)

In other words, the network is divided into N modules. Since the PCC value of each
module is not greater than 1, one thus has PCC(C1, C2, . . . , CN) ≤ R/N.

5. The Relationship of Threshold and Modularity

5.1. One-to-One Map of Threshold to Modularity

From Figure 2, when the dotted line is set as D = 0.775, the network can be divided into five
modules. In terms of (3.1), the threshold can be calculated as T =

√
1 −D2 = 0.41. Removing

the edges whose PCC values are less than 0.41, Figure 1 can be transformed into Figure 3.
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Figure 3: The decomposition of the network GPN10 by using T = 0.41.

Table 1: The relationships among T, PCC, and N.

T 0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
N 2 3 4 5 6 7 8 9 10
PCC 0.07 0.24 0.18 0.22 0.19 0.13 0.05 0.04 0

As a result, when the threshold is T = 0.41, the network GPN10 in Figure 1 is divided
into five modules: {G5, G6, G7}, {G1, G3, G4,}, {G2}, {G8, G9}, and {G10}. This partition is
the same as Figure 2.

Rather than building PAM-tree to divide the modules, we can decompose the network
by using threshold value. A modular decomposition corresponds to a module function;
therefore a threshold only has a corresponding module function.

For instance, by setting different thresholds, we can obtain the resulting decomposi-
tions (see Table 1), and each module corresponds to the modularity of a PCC. Under the
same modularity premise, in order to ensure internal correlation of each module stronger, we
choose a larger threshold.

Based on the decomposition of the network GPN10, Table 1 reflects the relationships
among “T”, “PCC”, and “N”, where “T” is threshold, “PCC” is PCC modularity, and “N” is
the number of modules.

As each threshold corresponds to one decomposition, each threshold corresponds to
one modularity as well. From Figure 4, when the threshold T = 0.2, the decomposition of
the network GPN10 is optimal. In this case, the network GPN10 is broken down into three
modules: {G1, G2, G3, G4, G5, G6, G7}, {G8, G9}, and {G10}.

5.2. The Definition of Interval PCC Modularity (IPM)

The absolute value of correlation coefficient is greater and the correlation is stronger. The
correlation coefficient is close to 1 or −1, the correlation is very strong. The correlation
coefficient is close to 0, the correlation is weak.

Generally, we judge the intensity of two variables by the range of correlation
coefficients (see Table 2).

According to Table 2, we define five different ranges of modularity.

(1) Modularity of very weak correlation: PCC(T), T ∈ [0.0, 0.2).

(2) Modularity of weak correlation: PCC(T), T ∈ [0.2, 0.4).



8 Journal of Applied Mathematics

PAM
clusting
tree

PC
C

0.25

0.2

0.15

0.1

0.05

0
0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10
9
8

7
6
5

4
3

2

1

= 0.2,
= 3,

PCC = 0.24

= 0.4,

= 5,

PCC = 0.22

TT
N N

PCC-T curve

T
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Table 2: The intensity of Pearson correlation coefficient.

Correlation
coefficient

0.8–1.0 Very strong correlation
0.6–0.8 Strong correlation
0.4–0.6 Moderate correlation
0.2–0.4 Weak correlation
0.0–0.2 Very weak or no correlation

(3) Modularity of moderate correlation: PCC(T), T ∈ [0.4, 0.6).

(4) Modularity of strong correlation: PCC(T), T ∈ [0.6, 0.8).

(5) Modularity of very strong correlation: PCC(T), T ∈ [0.8, 1.0].

Generally, we find a strong correlation or strong related modules by using (4.1) and
(4.2).

6. Results

6.1. Obtain the HCC Gene Modules

The liver cancer microarray data is taken from Chen et al. [10], which is available at
http://genome-www.stanford.edu/hcc/supplement.shtml. The 1648 genes are differentially
expression in HCC and nontumor liver in 156 liver tissues (74 nontumor liver and 82 HCC).
We only study the gene expression of HCC. The Missing values are replaced by the average
of the gene expression data under corresponding data column or sequence.

We build the GPN network of 1648 HCC genes. Next we, respectively, test the PCC
value in the threshold interval [0.8, 1] and [0.6, 0.8). According to the maximum of PCC
value, GPN network is, respectively, divided into the HCC very strong correlation modules
and the HCC strong correlation modules.
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Figure 6: The decomposition diagram of HCC GPN network when the threshold T = 0.80086.

6.1.1. Very Strong Correlation Modules (VSCM) of HCC

In the threshold interval [0.8, 1], the PCC curve is given by Figure 5, which shows that the
PCC is downtrend. Within the threshold interval [0.8, 1], as the threshold is greater, the
modular decomposition is getting worse. When the threshold is between 0.8 and 0.80086,
the modularity PCC values are equal. In order to make the module correlation coefficient
greater, we choose the threshold T = 0.80086. In this case, the modularity PCC = 0.0441.

In Figure 6, when the threshold T = 0.80086, the network is broken down into 1360
modules, including 150 nonisolated point module. According to formula (4.6), the PCC <
150/1360 = 0.1103.

In Figure 7, there are 13 modules and 121 genes in total, where each module is not less
than five nodes. The modules numbered and arranged according to gene-related strengths
from strong to weak. In order to distinguish the Very Strong Correlation Modules (VSCM)
from the strong correlation modules (SCM), we mark VSCM and SCM with “S” and “W”
respectively, which means “strong” and “weak”.

In Table 3, “NO” is the abbreviation for “No Gene information” and “Trans” means
“Transcribed locus”. The number of genes is given in the bracket, for example, SERPINA5(5)
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Table 3: Thirteen gene modules of HCC very strong correlation modules (VSCM).

Module Number The detailed genes of each module

S1 5 SERPINA5 5 , LOC100507281

S2 18 WNT4, SLU7, CSF2RA, IGKC 3 , NCF1, EPB72, IGHG3, Trans, IGL 5 , TNFSF10,
NAPA, CSF2

S3 21 NO 11 , Trans 7 , C2orf55, SLC35E1, TRIOBP
S4 6 Trans, ZFP92 2 , TAGLN 2 , AEBP1
S5 5 C1R 2 , C1S 2 , FGA
S6 6 CKAP2, AQP4, HAMP, Transcribed locus 3

S7 18 LRRC8C, EDNRA, BIRC5, MT1B 2 , Trans, AGXT, MT1H, MT1G, MT1F 2 , MT1E,
MT1L, NO, LARP4 3 , DLG4

S8 5 NO, Trans, RS10 2 , CDNA
S9 6 GRN, C19orf6, RAD23A, ZNF451, RER1, ABCF1
S10 5 TUBA2, TUBA1 2 , TUBA3, Trans

S11 13 PLK, TROAP, Trans, CENPM, MYBL2, PTTG1, NUSAP1, CDC20, FOXM1, UBE2C,
CDC2, KIAA0101, IFIT1

S12 8 RPS20 2 , EIF3S6 2 , NO 2 , RPL30, Trans
S13 5 SPARC 2 , THY1 2 , COL4A2

means that there are five SERPINA5 genes. Green denotes the genes in the module with low
expression and red indicates the genes with high expression.

6.1.2. Strong Correlation Modules (SCM) of HCC

In the threshold interval (0.6, 0.8], we obtain strong modularity PCC curve as found in
Figure 8.

When T = 0.67302, the optimal PCC is 0.0687. In this case, the HCC GPN network is
divided into N = 955 modules (see Figure 9) and the number of the nonisolated modules is
R = 164. By the formula (4.6), we can get that the PCC < 164/955 = 0.172.

We selected the modules with more than five nodes and arranged according to the
order of strength from strong to weak order as follows (see Figure 10).

In Figure 10, there are 14 modules and 505 nodes in total. The modules with fewer
nodes are W1, W6, W8, W12, W13, and W14. The modules containing a large number of
nodes are W11, W4, W3, W2, W5, and W7.

In Table 4, there are 14 strong modules in total, involving 504 genes. The number of
gene duplication is marked in brackets. Red means the gene is highly expressed in HCC and
green indicates genes in low expression. The genes in W3 have both high expression and low
expression, therefore it is not colored.
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Figure 9: When the threshold T = 0.67302, the network is broken down into 955 modules in which there
are 164 nonisolated point modules.

Generally, HCC strong correlation modules (SCMs) may include the genes of HCC
with very strong correlation modules (VSCMs). In Table 4, blue bolds mark genes which
appeared in the VSCMs. This kind of inclusion relations are shown in Table 5.

Table 5 shows the inclusion relationship of the VSCM and the SCMs. The table can also
be described as W5 ≥ S3; W7 ≥ S7; W2 ≥ B2; W11 ≥ S11 + S12 + S10 + S8; W10 ≥ S6; W13 ≥ S9;
W1 = S1; W3 ≥ S4 + S13; W4 ≥ S5.

6.2. Biological Explanation of the HCC Gene Modules

The biological explanation of the HCC gene modules, if not otherwise specified, all refers
to the Stanford gene database: http://smd.stanford.edu/cgi-bin/source/sourceSearch. As
there are too many genes, we only provide the biological explanation for the important genes
in the each module. According to the major functions of the genes in every group, we name
each module.
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Table 4: Fourteen gene modules of HCC strong correlation modules (SCM).

Module Number The detailed genes of each module

W1 5 SERPINA5 5 , LOC100507281

W2 29
WNT4, SLU7, CSF2RA, IGKC 3 , NCF1, EPB72, IGHG3, Trans, IGL 5 , TNFSF10,
NAPA, CSF2, CD69, TF, NO, PSMF1, EDR2, HNT, KLRK1, SYT6, ID4, HCLS1,
CD53

W3 40

Trans, ZFP92 2 , TAGLN 2 , AEBP1, SPARC 2 , THY1 2 , COL4A2, ID3, COL6A1,
FGF12B, TMEM204, MYO10, CSNK2B, PDGFRA, SVEP1, SVEP1, SRPX,
CRISPLD2, RBMS3, PYGM, MFAP4, COL6A2, PODN, LAMA2, NGFR, NRG2,
CYR61, SLC15A2, SCYA2, TSPYL1, ID4, CRHBP, THY1, NOTCH3, COL15A1,
LOXL2

W4 123

CPS1, ZNF248, HRSP12, PCBD1, ALDOB 2 , ENC1, APOC3 2 , PAH, CD302,
POR, Trans 7 , SERPING1 2 , IVD, APOH, SCYA14, PBP, SORD, EVX1, UGP2 2 ,
C21ORF4, GALE, HSD17B6, CYP2A7, MST1 2 , APOA1, C1R 2 , C1S 2 , FGA,
C1RL, PROML1, LRRN3, LANCL1, ACOX1, CYP2C, BDH1, PIPOX, MPDZ,
HSD11B1, RGN, PCK1, CHD9, ACAA2 2 , FACL2, PON3 2 , D4S234E, AZGP,
RNAC 2 , ADH6 2 , ADH4 2 , ADH2, APOC4, SLC27A5, MMSDH 3 , PCK2,
CPB2 2 , CPN2, DEPDC7, CYP4V2, LY9, GRHPR, AMDHD1 2 , ACADSB,
ST3GAL6, SPRYD4, CYB5, ADI1, NO 4 , QDPR, PLG, CYP27A1, GYS2, CTH,
SHMT, ARHB 2 , OGDHL, ACY1, APCS, PXMP2, EDNRB, C14orf45 2 , SCP2 2 ,
DHTKD1, KNG, ALAS1, MARC2, SULT2A1, CYP2J2, CTSO, SOD1, MYO1B 2 ,
SYBU, PVRL3, PDK, KIAA0317

W5 25 NO 13 , Trans 9 , C2orf55, SLC35E1, TRIOBP, L3MBTL4
W6 6 PTMS, SDHAP1, RBP5 2 , IKBKAP, HAAO

W7 22 LRRC8C, EDNRA, BIRC5, MT1B 2 , Trans 2 , AGXT, MT1H, MT1G 2 , MT1F 2 ,
MT1E, MT1L, NO, LARP4 3 , DLG4, CDK5, TFG

W8 5 AFF4, NUFIP2, LEAP2 3
W9 9 SERPINA3, FGB 4 , Trans, FGA, FGG, CFI
W10 8 CKAP2, AQP4, HAMP, Trans 4 , LOC257396

W11 212

EIF4B, RB1CC1 3 , MTF2, MAL2, MAL2, CDNA 2 , HMG17, CSNK2B, CUTA,
ASAP1 2 , RCC2, LMNB2, MAPK13, HJURP, SMC4, CMTM1, NO 6 , SEMG2,
14ORF4, RPS10 3 , Trans 6 , RPS16, KLK3, HBG1, RPLP0, RPS5, RPS19, CPNE1,
ETV1, TUBB 2 , WNK1, RTN3, C1orf43, PAX8, FAM83H, TUBG2, TUBG1,
TSEN54, UBE2M, TRIM28, SNRPB, HGS, STARD3, GPS1, CLPTM1, ARF3,
ASNA1, TAF2E, USP5, SHC1, VARS2, ASF1B, PKMYT1, SERPINB3, E2F1, NLRP2,
H2AFX, MLF1IP, ILF3 2 , C1orf9, NAP1L1, SCNM1, LAPTM4B 2 , TOP2A, HN1,
TUBA2, TUBA1 2 , TUBA3, BUB1, HSU, CKS1, CBX1, SLC1A4, KPNA2, EIF4A2,
TMEM106C, EHMT2, SF3B4, SCAMP3, FLAD1, TCFL1, UBAP2L, PRCC, UBE2Q1,
HTCD37, SNX27 3 , PYGO2, FAM189B, NCSTN, RPRD2, USP21, MCM4,
SNHG10, GMNN 2 , PLK, TROAP, CENPM, MYBL2, CENPW, TPX2, ZNF261,
ZWINT, LAP18, PTTG1, NUSAP1, CDC20, FOXM1, UBE2C, CDC2, MAD2L1,
KIAA0101, CDKN3 2 , RRM2 2 , IFIT1 2 , FAM72B 2 , CEP55 3 , KNSL5 2 ,
NUDT1 2 , TRIP13, MCM5 2 , NRM, CDK4, KIAA1522, RDBP, PEA15, NPM1,
UBR5, MRPL42 2 , XPOT 2 , MZT1, ACLY, PAPPA, ILF2 2 , TCEB1, ASPH,
ATP6V1H, YWHAZ 3 , ZNF706, RPS20 2 , EIF3S6 2 , RPL30, RAD21, BIG1,
MTDH, POLR2K, ARMC1 3 , COPS5, CANX, KIAA0196, PTK2, TCEA1,
NSMCE2, ZHX1, UQCRB, NBS1, FAM49B, DEK, UBA2, TIMP1, PSPH, LAMB1,
SRXN1, PIR, TACC3, MCM3, DR1, CDC7, MCM6, RASSF3, POLA, YKT6

W12 7 TIGD5, MAF1, PUF60, CYC1, SHARPIN, GPAA1, Trans
W13 6 GRN, C19orf6, RAD23A, ZNF451, RER1, ABCF1
W14 7 HIST1H2AC, HIST1H2BK, HIST1H2BC, HIST2H2BE 2 , CPS1, Trans
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Figure 10: Fourteen gene modules of HCC strong correlation modules with no less than five nodes.

Table 5: The inclusion relationship of the VSCM and the SCMs.

SCM W5 W7 W2 W11 W10 W13 W1 W3 W4
VSCM S3 S7 S2 S11 S12 S10 S8 S6 S9 S1 S4 S13 S5

6.2.1. Comparison with Other Results

In this section, we will show the comparison of our results with the experimental results of
Chen et al. [10] and Yan et al. [1].

The module S2 (orW2) agrees with the module D in Chen et al. [10] and the module C
in Yan et al. [1], which is in relation to B lymphocytes. The disorder of B-cell immune function
has a lot to do with liver cancer.

The module S4 agrees with the module E in Chen et al. [10], which is stroma cell
module. The function of the module S13 relates to the endothelial cell, and the module G in
Chen et al. [10] has the similar capability.

The module W3 contains the genes both from the module S4 and S13. Since S4 genes
means stroma cells, while the S13 genes are all located in the stroma, the module W4 is a
generalized stroma cell module. The W4 functions as the module D given by Yan et al. [1].
In the HCC, the genes of S4 are in lower level expression, while the expression level of S13
is higher. The module W3 not only contains the highly expressed genes, but also includes
the gene with low expression. From this viewpoint, the model W3 is different from any other
modules.

The module S5 (or W4) functions as the module K by Yan et al. [1], whose function is
about complement. Bacterial infection of the liver cells may be related to genetic disorders of
the complement component module.

The module S10 is consistent with the module J by Yan et al. [1], in which the main
genes are about the tubulins α1, α2, and α3. Tubulin abnormalities have impacts on the
occurrence and development of liver cancer.

The genes of module S11 all appear in the module A given by Chen et al. [10]. The
function of the module is also identical to the feature of the module A from Yan et al. [1],
which is related to the cell cycle and proliferation of cancer cells.
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Figure 11: The gene network of module S1.

The genes in themodule S12 are about ribosomal proteins, which functions as the same
as in the module G in the reference by Yan et al. [1]. Ribosomal protein dysfunction may be
related with liver cancer.

The function of module W11 is consistent with the module A given by Chen et al. [10],
whose function is about cell proliferation. It is noted that the proliferation module A from
Chen et al. [10] does not include S8, S10, and S12. In fact, tumor cell proliferation not only
relates to cell cycle, but also relates to ribosomes, and tubulin. Because ribosomal synthesis
protein and microtubule protein involves in mitosis, both of the two process are essential in
cell proliferation.

The module W14 of histone is consistent with the module I from Yan et al. [1]. The
occurrence of liver cancer may be associated with abnormal expression of the histone.

We have found that twelve gene modules such as S2, S4, S13, S5, S10, S11, S12, W2,
W3, W4, W11, and W14 have specific functions and are largely in line with the gene clusters
found by Yan et al. [1] or Chen et al. [10]. It has proven that the PAM algorithm and the PCC
modularity can effectively discover gene function modules.

6.2.2. The Specific Modules of VSCM

In this subsection, we will focus on the modules only existing in this study. The specific
modules of VSCM are S1, S3, S6, S7, S8, and S9, in which only S8, S9 are highly expressed.

(1) Hemostasis Module S1

In Figure 11, the key gene of the module S1 is SERPINA5, which plays the hemostatic role in
the blood plasma. Additionally, SERPINA5 is able to inhibit the migration of HCC cells. The
low expression of SERPINA5 genes probably promotes the occurrence and development of
HCC.

(2) Transport Module S3

In Figure 12, NOmeans no gene information and trans represents Transcribed locus. TROPBP
and SLC35E1 are the key genes in S3. TRIOB is closely related to HCC [11]. Moreover,
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Figure 12: The gene network of module S3.
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Figure 13: The gene network of module S16.

the transport function of the solute carrier SLC35E1 is related to cancer [12]. Therefore the
module should be responsible for transport in hepatoma cells.

(3) Iron Regulation Module S6

The key genes in Figure 13 are CHAP2, AQP4, and HAMP. CKAP2 is a cytoskeleton-
associated protein involved inmitotic progression. AQP4 encodes amember of the aquaporin
family of intrinsic membrane proteins. Decrease in aquaporin expression [13]may lead to the
increase of the resistance to apoptosis in hepatocellular carcinoma. The product encoded by
this gene HAMP is involved in the maintenance of iron homeostasis. This module relates to
the regulation of the iron.
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Figure 14: The gene network of module S7.

(4) Metalloproteins Module S7 (see Figure 14)

The genes in this module are most from the metalloproteins (MTs) family, such as MT1B
and MT1G. MTs play a key role in the transport of essential heavy metals, detoxification of
toxic metals, and protection of cells against oxidation stress. The increasing of the MTs levels
in cancer cells are probably related to their increased proliferation and protection against
apoptosis [14].

(5) Antiterminator Module S8

From Figure 15, RPS10 (ribosomal protein S10) are the most important genes in this module.
RPS10 (as known as NusE) reflects another function [15]which is different from the ribosome
module S12. Ribosomal S10 relates to liver cancer [16], and RPS10 play an antitermination
role in the transcription process [17]. Therefore, ribosomal S10 may be the antitermination
factor for liver cancer.

(6) Immortal Module S9 (see Figure 16)

This module is the most important module of all modules, where any two genes are strongly
correlated. For each gene function, we can conclude as follows.

(1) GRN are a potent growth factor, which can promote the excessive proliferation of
tumor cells.

(2) C19orf6 (also known as membralin) relates NMDAR1 receptor activity, which
promotes tumor to differentiation and invasion and metastasis.

(3) RAD23A involves in negative regulation of HIV-1 replication, and VPR prevents
cell division. Therefore RAD23A with high expression is to promote tumor cell
division.
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Figure 15: The gene network of module S8.
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Figure 16: The gene network of module S9.

(4) ZNF451 may negatively regulate the steroid hormone receptor coactivator of
transcription factor (Src), where Src protein plays an important role in the
proliferation of hepatoma cells during apoptosis.

(5) The protein encoded by RER1 is a multipass membrane protein, which facilitates
gamma-secretase complex assembly.

(6) The protein encoded by ABCF1 is a member of the superfamily of ATP-binding
cassette (ABC) transporters. This protein may be regulated by tumor necrosis
factor-alpha and play a role in enhancement of protein synthesis and the
inflammation process. The gene overexpression in HCC will reduce the efficiency
of drug treatment.

Summing up the narrative, the module may be the secret of liver cancer cells
“immortal”.
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Figure 17: The gene network of module W6.

6.2.3. The Specific Modules of SCM

The specific modules of SCM are W6, W8, W9, and W12, in which only W12 is highly
expressed.

(1) Antigrowth Inhibition Module W6

From Figure 17, one can see that the important genes of this module are HAAO, SDHAP1,
and RBP5. Specifically, the quinolinic acid, which is the resulting product of HAAO, inhibits
the growth of hepatoma cells. SDHAP1 is a marker enzyme of mitochondrial, which provides
electron to respiratory chain. Retinoic acid that produced by RBP5 after the second oxidation
can inhibit the growth of hepatoma cells.

As a result, the low expression of the genes in this module is to cut off the aerobic
capacity of the respiratory chain of electronic sources, making the oxidation products inhibit
the growth of cancer cells to be synthesized. Therefore, this module is named as antigrowth
inhibitory module.

(2) Antimicrobial Peptides Module W8

In Figure 18, LEAP2 (liver expressed antimicrobial peptide 2) is the most important genes of
the module W8, which has antibacterial activity.

(3) Fibrinogen Module W9 (see Figure 19)

There are nine fibrinogen (FIB) genes in module W9, such as FGA, FGB, and FGG. FIB is
a glycoprotein synthesized by the liver and plays an important physiological role in the
coagulation process. It is worthy to point out that the FIB increases in early stage, but
decreases in advanced liver cancer [18]. This module is a low expression; therefore the data
should be from advanced liver cancer.

(4) Antiapoptotic Module W12

From Figure 20, the most important three genes in the module W12 are SHARPIN, CYC1
and PUF60. SHARPIN interferes with TNF-induced cell death [19], CYC1 access to electrons
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Figure 18: The gene network of module W8.
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Figure 19: The gene network of module W9.

for respiratory chain, and PUF60 may increase a greater degree of apoptosis resistance of
cancer cells. This module provides electrons of respiratory chain to smoothly synthesis anti-
apoptotic protein; therefore this module plays the role of antiapoptotic.

7. Conclusions

By using the Pearson agglomerativemethod (PAM) and Pearson correlation coefficient (PCC)
modularity, we have investigated the modules decompositions and the decompositions
valuations for liver cancer genes. By using the data from Chen et al. [10], and the proposed
methods in this study, we have obtained 13 very strong correlation modules and 14 strong
correlation modules. In addition to some common modules, we have found a number of new
functional modules.

Coagulation modules are the hemostatic module S1 and fibrin module W9. It is noted
that the fibrinogen will be a huge increase in the early liver cancer, but in advanced liver
cancer, the fiber protein content would be down to a level slightly lower than normal.
Fibrinogen can be used as one of the detection of early stage liver cancer.
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Figure 20: The gene network of module W12.

With respect to the reasons of the cancer cells unlimited reproduction, we have found
antiterminatemodule S8, diemodule S9, antigrowth inhibitionmoduleW6, and antiapoptotic
module W12. In which only W6 is in a low expression, and the others are highly expressed.
One of the most modules is the immortal module S9, which may be the command center of
unlimited reproduction of the entire tumor.

There are two modules associated with the metals. Iron regulation module S6 and
metalloproteins module S7. These two modules are in low expression, but their functions are
very different. (1)Module S6 is to increase the iron content, making more iron ions combined
with more oxygen, and provide a steady stream of energy for the proliferation andmetastasis
of liver cancer. (2) Metalloproteins in module S7 relates to tumor differentiation, and the
content of which is low in liver cancer.
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