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Abstract. 
We introduce a new iterative scheme with Meir-Keeler contractions for an asymptotically nonexpansive mapping in 
	
		
			

				𝑞
			

		
	
-uniformly smooth and strictly convex Banach spaces. We also proved the strong convergence theorems of implicit and explicit schemes. The results obtained in this paper extend and improve many recent ones announced by many others.


1. Introduction
Let 
	
		
			

				𝐸
			

		
	
 be a real Banach space. With 
	
		
			
				𝐽
				∶
				𝐸
				→
				2
			

			

				𝐸
			

			

				∗
			

		
	
, we denote the normalized duality mapping given by
						
	
 		
 			
				(
				1
				.
				1
				)
			
 		
	

	
		
			
				
				𝐽
				(
				𝑥
				)
				=
				𝑓
				∈
				𝐸
			

			

				∗
			

			
				∶
				⟨
				𝑥
				,
				𝑓
				⟩
				=
				‖
				𝑥
				‖
			

			

				2
			

			
				
				,
				,
				‖
				𝑓
				‖
				=
				‖
				𝑥
				‖
			

		
	

					where 
	
		
			
				⟨
				⋅
				,
				⋅
				⟩
			

		
	
 denotes the generalized duality pairing and 
	
		
			

				𝐸
			

			

				∗
			

		
	
 the dual space of 
	
		
			

				𝐸
			

		
	
. In the sequel we will donate single-valued duality mappings by 
	
		
			

				𝑗
			

		
	
. Given 
	
		
			
				𝑞
				>
				1
			

		
	
, by 
	
		
			

				𝐽
			

			

				𝑞
			

		
	
 we will denote the generalized duality mapping given by
						
	
 		
 			
				(
				1
				.
				2
				)
			
 		
	

	
		
			

				𝐽
			

			

				𝑞
			

			
				
				(
				𝑥
				)
				=
				𝑓
				∈
				𝐸
			

			

				∗
			

			
				∶
				⟨
				𝑥
				,
				𝑓
				⟩
				=
				‖
				𝑥
				‖
			

			

				𝑞
			

			
				,
				‖
				𝑓
				‖
				=
				‖
				𝑥
				‖
			

			
				𝑞
				−
				1
			

			
				
				.
			

		
	

We recall that the following relation holds:
						
	
 		
 			
				(
				1
				.
				3
				)
			
 		
	

	
		
			

				𝐽
			

			

				𝑞
			

			
				(
				𝑥
				)
				=
				‖
				𝑥
				‖
			

			
				𝑞
				−
				2
			

			
				𝐽
				(
				𝑥
				)
				,
			

		
	

					for 
	
		
			
				𝑥
				≠
				0
			

		
	
.
We recall that the modulus of smoothness of 
	
		
			

				𝐸
			

		
	
 is the function 
	
		
			

				𝜌
			

			

				𝐸
			

			
				∶
				[
				0
				,
				∞
				)
				→
				[
				0
				,
				∞
				)
			

		
	
 defined by
						
	
 		
 			
				(
				1
				.
				4
				)
			
 		
	

	
		
			

				𝜌
			

			

				𝐸
			

			
				
				1
				(
				𝑡
				)
				∶
				=
				s
				u
				p
			

			
				
			
			
				2
				(
				
				.
				‖
				𝑥
				+
				𝑦
				‖
				+
				‖
				𝑥
				−
				𝑦
				‖
				)
				−
				1
				∶
				‖
				𝑥
				‖
				≤
				1
				,
				‖
				𝑦
				‖
				≤
				𝑡
			

		
	

	
		
			

				𝐸
			

		
	
 is said to be uniformly smooth if 
	
		
			
				l
				i
				m
			

			
				𝑡
				→
				0
			

			
				(
				𝜌
			

			

				𝐸
			

			
				(
				𝑡
				)
				/
				𝑡
				)
				=
				0
			

		
	
.
 Let 
	
		
			
				𝑞
				>
				1
			

		
	
. 
	
		
			

				𝐸
			

		
	
 is said to be 
	
		
			

				𝑞
			

		
	
-uniformly smooth if there exists a constant 
	
		
			
				𝑐
				>
				0
			

		
	
 such that 
	
		
			

				𝜌
			

			

				𝐸
			

			
				(
				𝑡
				)
				≤
				𝑐
				𝑡
			

			

				𝑞
			

		
	
. Examples of such spaces are Hilbert spaces and 
	
		
			

				𝐿
			

			

				𝑝
			

		
	
 (or 
	
		
			

				𝑙
			

			

				𝑝
			

		
	
).
 We note that a 
	
		
			

				𝑞
			

		
	
-uniformly smooth Banach space is uniformly smooth. This implies that its norm uniformly Fréchet differentiable (see [1]).
 If 
	
		
			

				𝐸
			

		
	
 is uniformly smooth, then the normalized duality map 
	
		
			

				𝑗
			

		
	
 is single-valued and norm to norm uniformly continuous.
 Let 
	
		
			

				𝐸
			

		
	
 be a real Banach space and 
	
		
			

				𝐶
			

		
	
 is a nonempty closed convex subset of 
	
		
			

				𝐸
			

		
	
. A mapping 
	
		
			
				𝑇
				∶
				𝐶
				→
				𝐶
			

		
	
 is said to be asymptotically nonexpansive if there exists a sequence 
	
		
			
				{
				ℎ
			

			

				𝑛
			

			
				}
				⊂
				[
				0
				,
				∞
				)
			

		
	
 with 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				ℎ
			

			

				𝑛
			

			
				=
				0
			

		
	
 such that
						
	
 		
 			
				(
				1
				.
				5
				)
			
 		
	

	
		
			
				‖
				𝑇
			

			

				𝑛
			

			
				𝑥
				−
				𝑇
			

			

				𝑛
			

			
				𝑦
				
				‖
				≤
				1
				+
				ℎ
			

			

				𝑛
			

			
				
				‖
				𝑥
				−
				𝑦
				‖
				,
				𝑥
				,
				𝑦
				∈
				𝐶
				,
				𝑛
				≥
				1
				,
			

		
	

					and 
	
		
			
				𝐹
				(
				𝑇
				)
			

		
	
 denotes the set of fixed points of the mapping 
	
		
			

				𝑇
			

		
	
; that is, 
	
		
			
				𝐹
				(
				𝑇
				)
				=
				{
				𝑥
				∈
				𝐶
				∶
				𝑇
				𝑥
				=
				𝑥
				}
			

		
	
. For asymptotically nonexpansive self-map 
	
		
			

				𝑇
			

		
	
, it is well known that 
	
		
			
				𝐹
				(
				𝑇
				)
			

		
	
 is closed and convex (see e.g., [2]).
Theorem 1.1 (Banach [3]).  Let 
	
		
			
				(
				𝑋
				,
				𝑑
				)
			

		
	
 be a complete metric space and let 
	
		
			

				𝑓
			

		
	
 be a contraction on 
	
		
			

				𝑋
			

		
	
; that is, there exists 
	
		
			
				𝑟
				∈
				(
				0
				,
				1
				)
			

		
	
 such that 
	
		
			
				𝑑
				(
				𝑓
				(
				𝑥
				)
				,
				𝑓
				(
				𝑦
				)
				)
				≤
				𝑟
				𝑑
				(
				𝑥
				,
				𝑦
				)
			

		
	
 for all 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝑋
			

		
	
. Then 
	
		
			

				𝑓
			

		
	
 has a unique fixed point.
Theorem 1.2 (Meir and Keeler [4]).  Let 
	
		
			
				(
				𝑋
				,
				𝑑
				)
			

		
	
 be a complete metric space and let 
	
		
			

				𝜙
			

		
	
 be a Meir-Keeler contraction (MKC) on 
	
		
			

				𝑋
			

		
	
, that is, for every 
	
		
			
				𝜀
				>
				0
			

		
	
, there exists 
	
		
			
				𝛿
				>
				0
			

		
	
 such that 
	
		
			
				𝑑
				(
				𝑥
				,
				𝑦
				)
				<
				𝜀
				+
				𝛿
			

		
	
 implies 
	
		
			
				𝑑
				(
				𝜙
				(
				𝑥
				)
				,
				𝜙
				(
				𝑦
				)
				)
				<
				𝜀
			

		
	
 for all 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝑋
			

		
	
. Then 
	
		
			

				𝜙
			

		
	
 has a unique fixed point.
This theorem is one of generalizations of Theorem 1.1, because contractions are Meir-Keeler contractions.
 We recall that, given a 
	
		
			

				𝑞
			

		
	
-uniformly smooth and strictly convex Banach space 
	
		
			

				𝐸
			

		
	
 with a generalized duality map 
	
		
			

				𝐽
			

			

				𝑞
			

			
				∶
				𝐸
				→
				𝐸
			

			

				∗
			

		
	
 and 
	
		
			

				𝐶
			

		
	
 a subset of 
	
		
			

				𝐸
			

		
	
, a mapping 
	
		
			
				𝐹
				∶
				𝐶
				→
				𝐶
			

		
	
 is called(1)
	
		
			

				𝑘
			

			

				
			

		
	
-Lipschitzian, if there exists a constant 
	
		
			

				𝑘
			

			

				
			

			
				>
				0
			

		
	
 such that
									
	
 		
 			
				(
				1
				.
				6
				)
			
 		
	

	
		
			
				‖
				𝐹
				𝑥
				−
				𝐹
				𝑦
				‖
				≤
				𝑘
			

			

				
			

			
				‖
				𝑥
				−
				𝑦
				‖
			

		
	
 holds for every 
	
		
			

				𝑥
			

		
	
 and 
	
		
			
				𝑦
				∈
				𝐶
			

		
	
;(2)
	
		
			

				𝜂
			

		
	
-strongly monotone, if there exists a constant 
	
		
			
				𝜂
				>
				0
			

		
	
 such that
									
	
 		
 			
				(
				1
				.
				7
				)
			
 		
	

	
		
			
				⟨
				𝐹
				𝑥
				−
				𝐹
				𝑦
				,
				𝑗
			

			

				𝑞
			

			
				(
				𝑥
				−
				𝑦
				)
				⟩
				≥
				𝜂
				‖
				𝑥
				−
				𝑦
				‖
			

			

				𝑞
			

		
	
 holds for every 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝐶
			

		
	
 and 
	
		
			

				𝑗
			

			

				𝑞
			

			
				(
				𝑥
				−
				𝑦
				)
				∈
				𝐽
			

			

				𝑞
			

			
				(
				𝑥
				−
				𝑦
				)
			

		
	
.
 In 
	
		
			
				2
				0
				1
				0
			

		
	
, Ali and Ugwunnadi [5] introduced and considered the following iterative scheme:
						
	
 		
 			
				(
				1
				.
				8
				)
			
 		
	

	
		
			

				𝑥
			

			

				0
			

			
				𝑥
				∈
				𝐻
				,
			

			
				𝑛
				+
				1
			

			
				=
				𝛽
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				+
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				𝑦
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				=
				
				𝐼
				−
				𝛼
			

			

				𝑛
			

			
				𝐴
				
				𝑇
			

			
				𝑝
				(
				𝑛
				+
				1
				)
				𝑖
				(
				𝑛
				+
				1
				)
			

			

				𝑥
			

			

				𝑛
			

			
				+
				𝛼
			

			

				𝑛
			

			
				
				𝑥
				𝛾
				𝑓
			

			

				𝑛
			

			
				
				,
				∀
				𝑛
				≥
				1
				,
			

		
	

					where 
	
		
			

				𝑇
			

			

				1
			

			
				,
				𝑇
			

			

				2
			

			
				,
				…
				,
				𝑇
			

			

				𝑁
			

		
	
 a family of asymptotically nonexpansive self-mappings of 
	
		
			

				𝐻
			

		
	
 with sequences 
	
		
			
				{
				1
				+
				𝑘
			

			
				𝑖
				(
				𝑛
				)
				𝑝
				(
				𝑛
				)
			

			

				}
			

		
	
, such that 
	
		
			

				𝑘
			

			
				𝑖
				(
				𝑛
				)
				𝑝
				(
				𝑛
				)
			

			
				→
				0
			

		
	
 as 
	
		
			
				𝑛
				→
				∞
			

		
	
 and 
	
		
			
				𝑓
				∶
				𝐻
				→
				𝐻
			

		
	
 are a contraction mapping with coefficient 
	
		
			
				𝛼
				∈
				(
				0
				,
				1
				)
			

		
	
. Let 
	
		
			

				𝐴
			

		
	
 be a strongly positive-bounded linear operator with coefficient 
	
		
			
				
			
			
				𝛾
				>
				0
			

		
	
, and 
	
		
			
				0
				<
				𝛾
				<
			

			
				
			
			
				𝛾
				/
				𝛼
			

		
	
. They proved the strong convergence of the implicit and explicit schemes for a common fixed point of the family 
	
		
			

				𝑇
			

			

				1
			

			
				,
				𝑇
			

			

				2
			

			
				,
				…
				,
				𝑇
			

			

				𝑁
			

		
	
, which solves the variational inequality 
	
		
			
				⟨
				(
				𝐴
				−
				𝛾
				𝑓
				)
			

			
				
			
			
				𝑥
				,
			

			
				
			
			
				𝑥
				−
				𝑥
				⟩
				≤
				0
				,
			

			
				f
				o
				r
				a
				l
				l
			

			
				⋂
				𝑥
				∈
			

			
				𝑁
				𝑖
				=
				1
			

			
				F
				i
				x
				(
				𝑇
			

			

				𝑖
			

			

				)
			

		
	
.
 Motivated and inspired by the results of Ali and Ugwunnadi [5], we introduced an iterative scheme as follows. for 
	
		
			

				𝑥
			

			

				1
			

			
				=
				𝑥
				∈
				𝐶
			

		
	
,
						
	
 		
 			
				(
				1
				.
				9
				)
			
 		
	

	
		
			

				𝑥
			

			
				𝑛
				+
				1
			

			
				=
				𝛽
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				+
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				𝑦
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				=
				
				𝐼
				−
				𝜇
				𝛼
			

			

				𝑛
			

			
				𝐹
				
				𝑇
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				+
				𝛼
			

			

				𝑛
			

			
				
				𝑥
				𝛾
				𝜙
			

			

				𝑛
			

			
				
				,
				∀
				𝑛
				≥
				1
				,
			

		
	

					where 
	
		
			

				𝑇
			

		
	
 is an asymptotically nonexpansive self-mapping of 
	
		
			

				𝐶
			

		
	
 with sequences 
	
		
			
				{
				1
				+
				ℎ
			

			

				𝑛
			

			

				}
			

		
	
, such that 
	
		
			

				ℎ
			

			

				𝑛
			

			
				→
				0
			

		
	
 as 
	
		
			
				𝑛
				→
				∞
			

		
	
 and 
	
		
			
				𝜙
				∶
				𝐶
				→
				𝐶
			

		
	
 are a Meir-Keeler contraction (MKC, for short). Let 
	
		
			

				𝐹
			

		
	
 is a 
	
		
			
				𝑘
				′
			

		
	
-Lipschitzian and 
	
		
			

				𝜂
			

		
	
-strongly monotone operator with 
	
		
			
				0
				<
				𝜇
				<
				m
				i
				n
				{
				(
				𝑞
				𝜂
				/
				𝐶
			

			

				𝑞
			

			
				(
				𝑘
			

			

				
			

			

				)
			

			

				𝑞
			

			

				)
			

			
				1
				/
				(
				𝑞
				−
				1
				)
			

			
				,
				1
				}
			

		
	
. We will prove the strong convergence of the implicit and explicit schemes for a fixed point of 
	
		
			

				𝑇
			

		
	
, which solves the variational inequality 
	
		
			
				⟨
				(
				𝛾
				𝜙
				−
				𝜇
				𝐹
				)
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				(
				𝑧
				−
				𝑝
				)
				⟩
				≤
				0
			

		
	
, for 
	
		
			
				𝑧
				∈
				𝐹
				(
				𝑇
				)
			

		
	
. Our results improve and extend the results of Ali and Ugwunnadi [5] for an asymptotically nonexpansive mapping in the following aspects:(i)Hilbert space is replaced by a 
	
		
			

				𝑞
			

		
	
-uniformly smooth and strictly convex Banach space;(ii)contractive mapping is replaced by a MKC;(iii)Theorems 3.1 and 4.1 extend the results of Ali and Ugwunnadi [5] from a strongly positive-bounded linear operator 
	
		
			

				𝐴
			

		
	
 to a 
	
		
			

				𝑘
			

			

				
			

		
	
-Lipschitzian and 
	
		
			

				𝜂
			

		
	
-strongly monotone operator 
	
		
			

				𝐹
			

		
	
.
2. Preliminaries
In order to prove our main results, we need the following lemmas.
Lemma 2.1 (see [6]).  Let 
	
		
			
				𝑞
				>
				1
			

		
	
 and 
	
		
			

				𝐸
			

		
	
 be a 
	
		
			

				𝑞
			

		
	
-uniformly smooth Banach space, then there exists a constant 
	
		
			

				𝐶
			

			

				𝑞
			

			
				>
				0
			

		
	
 such that
							
	
 		
 			
				(
				2
				.
				1
				)
			
 		
	

	
		
			
				‖
				𝑥
				+
				𝑦
				‖
			

			

				𝑞
			

			
				≤
				‖
				𝑥
				‖
			

			

				𝑞
			

			
				+
				𝑞
				⟨
				𝑦
				,
				𝑗
			

			

				𝑞
			

			
				(
				𝑥
				)
				⟩
				+
				𝐶
			

			

				𝑞
			

			
				‖
				𝑦
				‖
			

			

				𝑞
			

			
				,
				∀
				𝑥
				,
				𝑦
				∈
				𝐸
				.
			

		
	

Lemma 2.2 (see [7, Lemma 2.3]).  Let 
	
		
			

				𝜙
			

		
	
 be a MKC on a convex subset 
	
		
			

				𝐶
			

		
	
 of a Banach space 
	
		
			

				𝐸
			

		
	
. Then for each 
	
		
			
				𝜀
				>
				0
			

		
	
, there exists 
	
		
			
				𝑟
				∈
				(
				0
				,
				1
				)
			

		
	
 such that
							
	
 		
 			
				(
				2
				.
				2
				)
			
 		
	

	
		
			
				‖
				𝑥
				−
				𝑦
				‖
				≥
				𝜀
			

			
				i
				m
				p
				l
				i
				e
				s
			

			
				‖
				𝜙
				𝑥
				−
				𝜙
				𝑦
				‖
				≤
				𝑟
				‖
				𝑥
				−
				𝑦
				‖
				∀
				𝑥
				,
				𝑦
				∈
				𝐶
				.
			

		
	

Lemma 2.3 (see [8]).  Let 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 and 
	
		
			
				{
				𝑧
			

			

				𝑛
			

			

				}
			

		
	
 be bounded sequences in a Banach space 
	
		
			

				𝐸
			

		
	
 and 
	
		
			
				{
				𝛾
			

			

				𝑛
			

			

				}
			

		
	
 be a sequence in 
	
		
			
				[
				0
				,
				1
				]
			

		
	
 which satisfies the following condition:
							
	
 		
 			
				(
				2
				.
				3
				)
			
 		
	

	
		
			
				0
				<
				l
				i
				m
				i
				n
				f
			

			
				𝑛
				→
				∞
			

			

				𝛾
			

			

				𝑛
			

			
				≤
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			

				𝛾
			

			

				𝑛
			

			
				<
				1
				.
			

		
	

						Suppose that 
	
		
			

				𝑥
			

			
				𝑛
				+
				1
			

			
				=
				𝛾
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				+
				(
				1
				−
				𝛾
			

			

				𝑛
			

			
				)
				𝑧
			

			

				𝑛
			

			
				,
				𝑛
				≥
				0
			

		
	
, and 
	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			
				(
				‖
				𝑧
			

			
				𝑛
				+
				1
			

			
				−
				𝑧
			

			

				𝑛
			

			
				‖
				−
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				)
				≤
				0
			

		
	
. Then 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				𝑧
			

			

				𝑛
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				=
				0
			

		
	
.
Lemma 2.4 (see [9, 10]).  Let 
	
		
			
				{
				𝑠
			

			

				𝑛
			

			

				}
			

		
	
 be a sequence of nonnegative real numbers satisfying
							
	
 		
 			
				(
				2
				.
				4
				)
			
 		
	

	
		
			

				𝑠
			

			
				𝑛
				+
				1
			

			
				≤
				
				1
				−
				𝜆
			

			

				𝑛
			

			
				
				𝑠
			

			

				𝑛
			

			
				+
				𝜆
			

			

				𝑛
			

			

				𝛿
			

			

				𝑛
			

			
				+
				𝛾
			

			

				𝑛
			

			
				,
				𝑛
				≥
				0
				,
			

		
	

						where 
	
		
			
				{
				𝜆
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝛿
			

			

				𝑛
			

			

				}
			

		
	
 and 
	
		
			
				{
				𝛾
			

			

				𝑛
			

			

				}
			

		
	
 satisfy the following conditions: 
	
		
			
				(
				𝑖
				)
				{
				𝜆
			

			

				𝑛
			

			
				}
				⊂
				[
				0
				,
				1
				]
			

		
	
 and 
	
		
			

				∑
			

			
				∞
				𝑛
				=
				0
			

			

				𝜆
			

			

				𝑛
			

			
				=
				∞
			

		
	
, 
	
		
			
				(
				𝑖
				𝑖
				)
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			

				𝛿
			

			

				𝑛
			

			
				≤
				0
			

		
	
 or 
	
		
			

				∑
			

			
				∞
				𝑛
				=
				0
			

			

				𝜆
			

			

				𝑛
			

			

				𝛿
			

			

				𝑛
			

			
				<
				∞
				,
				(
				𝑖
				𝑖
				𝑖
				)
				𝛾
			

			

				𝑛
			

			
				∑
				≥
				0
				(
				𝑛
				≥
				0
				)
				,
			

			
				∞
				𝑛
				=
				0
			

			

				𝛾
			

			

				𝑛
			

			
				<
				∞
			

		
	
. Then 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝑠
			

			

				𝑛
			

			
				=
				0
			

		
	
.
Lemma 2.5 (see [11]).  Let 
	
		
			

				𝐶
			

		
	
 be a nonempty closed convex subset of a uniformly convex Banach space 
	
		
			

				𝐸
			

		
	
 and 
	
		
			
				𝑇
				∶
				𝐶
				→
				𝐸
			

		
	
 is an asymptotically nonexpansive mapping with 
	
		
			
				𝐹
				(
				𝑇
				)
				≠
				∅
			

		
	
. Then the mapping 
	
		
			
				𝐼
				−
				𝑇
			

		
	
 is demiclosed at zero, that is, 
	
		
			

				𝑥
			

			

				𝑛
			

			
				⇀
				𝑥
			

		
	
 and 
	
		
			
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑇
				𝑥
			

			

				𝑛
			

			
				‖
				→
				0
			

		
	
, then 
	
		
			
				𝑥
				=
				𝑇
				𝑥
			

		
	
.
Lemma 2.6.  Let 
	
		
			

				𝐹
			

		
	
 be a 
	
		
			
				𝑘
				′
			

		
	
-Lipschitzian and 
	
		
			

				𝜂
			

		
	
-strongly monotone operator on a 
	
		
			

				𝑞
			

		
	
-uniformly smooth Banach space 
	
		
			

				𝐸
			

		
	
 with 
	
		
			

				𝑘
			

			

				
			

			
				>
				0
				,
				𝜂
				>
				0
				,
				0
				<
				𝑡
				<
				1
			

		
	
 and 
	
		
			
				0
				<
				𝜇
				<
				m
				i
				n
				{
				(
				𝑞
				𝜂
				/
				𝐶
			

			

				𝑞
			

			
				(
				𝑘
			

			

				
			

			

				)
			

			

				𝑞
			

			

				)
			

			
				1
				/
				(
				𝑞
				−
				1
				)
			

			
				,
				1
				}
			

		
	
. Then 
	
		
			
				𝑆
				=
				(
				𝐼
				−
				𝑡
				𝜇
				𝐹
				)
				∶
				𝐸
				→
				𝐸
			

		
	
 is a contraction with contractive coefficient 
	
		
			
				1
				−
				𝑡
				𝜏
			

		
	
 and 
	
		
			
				𝜏
				=
				(
				𝑞
				𝜇
				𝜂
				−
				𝐶
			

			

				𝑞
			

			

				𝜇
			

			

				𝑞
			

			
				(
				𝑘
			

			

				
			

			

				)
			

			

				𝑞
			

			
				)
				/
				𝑞
			

		
	
.
Proof. From (2.1), we have
							
	
 		
 			
				(
				2
				.
				5
				)
			
 		
	

	
		
			
				‖
				𝑆
				𝑥
				−
				𝑆
				𝑦
				‖
			

			

				𝑞
			

			
				=
				‖
				𝑥
				−
				𝑦
				−
				𝑡
				𝜇
				(
				𝐹
				𝑥
				−
				𝐹
				𝑦
				)
				‖
			

			

				𝑞
			

			
				≤
				‖
				𝑥
				−
				𝑦
				‖
			

			

				𝑞
			

			
				
				+
				𝑞
				−
				𝑡
				𝜇
				(
				𝐹
				𝑥
				−
				𝐹
				𝑦
				)
				,
				𝐽
			

			

				𝑞
			

			
				
				(
				𝑥
				−
				𝑦
				)
				+
				𝐶
			

			

				𝑞
			

			
				‖
				−
				𝑡
				𝜇
				(
				𝐹
				𝑥
				−
				𝐹
				𝑦
				)
				‖
			

			

				𝑞
			

			
				≤
				‖
				𝑥
				−
				𝑦
				‖
			

			

				𝑞
			

			
				−
				𝑡
				𝑞
				𝜇
				𝜂
				‖
				𝑥
				−
				𝑦
				‖
			

			

				𝑞
			

			
				+
				𝑡
				𝐶
			

			

				𝑞
			

			

				𝜇
			

			

				𝑞
			

			
				
				𝑘
			

			

				
			

			

				
			

			

				𝑞
			

			
				‖
				𝑥
				−
				𝑦
				‖
			

			

				𝑞
			

			
				=
				
				
				1
				−
				𝑡
				𝑞
				𝜇
				𝜂
				−
				𝐶
			

			

				𝑞
			

			

				𝜇
			

			

				𝑞
			

			
				
				𝑘
			

			

				
			

			

				
			

			

				𝑞
			

			
				
				
				‖
				𝑥
				−
				𝑦
				‖
			

			

				𝑞
			

			
				≤
				
				1
				−
				𝑡
				𝑞
				𝜇
				𝜂
				−
				𝐶
			

			

				𝑞
			

			

				𝜇
			

			

				𝑞
			

			
				
				𝑘
			

			

				
			

			

				
			

			

				𝑞
			

			
				
			
			
				𝑞
				
			

			

				𝑞
			

			
				‖
				𝑥
				−
				𝑦
				‖
			

			

				𝑞
			

			
				=
				(
				1
				−
				𝑡
				𝜏
				)
			

			

				𝑞
			

			
				‖
				𝑥
				−
				𝑦
				‖
			

			

				𝑞
			

			

				,
			

		
	

						where 
	
		
			
				𝜏
				=
				(
				𝑞
				𝜇
				𝜂
				−
				𝐶
			

			

				𝑞
			

			

				𝜇
			

			

				𝑞
			

			
				(
				𝑘
			

			

				
			

			

				)
			

			

				𝑞
			

			
				)
				/
				𝑞
			

		
	
, and
							
	
 		
 			
				(
				2
				.
				6
				)
			
 		
	

	
		
			
				‖
				𝑆
				𝑥
				−
				𝑆
				𝑦
				‖
				≤
				(
				1
				−
				𝑡
				𝜏
				)
				‖
				𝑥
				−
				𝑦
				‖
				.
			

		
	

						Hence 
	
		
			

				𝑆
			

		
	
 is a contraction with contractive coefficient 
	
		
			
				1
				−
				𝑡
				𝜏
			

		
	
.
Lemma 2.7 (see [5, Lemma 2.9]).  Let 
	
		
			
				𝑇
				∶
				𝐸
				→
				𝐸
			

		
	
 be a uniformly Lipschitzian with a Lipschitzian constant 
	
		
			
				𝐿
				≥
				1
			

		
	
, that is, there exists a constant 
	
		
			
				𝐿
				≥
				1
			

		
	
 such that
							
	
 		
 			
				(
				2
				.
				7
				)
			
 		
	

	
		
			
				‖
				𝑇
			

			

				𝑛
			

			
				𝑥
				−
				𝑇
			

			

				𝑛
			

			
				𝑦
				‖
				≤
				𝐿
				‖
				𝑥
				−
				𝑦
				‖
				,
				∀
				𝑥
				,
				𝑦
				∈
				𝐸
				.
			

		
	

Lemma 2.8 (see, e.g., Mitrinović [12, page 63]).  Let 
	
		
			
				𝑞
				>
				1
			

		
	
. Then the following inequality holds:
							
	
 		
 			
				(
				2
				.
				8
				)
			
 		
	

	
		
			
				1
				𝑎
				𝑏
				≤
			

			
				
			
			
				𝑞
				𝑎
			

			

				𝑞
			

			
				+
				𝑞
				−
				1
			

			
				
			
			
				𝑞
				𝑏
			

			
				𝑞
				/
				(
				𝑞
				−
				1
				)
			

			

				,
			

		
	

						for arbitrary positive real numbers 
	
		
			
				𝑎
				,
				𝑏
			

		
	
.
3. Main Result
Theorem 3.1.  Let 
	
		
			

				𝐸
			

		
	
 be a 
	
		
			

				𝑞
			

		
	
-uniformly smooth and strictly convex Banach space, and 
	
		
			

				𝐶
			

		
	
 a nonempty closed convex subset of 
	
		
			

				𝐸
			

		
	
 such that 
	
		
			
				𝐶
				±
				𝐶
				⊂
				𝐶
			

		
	
 and have a weakly sequentially continuous duality mapping 
	
		
			

				𝐽
			

			

				𝑞
			

		
	
 from 
	
		
			

				𝐸
			

		
	
 to 
	
		
			

				𝐸
			

			

				∗
			

		
	
. Let 
	
		
			
				𝑇
				∶
				𝐶
				→
				𝐶
			

		
	
 be an asymptotically nonexpansive mapping with sequences 
	
		
			
				{
				1
				+
				ℎ
			

			

				𝑛
			

			

				}
			

		
	
, such that 
	
		
			

				ℎ
			

			

				𝑛
			

			
				→
				0
			

		
	
 as 
	
		
			
				𝑛
				→
				∞
			

		
	
 and 
	
		
			

				𝐹
			

			

				∗
			

			
				∶
				=
				𝐹
				(
				𝑇
				)
				≠
				∅
			

		
	
. Let 
	
		
			

				𝐷
			

		
	
 be a bounded subset of 
	
		
			

				𝐶
			

		
	
 such that 
	
		
			
				s
				u
				p
			

			
				𝑥
				∈
				𝐷
			

			
				‖
				𝑇
			

			
				𝑛
				+
				1
			

			
				𝑥
				−
				𝑇
			

			

				𝑛
			

			
				𝑥
				‖
				→
				0
			

		
	
. Let 
	
		
			

				𝐹
			

		
	
 be a 
	
		
			

				𝑘
			

			

				
			

		
	
-Lipschitzian and 
	
		
			

				𝜂
			

		
	
-strongly monotone operator on 
	
		
			

				𝐶
			

		
	
 with 
	
		
			
				0
				<
				𝜇
				<
				m
				i
				n
				{
				(
				𝑞
				𝜂
				/
				𝐶
			

			

				𝑞
			

			
				(
				𝑘
				′
				)
			

			

				𝑞
			

			

				)
			

			
				1
				/
				(
				𝑞
				−
				1
				)
			

			
				,
				1
				}
			

		
	
, and 
	
		
			

				𝜙
			

		
	
 be a MKC on 
	
		
			

				𝐶
			

		
	
 with 
	
		
			
				0
				<
				𝛾
				<
				(
				𝑞
				𝜇
				𝜂
				−
				𝐶
			

			

				𝑞
			

			

				𝜇
			

			

				𝑞
			

			
				(
				𝑘
				′
				)
			

			

				𝑞
			

			
				)
				/
				𝑞
				=
				𝜏
			

		
	
. Let 
	
		
			
				{
				𝛼
			

			

				𝑛
			

			

				}
			

		
	
 be a sequence in (0,1) satisfying the following conditions: (A1)
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝛼
			

			

				𝑛
			

			
				=
				0
			

		
	
;(A2)
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				(
				ℎ
			

			

				𝑛
			

			
				/
				𝛼
			

			

				𝑛
			

			
				)
				=
				0
			

		
	
. 								Let 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 be defined by
							
	
 		
 			
				(
				3
				.
				1
				)
			
 		
	

	
		
			

				𝑥
			

			

				𝑛
			

			
				=
				𝛼
			

			

				𝑛
			

			
				
				𝑥
				𝛾
				𝜙
			

			

				𝑛
			

			
				
				+
				
				𝐼
				−
				𝛼
			

			

				𝑛
			

			
				
				𝑇
				𝜇
				𝐹
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			

				.
			

		
	
 Then, 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 converges to a fixed point say 
	
		
			

				𝑝
			

		
	
 in 
	
		
			

				𝐹
			

			

				∗
			

		
	
 which solves the variational inequality
							
	
 		
 			
				(
				3
				.
				2
				)
			
 		
	

	
		
			
				⟨
				(
				𝜇
				𝐹
				−
				𝛾
				𝜙
				)
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				(
				𝑝
				−
				𝑧
				)
				⟩
				≤
				0
				,
				∀
				𝑧
				∈
				𝐹
			

			

				∗
			

			

				.
			

		
	

Proof. Let 
	
		
			
				𝑝
				∈
				𝐹
			

			

				∗
			

		
	
. Since 
	
		
			

				𝛼
			

			

				𝑛
			

			
				→
				0
			

		
	
 and 
	
		
			

				ℎ
			

			

				𝑛
			

			
				/
				𝛼
			

			

				𝑛
			

			
				→
				0
			

		
	
 as 
	
		
			
				𝑛
				→
				∞
			

		
	
, then 
	
		
			
				(
				1
				−
				𝛼
			

			

				𝑛
			

			
				𝜏
				)
				(
				ℎ
			

			

				𝑛
			

			
				/
				𝛼
			

			

				𝑛
			

			
				)
				→
				0
			

		
	
 as 
	
		
			
				𝑛
				→
				∞
			

		
	
, so 
	
		
			
				∃
				𝑁
			

			

				0
			

			
				∈
				𝑁
			

		
	
 such that for all 
	
		
			
				𝑛
				≥
				𝑁
			

			

				0
			

		
	
, 
	
		
			

				𝛼
			

			

				𝑛
			

			
				<
				(
				𝑘
			

			

				
			

			

				)
			

			
				−
				1
			

		
	
 and 
	
		
			
				(
				1
				−
				𝛼
			

			

				𝑛
			

			
				𝜏
				)
				(
				ℎ
			

			

				𝑛
			

			
				/
				𝛼
			

			

				𝑛
			

			
				)
				<
				(
				1
				/
				2
				)
				(
				𝜏
				−
				𝛾
				)
			

		
	
. Thus, for 
	
		
			
				𝑛
				≥
				𝑁
			

			

				0
			

		
	

	
 		
 			
				(
				3
				.
				3
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				𝑞
			

			
				=
				⟨
				𝛼
			

			

				𝑛
			

			
				
				𝑥
				𝛾
				𝜙
			

			

				𝑛
			

			
				
				+
				
				𝐼
				−
				𝛼
			

			

				𝑛
			

			
				
				𝑇
				𝜇
				𝐹
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				−
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑥
			

			

				𝑛
			

			
				
				⟩
				−
				𝑝
				=
				𝛼
			

			

				𝑛
			

			
				
				𝑥
				⟨
				𝛾
				𝜙
			

			

				𝑛
			

			
				
				−
				𝜇
				𝐹
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑥
			

			

				𝑛
			

			
				
				
				−
				𝑝
				⟩
				+
				⟨
				𝐼
				−
				𝛼
			

			

				𝑛
			

			
				
				𝑇
				𝜇
				𝐹
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				−
				
				𝐼
				−
				𝛼
			

			

				𝑛
			

			
				
				𝜇
				𝐹
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑥
			

			

				𝑛
			

			
				
				⟩
				−
				𝑝
				=
				𝛼
			

			

				𝑛
			

			
				
				𝑥
				⟨
				𝛾
				𝜙
			

			

				𝑛
			

			
				
				−
				𝛾
				𝜙
				(
				𝑝
				)
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑥
			

			

				𝑛
			

			
				
				−
				𝑝
				⟩
				+
				𝛼
			

			

				𝑛
			

			
				⟨
				𝛾
				𝜙
				(
				𝑝
				)
				−
				𝜇
				𝐹
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑥
			

			

				𝑛
			

			
				
				⟩
				
				−
				𝑝
				+
				⟨
				𝐼
				−
				𝛼
			

			

				𝑛
			

			
				
				𝑇
				𝜇
				𝐹
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				−
				
				𝐼
				−
				𝛼
			

			

				𝑛
			

			
				
				𝜇
				𝐹
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑥
			

			

				𝑛
			

			
				
				⟩
				−
				𝑝
				≤
				𝛼
			

			

				𝑛
			

			
				𝛾
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				𝑞
			

			
				+
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				𝜏
				
				
				1
				+
				ℎ
			

			

				𝑛
			

			
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				𝑞
			

			
				+
				𝛼
			

			

				𝑛
			

			
				⟨
				𝛾
				𝜙
				(
				𝑝
				)
				−
				𝜇
				𝐹
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑥
			

			

				𝑛
			

			
				
				⟩
				=
				
				−
				𝑝
				1
				−
				𝛼
			

			

				𝑛
			

			
				(
				
				𝜏
				−
				𝛾
				)
				+
				1
				−
				𝛼
			

			

				𝑛
			

			
				𝜏
				
				ℎ
			

			

				𝑛
			

			
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				𝑞
			

			
				+
				𝛼
			

			

				𝑛
			

			
				⟨
				𝛾
				𝜙
				(
				𝑝
				)
				−
				𝜇
				𝐹
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑥
			

			

				𝑛
			

			
				
				⟩
				≤
				−
				𝑝
				⟨
				𝛾
				𝜙
				(
				𝑝
				)
				−
				𝜇
				𝐹
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑥
			

			

				𝑛
			

			
				
				⟩
				−
				𝑝
			

			
				
			
			
				
				(
				𝜏
				−
				𝛾
				)
				−
				1
				−
				𝛼
			

			

				𝑛
			

			
				𝜏
				ℎ
				
				
			

			

				𝑛
			

			
				/
				𝛼
			

			

				𝑛
			

			
				
				≤
				⟨
				𝛾
				𝜙
				(
				𝑝
				)
				−
				𝜇
				𝐹
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑥
			

			

				𝑛
			

			
				
				⟩
				−
				𝑝
			

			
				
			
			
				≤
				‖
				‖
				𝑥
				(
				𝜏
				−
				𝛾
				)
				−
				(
				1
				/
				2
				)
				(
				𝜏
				−
				𝛾
				)
				2
				‖
				𝛾
				𝜙
				(
				𝑝
				)
				−
				𝜇
				𝐹
				𝑝
				‖
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			
				𝑞
				−
				1
			

			
				
			
			
				.
				𝜏
				−
				𝛾
			

		
	

						Therefore,
							
	
 		
 			
				(
				3
				.
				4
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				≤
				−
				𝑝
				2
				‖
				𝛾
				𝜙
				(
				𝑝
				)
				−
				𝜇
				𝐹
				𝑝
				‖
			

			
				
			
			
				.
				𝜏
				−
				𝛾
			

		
	

						Thus, 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 is bounded and therefore 
	
		
			
				{
				𝜙
				(
				𝑥
			

			

				𝑛
			

			
				)
				}
			

		
	
 and 
	
		
			
				{
				𝜇
				𝐹
				𝑇
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 are also bounded. Also from (3.1), we have
							
	
 		
 			
				(
				3
				.
				5
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑇
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				‖
				‖
				=
				𝛼
			

			

				𝑛
			

			
				‖
				‖
				
				𝑥
				𝛾
				𝜙
			

			

				𝑛
			

			
				
				−
				𝜇
				𝐹
				𝑇
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				‖
				‖
				⟶
				0
			

			
				a
				s
			

			
				𝑛
				⟶
				∞
				.
			

		
	

						From (3.5) and 
	
		
			
				‖
				𝑇
			

			
				𝑛
				+
				1
			

			

				𝑥
			

			

				𝑛
			

			
				−
				𝑇
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				‖
				→
				0
			

		
	
, we obtain
							
	
 		
 			
				(
				3
				.
				6
				)
			
 		
	

	
		
			
				‖
				‖
				𝑇
			

			
				𝑛
				+
				1
			

			

				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				≤
				‖
				‖
				𝑇
			

			
				𝑛
				+
				1
			

			

				𝑥
			

			

				𝑛
			

			
				−
				𝑇
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				‖
				‖
				𝑇
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				𝑇
				⟶
				0
				,
			

			
				𝑛
				+
				1
			

			

				𝑥
			

			

				𝑛
			

			
				−
				𝑇
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				≤
				
				1
				+
				ℎ
			

			

				1
			

			
				
				‖
				‖
				𝑇
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				⟶
				0
				,
			

		
	

						Thus,
							
	
 		
 			
				(
				3
				.
				7
				)
			
 		
	

	
		
			
				‖
				‖
				𝑇
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				≤
				‖
				‖
				𝑇
				𝑥
			

			

				𝑛
			

			
				−
				𝑇
			

			
				𝑛
				+
				1
			

			

				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				‖
				‖
				𝑇
			

			
				𝑛
				+
				1
			

			

				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				⟶
				0
				.
			

		
	

						Since 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 is bounded, now assume that 
	
		
			

				𝑝
			

		
	
 is a weak limit point of 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 and a subsequence 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				𝑗
			

			

				}
			

		
	
 of 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 converges weakly to 
	
		
			

				𝑝
			

		
	
. Then, by Lemma 2.5 and (3.7), we have that 
	
		
			

				𝑝
			

		
	
 is a fixed point of 
	
		
			

				𝑇
			

		
	
, hence 
	
		
			
				𝑝
				∈
				𝐹
			

			

				∗
			

		
	
.Next we observe that the solution of the variational inequality (3.2) in 
	
		
			

				𝐹
			

			

				∗
			

		
	
 is unique. Assume that 
	
		
			
				̃
				𝑞
				,
				𝑝
				∈
				𝐹
			

			

				∗
			

		
	
 are solutions of the inequality (3.2), without loss of generality, we may assume that there is a number 
	
		
			

				𝜀
			

		
	
 such that 
	
		
			
				‖
				𝑝
				−
				̃
				𝑞
				‖
				≥
				𝜀
			

		
	
. Then by Lemma 2.2, there is a number 
	
		
			

				𝑟
			

		
	
 such that 
	
		
			
				‖
				𝜙
				𝑝
				−
				𝜙
				̃
				𝑞
				‖
				≤
				𝑟
				‖
				𝑝
				−
				̃
				𝑞
				‖
			

		
	
. From (3.2), we know
							
	
 		
 			
				(
				3
				.
				8
				)
			
 			
				(
				3
				.
				9
				)
			
 		
	

	
		
			
				⟨
				(
				𝜇
				𝐹
				−
				𝛾
				𝜙
				)
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				(
				𝑝
				−
				̃
				𝑞
				)
				⟩
				≤
				0
				,
				⟨
				(
				𝜇
				𝐹
				−
				𝛾
				𝜙
				)
				̃
				𝑞
				,
				𝐽
			

			

				𝑞
			

			
				(
				̃
				𝑞
				−
				𝑝
				)
				⟩
				≤
				0
				.
			

		
	

						Adding (3.8) and (3.9), we have
							
	
 		
 			
				(
				3
				.
				1
				0
				)
			
 		
	

	
		
			
				⟨
				(
				𝜇
				𝐹
				−
				𝛾
				𝜙
				)
				𝑝
				−
				(
				𝜇
				𝐹
				−
				𝛾
				𝜙
				)
				̃
				𝑞
				,
				𝐽
			

			

				𝑞
			

			
				(
				𝑝
				−
				̃
				𝑞
				)
				⟩
				≤
				0
				.
			

		
	

						Noticing that
							
	
 		
 			
				(
				3
				.
				1
				1
				)
			
 		
	

	
		
			
				
				(
				𝜇
				𝐹
				−
				𝛾
				𝜙
				)
				𝑝
				−
				(
				𝜇
				𝐹
				−
				𝛾
				𝜙
				)
				̃
				𝑞
				,
				𝐽
			

			

				𝑞
			

			
				
				(
				𝑝
				−
				̃
				𝑞
				)
				=
				⟨
				𝜇
				𝐹
				𝑝
				−
				𝜇
				𝐹
				̃
				𝑞
				,
				𝐽
			

			

				𝑞
			

			
				(
				𝑝
				−
				̃
				𝑞
				)
				⟩
				−
				⟨
				𝛾
				𝜙
				𝑝
				−
				𝛾
				𝜙
				̃
				𝑞
				,
				𝐽
			

			

				𝑞
			

			
				(
				𝑝
				−
				̃
				𝑞
				)
				⟩
				≥
				𝜇
				𝜂
				‖
				𝑝
				−
				̃
				𝑞
				‖
			

			

				𝑞
			

			
				−
				𝛾
				‖
				𝜙
				𝑝
				−
				𝜙
				̃
				𝑞
				‖
				‖
				𝑝
				−
				̃
				𝑞
				‖
			

			
				𝑞
				−
				1
			

			
				≥
				𝜇
				𝜂
				‖
				𝑝
				−
				̃
				𝑞
				‖
			

			

				𝑞
			

			
				−
				𝛾
				𝑟
				‖
				𝑝
				−
				̃
				𝑞
				‖
			

			

				𝑞
			

			
				≥
				(
				𝜇
				𝜂
				−
				𝛾
				𝑟
				)
				‖
				𝑝
				−
				̃
				𝑞
				‖
			

			

				𝑞
			

			
				≥
				(
				𝜇
				𝜂
				−
				𝛾
				𝑟
				)
				𝜀
			

			

				𝑞
			

			
				>
				0
				.
			

		
	

						Therefore 
	
		
			
				𝑝
				=
				̃
				𝑞
			

		
	
. That is, 
	
		
			
				𝑝
				∈
				𝐹
			

			

				∗
			

		
	
 is the unique solution of (3.2).Finally, we show that 
	
		
			

				𝑥
			

			

				𝑛
			

			
				→
				𝑝
			

		
	
 as 
	
		
			
				𝑛
				→
				∞
			

		
	
. From (3.3), we get
							
	
 		
 			
				(
				3
				.
				1
				2
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				𝑞
			

			
				≤
				𝛼
			

			

				𝑛
			

			
				⟨
				𝛾
				𝜙
				(
				𝑝
				)
				−
				𝜇
				𝐹
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑥
			

			

				𝑛
			

			
				
				⟩
				−
				𝑝
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				
				(
				𝜏
				−
				𝛾
				)
				−
				1
				−
				𝛼
			

			

				𝑛
			

			
				𝜏
				
				ℎ
			

			

				𝑛
			

			
				=
				⟨
				𝛾
				𝜙
				(
				𝑝
				)
				−
				𝜇
				𝐹
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑥
			

			

				𝑛
			

			
				
				⟩
				−
				𝑝
			

			
				
			
			
				
				(
				𝜏
				−
				𝛾
				)
				−
				1
				−
				𝛼
			

			

				𝑛
			

			
				𝜏
				ℎ
				
				
			

			

				𝑛
			

			
				/
				𝛼
			

			

				𝑛
			

			
				
				,
			

		
	

						and in particular
							
	
 		
 			
				(
				3
				.
				1
				3
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			

				𝑛
			

			

				𝑗
			

			
				‖
				‖
				−
				𝑝
			

			

				𝑞
			

			
				≤
				
				𝛾
				𝜙
				(
				𝑝
				)
				−
				𝜇
				𝐹
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑥
			

			

				𝑛
			

			

				𝑗
			

			
				−
				𝑝
				
				
			

			
				
			
			
				
				(
				𝜏
				−
				𝛾
				)
				−
				1
				−
				𝛼
			

			

				𝑛
			

			

				𝑗
			

			
				𝜏
				ℎ
				
				
			

			

				𝑛
			

			

				𝑗
			

			
				/
				𝛼
			

			

				𝑛
			

			

				𝑗
			

			
				
				.
			

		
	

						Since 
	
		
			

				𝑥
			

			

				𝑛
			

			

				𝑗
			

			
				⇀
				𝑝
			

		
	
, from the above inequality and 
	
		
			

				𝐽
			

			

				𝑞
			

		
	
 is a weakly sequentially continuous duality mapping, we have 
	
		
			

				𝑥
			

			

				𝑛
			

			

				𝑗
			

			
				→
				𝑝
			

		
	
 as 
	
		
			
				𝑗
				→
				∞
			

		
	
. Next, we show that 
	
		
			

				𝑝
			

		
	
 solves the variational inequality (3.2). Indeed, from the relation
							
	
 		
 			
				(
				3
				.
				1
				4
				)
			
 		
	

	
		
			

				𝑥
			

			

				𝑛
			

			
				=
				𝛼
			

			

				𝑛
			

			
				
				𝑥
				𝛾
				𝜙
			

			

				𝑛
			

			
				
				+
				
				𝐼
				−
				𝛼
			

			

				𝑛
			

			
				
				𝑇
				𝜇
				𝐹
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			

				,
			

		
	

						we get
							
	
 		
 			
				(
				3
				.
				1
				5
				)
			
 		
	

	
		
			
				(
				𝜇
				𝐹
				−
				𝛾
				𝜙
				)
				𝑥
			

			

				𝑛
			

			
				1
				=
				−
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				
				(
				𝐼
				−
				𝑇
			

			

				𝑛
			

			
				)
				𝑥
			

			

				𝑛
			

			
				−
				𝛼
			

			

				𝑛
			

			
				𝜇
				𝐹
				𝑥
			

			

				𝑛
			

			
				+
				𝛼
			

			

				𝑛
			

			
				𝜇
				𝐹
				𝑇
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				
				.
			

		
	

						So, for any 
	
		
			
				𝑧
				∈
				𝐹
			

			

				∗
			

		
	

	
 		
 			
				(
				3
				.
				1
				6
				)
			
 		
	

	
		
			
				
				(
				𝜇
				𝐹
				−
				𝛾
				𝜙
				)
				𝑥
			

			

				𝑛
			

			
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑥
			

			

				𝑛
			

			
				1
				−
				𝑧
				
				
				=
				−
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				⟨
				(
				𝐼
				−
				𝑇
			

			

				𝑛
			

			
				)
				𝑥
			

			

				𝑛
			

			
				−
				𝛼
			

			

				𝑛
			

			
				𝜇
				𝐹
				𝑥
			

			

				𝑛
			

			
				+
				𝛼
			

			

				𝑛
			

			
				𝜇
				𝐹
				𝑇
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑥
			

			

				𝑛
			

			
				
				⟩
				1
				−
				𝑧
				=
				−
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				⟨
				(
				𝐼
				−
				𝑇
			

			

				𝑛
			

			
				)
				𝑥
			

			

				𝑛
			

			
				−
				(
				𝐼
				−
				𝑇
			

			

				𝑛
			

			
				)
				𝑧
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑥
			

			

				𝑛
			

			
				
				⟩
				−
				𝑧
				+
				⟨
				(
				𝜇
				𝐹
				−
				𝜇
				𝐹
				𝑇
			

			

				𝑛
			

			
				)
				𝑥
			

			

				𝑛
			

			
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑥
			

			

				𝑛
			

			
				
				⟩
				1
				−
				𝑧
				≤
				−
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑧
			

			

				𝑞
			

			
				+
				1
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				
				1
				+
				ℎ
			

			

				𝑛
			

			
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑧
			

			

				𝑞
			

			
				+
				⟨
				(
				𝜇
				𝐹
				−
				𝜇
				𝐹
				𝑇
			

			

				𝑛
			

			
				)
				𝑥
			

			

				𝑛
			

			
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑥
			

			

				𝑛
			

			
				
				⟩
				≤
				ℎ
				−
				𝑧
			

			

				𝑛
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑧
			

			

				𝑞
			

			
				+
				⟨
				(
				𝜇
				𝐹
				−
				𝜇
				𝐹
				𝑇
			

			

				𝑛
			

			
				)
				𝑥
			

			

				𝑛
			

			
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑥
			

			

				𝑛
			

			
				
				−
				𝑧
				⟩
				.
			

		
	

						Now replacing 
	
		
			

				𝑛
			

		
	
 in (3.16) with 
	
		
			

				𝑛
			

			

				𝑗
			

		
	
 and letting 
	
		
			
				𝑗
				→
				∞
			

		
	
, using 
	
		
			
				(
				𝜇
				𝐹
				−
				𝜇
				𝐹
				𝑇
			

			

				𝑛
			

			
				)
				𝑥
			

			

				𝑛
			

			

				𝑗
			

			
				→
				(
				𝜇
				𝐹
				−
				𝜇
				𝐹
				𝑇
			

			

				𝑛
			

			
				)
				𝑝
				=
				0
			

		
	
 for 
	
		
			
				𝑝
				∈
				𝐹
			

			

				∗
			

		
	
, and the fact that 
	
		
			

				𝑥
			

			

				𝑛
			

			

				𝑗
			

			
				→
				𝑝
			

		
	
 as 
	
		
			
				𝑗
				→
				∞
			

		
	
, we obtain 
	
		
			
				⟨
				(
				𝜇
				𝐹
				−
				𝛾
				𝜙
				)
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				(
				𝑝
				−
				𝑧
				)
				⟩
				≤
				0
				,
				∀
				𝑧
				∈
				𝐹
			

			

				∗
			

		
	
. This implies that 
	
		
			
				𝑝
				∈
				𝐹
			

			

				∗
			

		
	
 is a solution of the variational inequality (3.2). Every weak limit of 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 say 
	
		
			

				𝑝
			

		
	
 belongs to 
	
		
			

				𝐹
			

			

				∗
			

		
	
. Furthermore, 
	
		
			

				𝑝
			

		
	
 is a strong limit of 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 that solves the variational inequality (3.2). As this solution is unique we get that 
	
		
			

				𝑥
			

			

				𝑛
			

			
				→
				𝑝
			

		
	
 as 
	
		
			
				𝑛
				→
				∞
			

		
	
. This completes the proof.
Corollary 3.2.  Let 
	
		
			

				𝐸
			

		
	
 be a 
	
		
			

				𝑞
			

		
	
-uniformly smooth and strictly convex Banach space, and let 
	
		
			

				𝐶
			

		
	
 be a nonempty closed convex subset of 
	
		
			

				𝐸
			

		
	
 such that 
	
		
			
				𝐶
				±
				𝐶
				⊂
				𝐶
			

		
	
 and have a weakly sequentially continuous duality mapping 
	
		
			

				𝐽
			

			

				𝑞
			

		
	
 from 
	
		
			

				𝐸
			

		
	
 to 
	
		
			

				𝐸
			

			

				∗
			

		
	
. Let 
	
		
			
				𝑇
				∶
				𝐶
				→
				𝐶
			

		
	
 be a nonexpansive mapping. Let 
	
		
			
				{
				𝛼
			

			

				𝑛
			

			

				}
			

		
	
 be a sequence in (0, 1) satisfying 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝛼
			

			

				𝑛
			

			
				=
				0
			

		
	
. Let 
	
		
			

				𝜙
			

		
	
 and 
	
		
			

				𝐹
			

		
	
 be as in Theorem 3.1. For 
	
		
			

				𝑇
			

		
	
, let 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 be defined by
							
	
 		
 			
				(
				3
				.
				1
				7
				)
			
 		
	

	
		
			

				𝑥
			

			

				𝑛
			

			
				=
				𝛼
			

			

				𝑛
			

			
				
				𝑥
				𝛾
				𝜙
			

			

				𝑛
			

			
				
				+
				
				𝐼
				−
				𝛼
			

			

				𝑛
			

			
				
				𝜇
				𝐹
				𝑇
				𝑥
			

			

				𝑛
			

			

				.
			

		
	

						Then, 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 converges to a fixed point say 
	
		
			

				𝑝
			

		
	
 in 
	
		
			

				𝐹
			

			

				∗
			

		
	
 which solves the variational inequality (3.2).
4. Explicit Algorithm
Theorem 4.1.  Let 
	
		
			

				𝐸
			

		
	
 be a 
	
		
			

				𝑞
			

		
	
-uniformly smooth and strictly convex Banach space, and let 
	
		
			

				𝐶
			

		
	
 be a nonempty closed convex subset of 
	
		
			

				𝐸
			

		
	
 such that 
	
		
			
				𝐶
				±
				𝐶
				⊂
				𝐶
			

		
	
 and have a weakly sequentially continuous duality mapping 
	
		
			

				𝐽
			

			

				𝑞
			

		
	
 from 
	
		
			

				𝐸
			

		
	
 to 
	
		
			

				𝐸
			

			

				∗
			

		
	
. Let 
	
		
			
				𝑇
				∶
				𝐶
				→
				𝐶
			

		
	
 be an asymptotically nonexpansive mapping with sequences 
	
		
			
				{
				1
				+
				ℎ
			

			

				𝑛
			

			

				}
			

		
	
, such that 
	
		
			

				ℎ
			

			

				𝑛
			

			
				→
				0
			

		
	
 as 
	
		
			
				𝑛
				→
				∞
			

		
	
 and 
	
		
			

				𝐹
			

			

				∗
			

			
				∶
				=
				𝐹
				(
				𝑇
				)
				≠
				∅
			

		
	
. Let 
	
		
			

				𝐷
			

		
	
 be a bounded subset of 
	
		
			

				𝐶
			

		
	
 such that 
	
		
			
				s
				u
				p
			

			
				𝑥
				∈
				𝐷
			

			
				‖
				𝑇
			

			
				𝑛
				+
				1
			

			
				𝑥
				−
				𝑇
			

			

				𝑛
			

			
				𝑥
				‖
				→
				0
			

		
	
. Let 
	
		
			

				𝐹
			

		
	
 be a 
	
		
			

				𝑘
			

			

				
			

		
	
-Lipschitzian and 
	
		
			

				𝜂
			

		
	
-strongly monotone operator on 
	
		
			

				𝐶
			

		
	
 with 
	
		
			
				0
				<
				𝜇
				<
				m
				i
				n
				{
				(
				𝑞
				𝜂
				/
				𝐶
			

			

				𝑞
			

			
				(
				𝑘
				′
				)
			

			

				𝑞
			

			

				)
			

			
				1
				/
				(
				𝑞
				−
				1
				)
			

			
				,
				1
				}
			

		
	
, and 
	
		
			

				𝜙
			

		
	
 be a MKC on 
	
		
			

				𝐶
			

		
	
 with 
	
		
			
				0
				<
				𝛾
				<
				(
				𝑞
				𝜇
				𝜂
				−
				𝐶
			

			

				𝑞
			

			

				𝜇
			

			

				𝑞
			

			
				(
				𝑘
				′
				)
			

			

				𝑞
			

			
				)
				/
				𝑞
				=
				𝜏
			

		
	
. Let 
	
		
			
				{
				𝛼
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝛽
			

			

				𝑛
			

			

				}
			

		
	
 be sequences in (0,1) satisfying the following conditions: (B1)
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝛼
			

			

				𝑛
			

			
				=
				0
			

		
	
;(B2)
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				(
				ℎ
			

			

				𝑛
			

			
				/
				𝛼
			

			

				𝑛
			

			
				)
				=
				0
			

		
	
;(B3)
	
		
			

				∑
			

			
				∞
				𝑛
				=
				1
			

			

				𝛼
			

			

				𝑛
			

			
				=
				∞
			

		
	
;(B4)
	
		
			
				0
				<
				l
				i
				m
				i
				n
				f
			

			
				𝑛
				→
				∞
			

			

				𝛽
			

			

				𝑛
			

			
				≤
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			

				𝛽
			

			

				𝑛
			

			
				<
				1
			

		
	
.Then, 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 defined by (1.9) converges strongly to a fixed point say 
	
		
			

				𝑝
			

		
	
 in 
	
		
			

				𝐹
			

			

				∗
			

		
	
 which solves the variational inequality (3.2).
Proof. Since 
	
		
			

				𝛼
			

			

				𝑛
			

			
				→
				0
			

		
	
 and 
	
		
			

				ℎ
			

			

				𝑛
			

			
				/
				𝛼
			

			

				𝑛
			

			
				→
				0
			

		
	
 as 
	
		
			
				𝑛
				→
				∞
			

		
	
, 
	
		
			
				(
				1
				−
				𝛼
			

			

				𝑛
			

			
				𝜏
				)
				(
				ℎ
			

			

				𝑛
			

			
				/
				𝛼
			

			

				𝑛
			

			
				)
				→
				0
			

		
	
 as 
	
		
			
				𝑛
				→
				∞
			

		
	
. Thus, 
	
		
			
				∃
				𝑁
			

			

				0
			

			
				∈
				𝑁
			

		
	
 such that 
	
		
			
				(
				1
				−
				𝛼
			

			

				𝑛
			

			
				𝜏
				)
				(
				ℎ
			

			

				𝑛
			

			
				/
				𝛼
			

			

				𝑛
			

			
				)
				<
				(
				1
				/
				2
				)
				(
				𝜏
				−
				𝛾
				)
			

		
	
 and 
	
		
			

				𝛼
			

			

				𝑛
			

			
				<
				(
				𝑘
			

			

				
			

			

				)
			

			
				−
				1
			

		
	
, 
	
		
			
				f
				o
				r
				a
				l
				l
			

			
				𝑛
				≥
				𝑁
			

			

				0
			

		
	
. For any point 
	
		
			
				𝑝
				∈
				𝐹
			

			

				∗
			

		
	
 and 
	
		
			
				𝑛
				≥
				𝑁
			

			

				0
			

		
	
,
							
	
 		
 			
				(
				4
				.
				1
				)
			
 		
	

	
		
			
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				=
				‖
				‖
				𝛼
				−
				𝑝
			

			

				𝑛
			

			
				
				
				𝑥
				𝛾
				𝜙
			

			

				𝑛
			

			
				
				
				+
				
				−
				𝜇
				𝐹
				𝑝
				𝐼
				−
				𝛼
			

			

				𝑛
			

			
				
				𝑇
				𝜇
				𝐹
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				−
				
				𝐼
				−
				𝛼
			

			

				𝑛
			

			
				
				𝑝
				‖
				‖
				𝜇
				𝐹
				≤
				𝛼
			

			

				𝑛
			

			
				𝛾
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				+
				𝛼
			

			

				𝑛
			

			
				
				‖
				𝛾
				𝜙
				(
				𝑝
				)
				−
				𝜇
				𝐹
				𝑝
				‖
				+
				1
				−
				𝛼
			

			

				𝑛
			

			
				𝜏
				
				
				1
				+
				ℎ
			

			

				𝑛
			

			
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				=
				
				−
				𝑝
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				(
				𝜏
				−
				𝛾
				)
				+
				1
				−
				𝛼
			

			

				𝑛
			

			
				𝜏
				
				ℎ
			

			

				𝑛
			

			
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				+
				𝛼
			

			

				𝑛
			

			
				‖
				𝛾
				𝜙
				(
				𝑝
				)
				−
				𝜇
				𝐹
				𝑝
				‖
				.
			

		
	

						But
							
	
 		
 			
				(
				4
				.
				2
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				‖
				‖
				−
				𝑝
				≤
				𝛽
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				
				−
				𝑝
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				.
				−
				𝑝
			

		
	

						Therefore,
							
	
 		
 			
				(
				4
				.
				3
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				‖
				‖
				≤
				
				𝛽
				−
				𝑝
			

			

				𝑛
			

			
				+
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				(
				𝜏
				−
				𝛾
				)
				+
				1
				−
				𝛼
			

			

				𝑛
			

			
				𝜏
				
				ℎ
			

			

				𝑛
			

			
				‖
				‖
				𝑥
				
				
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				+
				𝛼
			

			

				𝑛
			

			
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				‖
				=
				
				‖
				𝛾
				𝜙
				(
				𝑝
				)
				−
				𝜇
				𝐹
				𝑝
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				
				
				(
				𝜏
				−
				𝛾
				)
				−
				1
				−
				𝛼
			

			

				𝑛
			

			
				𝜏
				
				ℎ
			

			

				𝑛
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑥
				
				
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				+
				𝛼
			

			

				𝑛
			

			
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				‖
				≤
				
				𝛾
				𝜙
				(
				𝑝
				)
				−
				𝜇
				𝐹
				𝑝
				‖
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				
				1
			

			
				
			
			
				2
				‖
				‖
				𝑥
				(
				𝜏
				−
				𝛾
				)
				
				
			

			

				𝑛
			

			
				‖
				‖
				+
				
				𝛼
				−
				𝑝
			

			

				𝑛
			

			
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				
				/
				2
				(
				𝜏
				−
				𝛾
				)
			

			
				
			
			
				
				‖
				‖
				𝑥
				(
				1
				/
				2
				)
				(
				𝜏
				−
				𝛾
				)
				‖
				𝛾
				𝜙
				(
				𝑝
				)
				−
				𝜇
				𝐹
				𝑝
				‖
				≤
				m
				a
				x
			

			

				𝑛
			

			
				‖
				‖
				,
				−
				𝑝
				2
				‖
				𝛾
				𝜙
				(
				𝑝
				)
				−
				𝜇
				𝐹
				𝑝
				‖
			

			
				
			
			
				
				.
				𝜏
				−
				𝛾
			

		
	

						By induction, we have
							
	
 		
 			
				(
				4
				.
				4
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				
				‖
				‖
				𝑥
				−
				𝑝
				≤
				m
				a
				x
			

			

				𝑁
			

			

				0
			

			
				‖
				‖
				,
				−
				𝑝
				2
				‖
				𝛾
				𝜙
				(
				𝑝
				)
				−
				𝜇
				𝐹
				𝑝
				‖
			

			
				
			
			
				
				𝜏
				−
				𝛾
				,
				𝑛
				≥
				𝑁
			

			

				0
			

			

				.
			

		
	

						Next we show that
							
	
 		
 			
				(
				4
				.
				5
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				=
				0
				.
			

		
	

						From (1.9),
							
	
 		
 			
				(
				4
				.
				6
				)
			
 		
	

	
		
			

				𝑦
			

			
				𝑛
				+
				1
			

			
				−
				𝑦
			

			

				𝑛
			

			
				=
				𝛼
			

			
				𝑛
				+
				1
			

			
				
				𝑥
				𝛾
				𝜙
			

			
				𝑛
				+
				1
			

			
				
				+
				
				𝐼
				−
				𝛼
			

			
				𝑛
				+
				1
			

			
				
				𝑇
				𝜇
				𝐹
			

			
				𝑛
				+
				1
			

			

				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝛼
			

			

				𝑛
			

			
				
				𝑥
				𝛾
				𝜙
			

			

				𝑛
			

			
				
				+
				
				𝐼
				−
				𝛼
			

			

				𝑛
			

			
				
				𝑇
				𝜇
				𝐹
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			

				.
			

		
	

						Therefore,
							
	
 		
 			
				(
				4
				.
				7
				)
			
 		
	

	
		
			
				‖
				‖
				𝑦
			

			
				𝑛
				+
				1
			

			
				−
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				=
				‖
				‖
				𝛼
			

			
				𝑛
				+
				1
			

			
				𝛾
				
				𝜙
				
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				
				𝑥
				−
				𝜙
			

			

				𝑛
			

			
				+
				
				𝛼
				
				
			

			
				𝑛
				+
				1
			

			
				−
				𝛼
			

			

				𝑛
			

			
				
				
				𝑥
				𝛾
				𝜙
			

			

				𝑛
			

			
				
				+
				
				𝐼
				−
				𝛼
			

			
				𝑛
				+
				1
			

			
				
				𝑇
				𝜇
				𝐹
			

			
				𝑛
				+
				1
			

			

				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				
				𝐼
				−
				𝛼
			

			
				𝑛
				+
				1
			

			
				
				𝑇
				𝜇
				𝐹
			

			
				𝑛
				+
				1
			

			

				𝑥
			

			

				𝑛
			

			
				+
				
				𝐼
				−
				𝛼
			

			
				𝑛
				+
				1
			

			
				
				𝑇
				𝜇
				𝐹
			

			
				𝑛
				+
				1
			

			

				𝑥
			

			

				𝑛
			

			
				−
				
				𝐼
				−
				𝛼
			

			

				𝑛
			

			
				
				𝑇
				𝜇
				𝐹
			

			
				𝑛
				+
				1
			

			

				𝑥
			

			

				𝑛
			

			
				+
				
				𝐼
				−
				𝛼
			

			

				𝑛
			

			
				
				𝑇
				𝜇
				𝐹
			

			
				𝑛
				+
				1
			

			

				𝑥
			

			

				𝑛
			

			
				−
				
				𝐼
				−
				𝛼
			

			

				𝑛
			

			
				
				𝑇
				𝜇
				𝐹
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				‖
				‖
				.
			

		
	

						Hence,
	
 		
 			
				(
				4
				.
				8
				)
			
 		
	

	
		
			
				‖
				‖
				𝑦
			

			
				𝑛
				+
				1
			

			
				−
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				≤
				𝛼
			

			
				𝑛
				+
				1
			

			
				𝛾
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				|
				|
				𝛼
			

			
				𝑛
				+
				1
			

			
				−
				𝛼
			

			

				𝑛
			

			
				|
				|
				𝛾
				‖
				‖
				𝜙
				
				𝑥
			

			

				𝑛
			

			
				
				‖
				‖
				+
				
				1
				−
				𝛼
			

			
				𝑛
				+
				1
			

			
				𝜏
				
				
				1
				+
				ℎ
			

			
				𝑛
				+
				1
			

			
				
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				|
				|
				𝛼
			

			
				𝑛
				+
				1
			

			
				−
				𝛼
			

			

				𝑛
			

			
				|
				|
				‖
				‖
				𝑇
				‖
				𝜇
				𝐹
				‖
			

			
				𝑛
				+
				1
			

			

				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				𝜏
				
				‖
				‖
				𝑇
			

			
				𝑛
				+
				1
			

			

				𝑥
			

			

				𝑛
			

			
				−
				𝑇
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				‖
				‖
				,
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			
				
				‖
				‖
				𝑦
			

			
				𝑛
				+
				1
			

			
				−
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				−
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				
				≤
				0
				,
			

		
	

						and by Lemma 2.3
	
 		
 			
				(
				4
				.
				9
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				=
				0
				.
			

		
	

						Thus, from (1.9),
							
	
 		
 			
				(
				4
				.
				1
				0
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				=
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				⟶
				0
			

			
				a
				s
			

			
				𝑛
				⟶
				∞
				.
			

		
	
Next, we show that
							
	
 		
 			
				(
				4
				.
				1
				1
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑇
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				=
				0
				.
			

		
	

						Since
							
	
 		
 			
				(
				4
				.
				1
				2
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑇
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				‖
				‖
				≤
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑇
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				‖
				‖
				=
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				‖
				‖
				𝛽
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				+
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				𝑦
			

			

				𝑛
			

			
				−
				𝑇
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				‖
				‖
				≤
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				𝛽
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑇
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				𝛼
			

			

				𝑛
			

			
				
				‖
				‖
				
				𝑥
				𝛾
				𝜙
			

			

				𝑛
			

			
				
				‖
				‖
				+
				‖
				‖
				𝜇
				𝐹
				𝑇
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				‖
				‖
				
				.
			

		
	

						Thus,
							
	
 		
 			
				(
				4
				.
				1
				3
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑇
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				‖
				‖
				≤
				1
			

			
				
			
			
				1
				−
				𝛽
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				𝛼
			

			

				𝑛
			

			
				
				‖
				‖
				
				𝑥
				𝛾
				𝜙
			

			

				𝑛
			

			
				
				‖
				‖
				+
				‖
				‖
				𝜇
				𝐹
				𝑇
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				‖
				‖
				
				.
			

		
	

						Hence,
							
	
 		
 			
				(
				4
				.
				1
				4
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑇
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				‖
				‖
				=
				0
				.
			

		
	

						Since 
	
		
			

				𝑇
			

		
	
 is Lipschitz with constant 
	
		
			

				𝐿
			

		
	
 and for any positive number 
	
		
			
				𝑛
				≥
				1
			

		
	
, we have
							
	
 		
 			
				(
				4
				.
				1
				5
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑇
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				≤
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑇
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				‖
				‖
				𝑇
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				−
				𝑇
			

			
				𝑛
				+
				1
			

			

				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				‖
				‖
				𝑇
			

			
				𝑛
				+
				1
			

			

				𝑥
			

			

				𝑛
			

			
				−
				𝑇
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				≤
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑇
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				‖
				‖
				𝑇
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				−
				𝑇
			

			
				𝑛
				+
				1
			

			

				𝑥
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				𝑇
				+
				𝐿
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				⟶
				0
				.
			

		
	

						Therefore,
							
	
 		
 			
				(
				4
				.
				1
				6
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑇
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				=
				0
				.
			

		
	

						Next we show that
							
	
 		
 			
				(
				4
				.
				1
				7
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			
				
				𝛾
				𝜙
				(
				𝑝
				)
				−
				𝜇
				𝐹
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝑝
				
				
				≤
				0
				,
			

		
	

						where 
	
		
			
				𝑝
				∈
				𝐹
			

			

				∗
			

		
	
 is the unique solution of inequality (3.2). Let 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				𝑗
			

			

				}
			

		
	
 be a subsequence of 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 such that
							
	
 		
 			
				(
				4
				.
				1
				8
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			
				
				𝛾
				𝜙
				(
				𝑝
				)
				−
				𝜇
				𝐹
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝑝
				
				
				=
				l
				i
				m
			

			
				𝑗
				→
				∞
			

			
				
				𝛾
				𝜙
				(
				𝑝
				)
				−
				𝜇
				𝐹
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑥
			

			

				𝑛
			

			

				𝑗
			

			
				.
				−
				𝑝
				
				
			

		
	

						Since 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 is bounded, we may also assume that there exists some 
	
		
			
				𝑧
				∈
				𝐶
			

		
	
 such that 
	
		
			

				𝑥
			

			

				𝑛
			

			

				𝑗
			

			
				⇀
				𝑧
			

		
	
. From (4.11) it follows that
							
	
 		
 			
				(
				4
				.
				1
				9
				)
			
 		
	

	
		
			

				𝑥
			

			

				𝑛
			

			

				𝑗
			

			
				−
				𝑇
				𝑥
			

			

				𝑛
			

			

				𝑗
			

			
				⟶
				0
			

			
				a
				s
			

			
				𝑗
				⟶
				∞
				.
			

		
	

						By Lemma 2.5, the weak limit 
	
		
			
				𝑧
				∈
				𝐶
			

		
	
 of 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				𝑗
			

			

				}
			

		
	
 is a fixed point of the mapping 
	
		
			

				𝑇
			

		
	
, so this implies that 
	
		
			
				𝑧
				∈
				𝐹
			

			

				∗
			

		
	
. Hence by Theorem 3.1 and 
	
		
			

				𝐽
			

			

				𝑞
			

		
	
 is a weakly sequentially continuous duality mapping, we have
							
	
 		
 			
				(
				4
				.
				2
				0
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			
				⟨
				𝛾
				𝜙
				(
				𝑝
				)
				−
				𝜇
				𝐹
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑥
			

			

				𝑛
			

			
				
				−
				𝑝
				⟩
				=
				⟨
				𝛾
				𝜙
				(
				𝑝
				)
				−
				𝜇
				𝐹
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				(
				𝑧
				−
				𝑝
				)
				⟩
				≤
				0
				.
			

		
	

						Finally, we show that 
	
		
			
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑝
				‖
				→
				0
			

		
	
. By contradiction, there is a number 
	
		
			

				𝜀
			

			

				0
			

		
	
 such that
							
	
 		
 			
				(
				4
				.
				2
				1
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				≥
				𝜀
			

			

				0
			

			

				.
			

		
	
Case  1. Fixed 
	
		
			

				𝜀
			

			

				1
			

			
				(
				𝜀
			

			

				1
			

			
				<
				𝜀
			

			

				0
			

			

				)
			

		
	
, if for some 
	
		
			
				𝑛
				≥
				𝑁
				∈
				ℕ
			

		
	
 such that 
	
		
			
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑝
				‖
				≥
				𝜀
			

			

				0
			

			
				−
				𝜀
			

			

				1
			

		
	
, and for the other 
	
		
			
				𝑛
				≥
				𝑁
				∈
				ℕ
			

		
	
 such that 
	
		
			
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑝
				‖
				<
				𝜀
			

			

				0
			

			
				−
				𝜀
			

			

				1
			

		
	
.Let
							
	
 		
 			
				(
				4
				.
				2
				2
				)
			
 		
	

	
		
			

				𝑀
			

			

				𝑛
			

			
				=
				2
				𝑞
				⟨
				𝛾
				𝜙
				𝑝
				−
				𝜇
				𝐹
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑦
			

			

				𝑛
			

			
				
				⟩
				−
				𝑝
			

			
				
			
			
				
				𝜀
			

			

				0
			

			
				−
				𝜀
			

			

				1
			

			

				
			

			

				𝑞
			

			

				.
			

		
	

						From (4.20), we know 
	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			

				𝑀
			

			

				𝑛
			

			
				≤
				0
			

		
	
. Hence, there is a number 
	
		
			

				𝑁
			

		
	
, when 
	
		
			
				𝑛
				>
				𝑁
			

		
	
, we have 
	
		
			

				𝑀
			

			

				𝑛
			

			
				≤
				𝜏
				−
				𝛾
			

		
	
. We extract a number 
	
		
			

				𝑛
			

			

				0
			

			
				≥
				𝑁
			

		
	
 satisfying 
	
		
			
				‖
				𝑥
			

			

				𝑛
			

			

				0
			

			
				−
				𝑝
				‖
				<
				𝜀
			

			

				0
			

			
				−
				𝜀
			

			

				1
			

		
	
, then we estimate 
	
		
			
				‖
				𝑥
			

			

				𝑛
			

			

				0
			

			
				+
				1
			

			
				−
				𝑝
				‖
			

		
	

	
 		
 			
				(
				4
				.
				2
				3
				)
			
 		
	

	
		
			
				‖
				‖
				𝑦
			

			

				𝑛
			

			

				0
			

			
				‖
				‖
				−
				𝑝
			

			

				𝑞
			

			
				=
				‖
				‖
				𝛼
			

			

				𝑛
			

			

				0
			

			
				
				𝑥
				𝛾
				𝜙
			

			

				𝑛
			

			

				0
			

			
				
				+
				
				𝐼
				−
				𝜇
				𝛼
			

			

				𝑛
			

			

				0
			

			
				𝐹
				
				𝑇
			

			

				𝑛
			

			

				0
			

			

				𝑥
			

			

				𝑛
			

			

				0
			

			
				‖
				‖
				−
				𝑝
			

			

				𝑞
			

			
				
				=
				⟨
				𝐼
				−
				𝜇
				𝛼
			

			

				𝑛
			

			

				0
			

			
				𝐹
				
				𝑇
			

			

				𝑛
			

			

				0
			

			

				𝑥
			

			

				𝑛
			

			

				0
			

			
				−
				
				𝐼
				−
				𝜇
				𝛼
			

			

				𝑛
			

			

				0
			

			
				𝐹
				
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑦
			

			

				𝑛
			

			

				0
			

			
				
				−
				𝑝
				⟩
				+
				𝛼
			

			

				𝑛
			

			

				0
			

			
				
				
				𝑥
				𝛾
				𝜙
			

			

				𝑛
			

			

				0
			

			
				
				−
				𝛾
				𝜙
				(
				𝑝
				)
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑦
			

			

				𝑛
			

			

				0
			

			
				−
				𝑝
				
				
				+
				𝛼
			

			

				𝑛
			

			

				0
			

			
				⟨
				𝛾
				𝜙
				(
				𝑝
				)
				−
				𝜇
				𝐹
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑦
			

			

				𝑛
			

			

				0
			

			
				
				⟩
				≤
				
				−
				𝑝
				1
				−
				𝛼
			

			

				𝑛
			

			

				0
			

			
				𝜏
				
				
				1
				+
				ℎ
			

			

				𝑛
			

			

				0
			

			
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			

				0
			

			
				‖
				‖
				‖
				‖
				𝑦
				−
				𝑝
			

			

				𝑛
			

			

				0
			

			
				‖
				‖
				−
				𝑝
			

			
				𝑞
				−
				1
			

			
				+
				𝛼
			

			

				𝑛
			

			

				0
			

			
				𝛾
				‖
				‖
				𝜙
				
				𝑥
			

			

				𝑛
			

			

				0
			

			
				
				‖
				‖
				‖
				‖
				𝑦
				−
				𝜙
				(
				𝑝
				)
			

			

				𝑛
			

			

				0
			

			
				‖
				‖
				−
				𝑝
			

			
				𝑞
				−
				1
			

			
				+
				𝛼
			

			

				𝑛
			

			

				0
			

			
				
				𝛾
				𝜙
				(
				𝑝
				)
				−
				𝜇
				𝐹
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑦
			

			

				𝑛
			

			

				0
			

			
				<
				
				−
				𝑝
				
				
				1
				−
				𝛼
			

			

				𝑛
			

			

				0
			

			
				
				(
				𝜏
				−
				𝛾
				)
				+
				1
				−
				𝛼
			

			

				𝑛
			

			

				0
			

			
				𝜏
				
				ℎ
			

			

				𝑛
			

			

				0
			

			
				𝜀
				
				
			

			

				0
			

			
				−
				𝜀
			

			

				1
			

			
				
				‖
				‖
				𝑦
			

			

				𝑛
			

			

				0
			

			
				‖
				‖
				−
				𝑝
			

			
				𝑞
				−
				1
			

			
				+
				𝛼
			

			

				𝑛
			

			

				0
			

			
				
				𝛾
				𝜙
				(
				𝑝
				)
				−
				𝜇
				𝐹
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑦
			

			

				𝑛
			

			

				0
			

			
				=
				
				−
				𝑝
				
				
				1
				−
				𝛼
			

			

				𝑛
			

			

				0
			

			
				
				
				(
				𝜏
				−
				𝛾
				)
				−
				1
				−
				𝛼
			

			

				𝑛
			

			

				0
			

			
				𝜏
				
				ℎ
			

			

				𝑛
			

			

				0
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			

				0
			

			
				
				𝜀
				
				
			

			

				0
			

			
				−
				𝜀
			

			

				1
			

			
				
				‖
				‖
				𝑦
			

			

				𝑛
			

			

				0
			

			
				‖
				‖
				−
				𝑝
			

			
				𝑞
				−
				1
			

			
				+
				𝛼
			

			

				𝑛
			

			

				0
			

			
				
				𝛾
				𝜙
				(
				𝑝
				)
				−
				𝜇
				𝐹
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑦
			

			

				𝑛
			

			

				0
			

			
				≤
				
				𝛼
				−
				𝑝
				
				
				1
				−
			

			

				𝑛
			

			

				0
			

			
				
			
			
				2
				
				
				𝜀
				(
				𝜏
				−
				𝛾
				)
			

			

				0
			

			
				−
				𝜀
			

			

				1
			

			
				
				‖
				‖
				𝑦
			

			

				𝑛
			

			

				0
			

			
				‖
				‖
				−
				𝑝
			

			
				𝑞
				−
				1
			

			
				+
				𝛼
			

			

				𝑛
			

			

				0
			

			
				⟨
				𝛾
				𝜙
				(
				𝑝
				)
				−
				𝜇
				𝐹
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑦
			

			

				𝑛
			

			

				0
			

			
				
				⟩
				≤
				
				𝛼
				−
				𝑝
				1
				−
			

			

				𝑛
			

			

				0
			

			
				
			
			
				2
				
				1
				(
				𝜏
				−
				𝛾
				)
			

			
				
			
			
				𝑞
				
				𝜀
			

			

				0
			

			
				−
				𝜀
			

			

				1
			

			

				
			

			

				𝑞
			

			
				+
				𝑞
				−
				1
			

			
				
			
			
				𝑞
				‖
				‖
				𝑦
			

			

				𝑛
			

			

				0
			

			
				‖
				‖
				−
				𝑝
			

			

				𝑞
			

			
				+
				𝛼
			

			

				𝑛
			

			

				0
			

			
				
				𝛾
				𝜙
				(
				𝑝
				)
				−
				𝜇
				𝐹
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑦
			

			

				𝑛
			

			

				0
			

			
				≤
				
				𝛼
				−
				𝑝
				
				
				1
				−
			

			

				𝑛
			

			

				0
			

			
				
			
			
				2
				(
				
				
				𝜀
				𝜏
				−
				𝛾
				)
			

			

				0
			

			
				−
				𝜀
			

			

				1
			

			

				
			

			

				𝑞
			

			
				+
				𝑞
				𝛼
			

			

				𝑛
			

			

				0
			

			
				⟨
				𝛾
				𝜙
				(
				𝑝
				)
				−
				𝜇
				𝐹
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑦
			

			

				𝑛
			

			

				0
			

			
				
				−
				𝑝
				⟩
				.
			

		
	

						But
							
	
 		
 			
				(
				4
				.
				2
				4
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			

				𝑛
			

			

				0
			

			
				+
				1
			

			
				‖
				‖
				−
				𝑝
			

			

				𝑞
			

			
				≤
				𝛽
			

			

				𝑛
			

			

				0
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			

				0
			

			
				‖
				‖
				−
				𝑝
			

			

				𝑞
			

			
				+
				
				1
				−
				𝛽
			

			

				𝑛
			

			

				0
			

			
				
				‖
				‖
				𝑦
			

			

				𝑛
			

			

				0
			

			
				‖
				‖
				−
				𝑝
			

			

				𝑞
			

			
				<
				𝛽
			

			

				𝑛
			

			

				0
			

			
				
				𝜀
			

			

				0
			

			
				−
				𝜀
			

			

				1
			

			

				
			

			

				𝑞
			

			
				+
				
				1
				−
				𝛽
			

			

				𝑛
			

			

				0
			

			
				
				‖
				‖
				𝑦
			

			

				𝑛
			

			

				0
			

			
				‖
				‖
				−
				𝑝
			

			

				𝑞
			

			

				.
			

		
	

						Therefore,
							
	
 		
 			
				(
				4
				.
				2
				5
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			

				𝑛
			

			

				0
			

			
				+
				1
			

			
				‖
				‖
				−
				𝑝
			

			

				𝑞
			

			
				<
				𝛽
			

			

				𝑛
			

			

				0
			

			
				
				𝜀
			

			

				0
			

			
				−
				𝜀
			

			

				1
			

			

				
			

			

				𝑞
			

			
				+
				
				1
				−
				𝛽
			

			

				𝑛
			

			

				0
			

			
				
				
				𝛼
				1
				−
			

			

				𝑛
			

			

				0
			

			
				
			
			
				2
				
				
				𝜀
				(
				𝜏
				−
				𝛾
				)
			

			

				0
			

			
				−
				𝜀
			

			

				1
			

			

				
			

			

				𝑞
			

			
				+
				𝑞
				𝛼
			

			

				𝑛
			

			

				0
			

			
				
				1
				−
				𝛽
			

			

				𝑛
			

			

				0
			

			
				
				
				𝛾
				𝜙
				(
				𝑝
				)
				−
				𝜇
				𝐹
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑦
			

			

				𝑛
			

			

				0
			

			
				=
				
				1
				−
				𝑝
				
				
				1
				−
			

			
				
			
			
				2
				𝛼
			

			

				𝑛
			

			

				0
			

			
				
				1
				−
				𝛽
			

			

				𝑛
			

			

				0
			

			
				
				
				
				𝜀
				(
				𝜏
				−
				𝛾
				)
			

			

				0
			

			
				−
				𝜀
			

			

				1
			

			

				
			

			

				𝑞
			

			
				+
				𝑞
				𝛼
			

			

				𝑛
			

			

				0
			

			
				
				1
				−
				𝛽
			

			

				𝑛
			

			

				0
			

			
				
				
				𝛾
				𝜙
				(
				𝑝
				)
				−
				𝜇
				𝐹
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑦
			

			

				𝑛
			

			

				0
			

			
				=
				
				1
				−
				𝑝
				
				
				1
				−
			

			
				
			
			
				2
				𝛼
			

			

				𝑛
			

			

				0
			

			
				
				1
				−
				𝛽
			

			

				𝑛
			

			

				0
			

			
				
				
				(
				𝜏
				−
				𝛾
				)
				−
				𝑀
			

			

				𝑛
			

			
				
				
				
				𝜀
			

			

				0
			

			
				−
				𝜀
			

			

				1
			

			

				
			

			

				𝑞
			

			
				<
				
				𝜀
			

			

				0
			

			
				−
				𝜀
			

			

				1
			

			

				
			

			

				𝑞
			

			

				.
			

		
	

						Hence, we have
							
	
 		
 			
				(
				4
				.
				2
				6
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			

				𝑛
			

			

				0
			

			
				+
				1
			

			
				‖
				‖
				−
				𝑝
				<
				𝜀
			

			

				0
			

			
				−
				𝜀
			

			

				1
			

			

				.
			

		
	

						In the same way, we can get
							
	
 		
 			
				(
				4
				.
				2
				7
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				<
				𝜀
			

			

				0
			

			
				−
				𝜀
			

			

				1
			

			
				,
				∀
				𝑛
				≥
				𝑛
			

			

				0
			

			

				.
			

		
	

						It contradicts the 
	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑝
				‖
				≥
				𝜀
			

			

				0
			

		
	
.Case  2. Fixed 
	
		
			

				𝜀
			

			

				1
			

			
				(
				𝜀
			

			

				1
			

			
				<
				𝜀
			

			

				0
			

			

				)
			

		
	
, if 
	
		
			
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑝
				‖
				≥
				𝜀
			

			

				0
			

			
				−
				𝜀
			

			

				1
			

		
	
, for all 
	
		
			
				𝑛
				≥
				𝑁
				∈
				ℕ
			

		
	
, from Lemma 2.2, there is a number 
	
		
			
				𝑟
				(
				0
				<
				𝑟
				<
				1
				)
			

		
	
 such that
							
	
 		
 			
				(
				4
				.
				2
				8
				)
			
 		
	

	
		
			
				‖
				‖
				𝜙
				
				𝑥
			

			

				𝑛
			

			
				
				‖
				‖
				‖
				‖
				𝑥
				−
				𝜙
				(
				𝑝
				)
				≤
				𝑟
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				,
				𝑛
				≥
				𝑁
				.
			

		
	

						It follows (1.9) that
							
	
 		
 			
				(
				4
				.
				2
				9
				)
			
 		
	

	
		
			
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				𝑞
			

			
				=
				‖
				‖
				𝛼
			

			

				𝑛
			

			
				𝛾
				𝜙
				(
				𝑥
			

			

				𝑛
			

			
				)
				+
				(
				𝐼
				−
				𝜇
				𝛼
			

			

				𝑛
			

			
				𝐹
				)
				𝑇
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				𝑞
			

			
				
				=
				⟨
				𝐼
				−
				𝜇
				𝛼
			

			

				𝑛
			

			
				𝐹
				
				𝑇
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				−
				
				𝐼
				−
				𝜇
				𝛼
			

			

				𝑛
			

			
				𝐹
				
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑦
			

			

				𝑛
			

			
				
				−
				𝑝
				⟩
				+
				𝛼
			

			

				𝑛
			

			
				
				𝑥
				⟨
				𝛾
				𝜙
			

			

				𝑛
			

			
				
				−
				𝛾
				𝜙
				(
				𝑝
				)
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑦
			

			

				𝑛
			

			
				
				⟩
				−
				𝑝
				+
				𝛼
			

			

				𝑛
			

			
				
				𝛾
				𝜙
				(
				𝑝
				)
				−
				𝜇
				𝐹
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑦
			

			

				𝑛
			

			
				≤
				
				−
				𝑝
				
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				𝜏
				
				
				1
				+
				ℎ
			

			

				𝑛
			

			
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				𝑦
				−
				𝑝
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			
				𝑞
				−
				1
			

			
				+
				𝛼
			

			

				𝑛
			

			
				𝛾
				‖
				‖
				𝜙
				
				𝑥
			

			

				𝑛
			

			
				
				‖
				‖
				‖
				‖
				𝑦
				−
				𝜙
				(
				𝑝
				)
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			
				𝑞
				−
				1
			

			
				+
				𝛼
			

			

				𝑛
			

			
				
				𝛾
				𝜙
				(
				𝑝
				)
				−
				𝜇
				𝐹
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑦
			

			

				𝑛
			

			
				<
				
				−
				𝑝
				
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				(
				𝜏
				−
				𝛾
				𝑟
				)
				+
				1
				−
				𝛼
			

			

				𝑛
			

			
				𝜏
				
				ℎ
			

			

				𝑛
			

			
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				𝑦
				−
				𝑝
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			
				𝑞
				−
				1
			

			
				+
				𝛼
			

			

				𝑛
			

			
				⟨
				𝛾
				𝜙
				(
				𝑝
				)
				−
				𝜇
				𝐹
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑦
			

			

				𝑛
			

			
				
				⟩
				=
				
				−
				𝑝
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				
				(
				𝜏
				−
				𝛾
				𝑟
				)
				−
				1
				−
				𝛼
			

			

				𝑛
			

			
				𝜏
				
				ℎ
			

			

				𝑛
			

			
				
			
			

				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑥
				
				
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				𝑦
				−
				𝑝
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			
				𝑞
				−
				1
			

			
				+
				𝛼
			

			

				𝑛
			

			
				
				𝛾
				𝜙
				(
				𝑝
				)
				−
				𝜇
				𝐹
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑦
			

			

				𝑛
			

			
				≤
				
				𝛼
				−
				𝑝
				
				
				1
				−
			

			

				𝑛
			

			
				
			
			
				2
				
				‖
				‖
				𝑥
				(
				𝜏
				−
				𝛾
				𝑟
				)
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				𝑦
				−
				𝑝
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			
				𝑞
				−
				1
			

			
				+
				𝛼
			

			

				𝑛
			

			
				⟨
				𝛾
				𝜙
				(
				𝑝
				)
				−
				𝜇
				𝐹
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑦
			

			

				𝑛
			

			
				
				⟩
				≤
				
				𝛼
				−
				𝑝
				1
				−
			

			

				𝑛
			

			
				
			
			
				2
				
				1
				(
				𝜏
				−
				𝛾
				𝑟
				)
			

			
				
			
			
				𝑞
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				𝑞
			

			
				+
				𝑞
				−
				1
			

			
				
			
			
				𝑞
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				𝑞
			

			
				+
				𝛼
			

			

				𝑛
			

			
				
				𝛾
				𝜙
				(
				𝑝
				)
				−
				𝜇
				𝐹
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑦
			

			

				𝑛
			

			
				≤
				
				𝛼
				−
				𝑝
				
				
				1
				−
			

			

				𝑛
			

			
				
			
			
				2
				
				‖
				‖
				𝑥
				(
				𝜏
				−
				𝛾
				𝑟
				)
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				𝑞
			

			
				+
				𝑞
				𝛼
			

			

				𝑛
			

			
				
				𝛾
				𝜙
				(
				𝑝
				)
				−
				𝜇
				𝐹
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑦
			

			

				𝑛
			

			
				.
				−
				𝑝
				
				
			

		
	

						Therefore,
							
	
 		
 			
				(
				4
				.
				3
				0
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				‖
				‖
				−
				𝑝
			

			

				𝑞
			

			
				≤
				𝛽
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				𝑞
			

			
				+
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				𝑞
			

			
				<
				𝛽
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				𝑞
			

			
				+
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				
				𝛼
				1
				−
			

			

				𝑛
			

			
				
			
			
				2
				(
				
				‖
				‖
				𝑥
				𝜏
				−
				𝛾
				𝑟
				)
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				𝑞
			

			
				+
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				𝛼
			

			

				𝑛
			

			
				𝑞
				⟨
				𝛾
				𝜙
				(
				𝑝
				)
				−
				𝜇
				𝐹
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑦
			

			

				𝑛
			

			
				
				⟩
				=
				
				1
				−
				𝑝
				1
				−
			

			
				
			
			
				2
				𝛼
			

			

				𝑛
			

			
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				
				‖
				‖
				𝑥
				(
				𝜏
				−
				𝛾
				𝑟
				)
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
			

			

				𝑞
			

			
				+
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				𝛼
			

			

				𝑛
			

			
				𝑞
				
				𝛾
				𝜙
				(
				𝑝
				)
				−
				𝜇
				𝐹
				𝑝
				,
				𝐽
			

			

				𝑞
			

			
				
				𝑦
			

			

				𝑛
			

			
				.
				−
				𝑝
				
				
			

		
	

						By Lemma 2.4, we have that 
	
		
			
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑝
				‖
				→
				0
			

		
	
 as 
	
		
			
				𝑛
				→
				∞
			

		
	
. It contradicts the 
	
		
			
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑝
				‖
				≥
				𝜀
			

			

				0
			

			
				−
				𝜀
			

			

				1
			

		
	
. This completes the proof.
The following corollary follows from Theorem 4.1.
Corollary 4.2.  Let 
	
		
			

				𝐸
			

		
	
 be a 
	
		
			

				𝑞
			

		
	
-uniformly smooth and strictly convex Banach space, and let 
	
		
			

				𝐶
			

		
	
 be a nonempty closed convex subset of 
	
		
			

				𝐸
			

		
	
 such that 
	
		
			
				𝐶
				±
				𝐶
				⊂
				𝐶
			

		
	
 and have a weakly sequentially continuous duality mapping 
	
		
			

				𝐽
			

			

				𝑞
			

		
	
 from 
	
		
			

				𝐸
			

		
	
 to 
	
		
			

				𝐸
			

			

				∗
			

		
	
. Let 
	
		
			
				𝑇
				,
				𝐹
			

			

				∗
			

			
				,
				𝐹
				,
				𝜙
			

		
	
 and 
	
		
			
				{
				𝛼
			

			

				𝑛
			

			

				}
			

		
	
 be as in Corollary 3.2. Let 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 be defined by
							
	
 		
 			
				(
				4
				.
				3
				1
				)
			
 		
	

	
		
			

				𝑥
			

			
				𝑛
				+
				1
			

			
				=
				𝛽
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				+
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				𝑦
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				=
				
				𝐼
				−
				𝜇
				𝛼
			

			

				𝑛
			

			
				𝐹
				
				𝑇
				𝑥
			

			

				𝑛
			

			
				+
				𝛼
			

			

				𝑛
			

			
				
				𝑥
				𝛾
				𝜙
			

			

				𝑛
			

			
				
				,
				∀
				𝑛
				≥
				0
				,
			

		
	

						Then, 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 converges strongly to a fixed point say 
	
		
			

				𝑝
			

		
	
 in 
	
		
			

				𝐹
			

			

				∗
			

		
	
 which solves the variational inequality (3.2).
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