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Based on the measured data and characteristics of sea ice temperature distribution in space
and time, this study is intended to consider a parabolic partial differential equation of the
thermodynamic field of sea ice (coupled by snow, ice, and sea water layers)with a time-dependent
domain and its parameter identification problem. An optimal model with state constraints is
presented with the thicknesses of snow and sea ice as parametric variables and the deviation
between the calculated and measured sea ice temperatures as the performance criterion. The
unique existence of the weak solution of the thermodynamic system is proved. The properties of
the identification problem and the existence of the optimal parameter are discussed, and the one-
order necessary condition is derived. Finally, based on the nonoverlapping domain decomposition
method and semi-implicit difference scheme, an optimization algorithm is proposed for the
numerical simulation. Results show that the simulated temperature of sea ice fit well with the
measured data, and the better fit is corresponding to the deeper sea ice.

1. Introduction

Arctic sea ice cover affects the exchange of heat, energy, mass, and momentum between the
atmosphere and the Arctic ocean, and it is a major component of the Arctic environment.
Parkinson and Cavalieri [1] suggested that sea ice in the Arctic is a key indicator of climate
change. Sea ice has been the principal threat to the development of the Arctic cruise which is
cheap, reliable, and capable of year-around operation. Extremely formidable sea ice cover
can restrict the operation of surface ships to a few months each summer, and even then
there are areas where icebreaker assistance is still required. Meanwhile, sea ice is also a
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significant threat for the safe design of offshore structures and harbor facilities. Therefore,
the research on sea ice has aroused interests of the scientists in many fields. Unfortunately,
the physical parameters of sea ice have been obtained mainly by field measurement until
now, which are spare and unsatisfactory due to the difficulties in situ, especially during the
polar winter. The parameter identification method can reinforce the field data for improved
understanding of the physical mechanism and variabilities of parameters of sea ice because
sea ice temperature can be measured continuously and automatically. Moreover, it can help
to forecast the variabilities of sea ice and climate [2–4].

Many researchers have been devoted to the establishment and improvement of
the thermodynamic model of sea ice system. Maykut and Untersteinter [5] first formally
proposed a comprehensive one-dimensional sea ice thermodynamic model named MU
model, but the corresponding fluxes of atmosphere and ocean were not involved. Semtner
[6] simplified MU model, his model has been widely used in climate simulations, while
lacks universal and effectiveness. Parkinson and Washington [7] made an improvement of
Semtner’s model [6], extended the thermodynamic model to a three-dimensional model on
a large scale, and considered especially the impact of the leads, which are stretches of open
water within fields of sea ice. Hibler [8] established a thermal-dynamic model and carried
out first the numerical simulation using finite difference method. Numerical simulation
and parameter identification of sea ice thermodynamic system have been paid increasing
attention over the past several years, and the consideration of the thermodynamic process
of sea ice has been more detailed and comprehensive [9–12]. The thickness of sea ice is one
of the most important parameters in thermodynamic and dynamic models of sea ice, and it
describes the vertical scale of sea ice. Unfortunately, owing to the randomness and variability
of the distribution of sea ice, the continuous and accurate measurement of the thickness
is very difficult. Meanwhile, the continuous changes of sea ice thickness in the numerical
simulation of large-scale and long process may lead to comparatively large deviation between
the simulated and measured sea ice temperatures. The introduction of the change of sea
ice thickness in the thermodynamic system thus cannot only describe the thermodynamic
behavior of sea ice better but also make the numerical simulation more accurately, while
there is few consideration of it at present [13].

The thermodynamic process of sea ice is a heat conductivity process in nature
which can be described by a parabolic partial differential equation generally. Therefore, we
describe the variability of sea ice temperature in space and time by a parabolic distributed
parameter system, with sea ice temperature as the state variable. A one-dimensional three-
layer thermodynamic system coupled by snow, ice, and sea water is considered, and the
thicknesses of snow and sea ice are identified. A distributed parameter system in a time-
dependent domain is established and transferred to an abstract parabolic evolution system
by some mathematical methods, and the existence and uniqueness of the weak solution of
the evolution equation are proved. By taking the thicknesses of snow and sea ice as identified
variables and the deviation between the calculated and measured temperature of sea ice as
the performance criterion, an optimal model with state constraints is presented. Then, the
existence of the optimal parameter is discussed, and the one-order necessary condition of the
optimality is given. Finally, based on the nonoverlapping domain decompositionmethod and
semi-implicit difference schemes, an optimization algorithm is constructed and applied to
study the thickness and temperature of the Arctic sea ice. Through numerical simulation, we
obtained the change characteristics of snow and ice thicknesses and temperature distribution
in sea ice.
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This paper is organized as follows. In Section 2, we present a thermodynamic system
coupled by snow, ice, and sea water. Section 3 derives some important properties of a bilinear
functional and proves the existence and uniqueness of the weak solution of the evolution
equation. Section 4 establishes an optimal model with state constraints and proves the strong
continuity of the weak solution with respect to the parameters and the existence of the
optimal parameter. Moreover, the one-order necessary condition of the optimality is derived.
An numerical optimization algorithm is constructed and applied to numerical simulation in
Section 5, and numerical results are presented in Section 6. Some conclusions are presented
in the final section.

2. The Coupled Thermodynamic System of Sea Ice

Consider the thermodynamic system of sea ice coupled by snow, ice, and sea water
layers (Figure 1), denoted by snow-ice-water system. Since the gradient variation of sea
ice temperature in the vertical direction is far greater than that in the horizontal direction,
we only consider the heat flux in the vertical direction. Let t denote the time (unit: s),
T(0 < T <∞) the final time, and [0, T] the observation period. Set IT := (0, T).

Let x axis be the depth direction of the snow-ice-water system (unit: m), and the point
on snow surface at the initial measured time the coordinate origin (Figure 1). Let h1(t), h2(t),
and h3(t) be the thicknesses of snow, ice, and sea water layers at the time t ∈ IT , respectively,
then the total thickness at the time t can be expressed as

L(t) = h1(t) + h2(t) + h3(t). (2.1)

Obviously, the thickness of sea water at the time t can be expressed as

h3(t) = L(t) − h1(t) − h2(t). (2.2)

According to the physical properties of sea ice, we have h1(t), h2(t) ∈ C1(IT ;R).
Let h1(0) = h10 and h2(0) = h20 be the initial thicknesses of snow and sea ice,

respectively, which are known constants, then the initial thickness of sea water layer is

h3(0) = h30 = L(0) − h10 − h20. (2.3)

Let the initial space domains of snow, ice, and sea water layers be Ω10 = (0, h10], Ω20 =
(h10, h10 + h20] and Ω30 = (h10 + h20, L(0)), respectively, then the initial space domain of the
system can be described as

Ω0 = Ω10 ∪Ω20 ∪Ω30 (2.4)

obviously, Ω0 is a nonempty, bounded, and connected set.
Additionally, let Ω1(t) = (0, h1(t)], Ω2(t) = (h1(t), h1(t) + h2(t)], and Ω3(t) = (h1(t) +

h2(t), L(t)) be the space domains of snow, ice, and sea water layers at the time t ∈ IT ,
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Figure 1: Sketch of the sea ice thermodynamic model.

respectively, then the space domain of the snow-ice-water system at the time t ∈ IT can be
expressed as

Ω(t) := Ω1(t) ∪Ω2(t) ∪Ω3(t) = (0, L(t)) ⊂ R. (2.5)

Apparently, the measured space-time domain denoted by QT = Ω(t) × IT is opened
and bounded.

By the energy conversation and the Fourier law, the coupled thermodynamic sea ice
model is thus described by the following parabolic partial differential dynamic system

ρc · ∂T(x, t)
∂t

=
∂

∂x

(
K · ∂T(x, t)

∂x

)
+ g(x, t), (x, t) ∈ QT,

T(x, 0) = T0(x), x ∈ Ω0,

∂T(x, t)
∂t

∣∣∣∣
x=0

= Q1(t), t ∈ IT ,

T(x, t)|x=L(t) = T3(t), t ∈ IT ,

(2.6)

where ρ = ρi is the density, c = ci the specific heat and K = Ki the thermal conductivity,
T(x, t) the temperature of the snow-ice-water system at the depth x and the time t (unit:
Kelvin), T0(x) the temperature at the depth x and the time t = 0, and g(x, t) = gi(x, t) the heat
source term. (x, t) ∈ Ωi× IT , i = 1, 2, 3, denotes the snow, ice, and sea water layer, respectively.
Q1(t) and T3(t) are both known functions on the time t.

The system (2.6) is piecewise smooth owing to the difference of the densities, specific
heats, and thermal conductivities in the three layers. By the physical properties of sea ice, we
give the following assumptions.

(A1) The thermodynamic parameters (ρ, c, and K) remain unchanged during the mea-
sured period.
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(A2) The upper and lower boundaries remain unmoved, namely, the total thickness of
the system is a constant (L(t) = L).

(A3) T(x, t) is continuous on QT .

(A4) h1(t), h2(t) ∈ C2(IT ;R) are bounded functions with positive values, and there exist
hjl > 0 and hju > 0 satisfying hjl ≤ hju, such that hjl ≤ hj ≤ hju, j = 1, 2.

Additionally, functions in the system (2.6) should be differential on x or t in some
sense; thus, we assume that

(A5) T0(x) ∈ C2(Ω◦
i ;R), T3(t), Q1(t) ∈ C2(IT ;R), gi(x, t) ∈ C2(Ω◦

i × IT ;R), i = 1, 2, 3.

According to the assumptions (A1) and (A2), we set α = ρc/K, and y(x, t) = T(x, t) −
(x − L)Q1(t) − T3(t), then the system (2.6) can be described as the following homogeneous
boundary value problem denoted by (HBP):

∂y(x, t)
∂t

= α
∂2y(x, t)
∂x2

+ p(x, t), (x, t) ∈ QT, (2.7)

y(x, 0) = y0(x), x ∈ Ω0, (2.8)

∂y(x, t)
∂t

∣∣∣∣
x=0

= 0, t ∈ IT , (2.9)

y(x, t)|x=L = 0, t ∈ IT , (2.10)

where

p(x, t) =
1
ρc
g(x, t) − (x − L)Q′

1(t) − T ′
3(t),

y0(x) = T0(x) − (x − L)Q1(0) − T3(0).
(2.11)

3. Properties of the Coupled Thermodynamic System

For convenience, we let u1 = h1(t), u2 = h2(t), u = (u1, u2), and Uad(IT ) := {u(·) ∈ C2(IT ;R+) |
u(t) : IT → Γ is measurable, hjl ≤ uj ≤ hju, j = 1, 2} ⊂ C2(IT ;R+) is the admissible parameter
set, Γ is a known nonempty, bounded, closed convex subset on R2. And let Ωu(t) = Ω1u(t) ∪
Ω2u(t) ∪Ω3u(t) be the spatial domain of the distributed parameter system (HBP) at the time
t, where Ωiu(t) = Ωi(t), i = 1, 2, 3.

For any t ∈ IT and u ∈ Uad(IT ), let Hu(t) = L2(Ωu(t);R) be a separable Hilbert space,
Vu(t) = {ϕ | ϕ ∈ H ′

u(t), ∂ϕ/∂x|x=0 = ϕ|x=L = 0} with norms denoted by | · |Hu(t) and ‖ ·
‖Vu(t), respectively, then Vu(t) ⊂ Hu(t). Let (·, ·)Hu(t) and 〈·, ·〉Vu(t) denote the inner product on
Hu(t) and Vu(t), respectively,H ′

u(t) and V
′
u(t) the dual spaces ofHu(t) and Vu(t), respectively,

and 〈·, ·〉Vu(t),V ′
u(t) the dual paring between Vu(t) and V ′

u(t), then (Vu(t),Hu(t), V ′
u(t)) is a Gelf-

triple space with Vu(t) ↪→ Hu(t) ≡ H ′
u(t) ↪→ V ′

u(t), namely, the embedding Vu(t) ↪→ Hu(t)
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is continuous, and Vu(t) is dense inHu(t). The inner product and the induced norm onHu(t)
are defined by

(
ϕ, ψ

)
Hu(t)

=
∫
Ωu(t)

ϕψ dx, ∀ϕ, ψ ∈ Hu(t),

∣∣ϕ∣∣Hu(t)
=

(∫
Ωu(t)

ϕ2dx

)1/2

, ∀ϕ ∈ Hu(t).

(3.1)

The inner product and the induced norm on Vu(t) are defined by

〈
ϕ, ψ

〉
Vu(t)

=
∫
Ωu(t)

(
ϕψ + ϕxψx

)
dx, ∀ϕ, ψ ∈ Vu(t),

∥∥ϕ∥∥Vu(t) =
(∫

Ωu(t)

(
ϕ2 + ϕ2

x

)
dx

)1/2

, ∀ϕ ∈ Vu(t),
(3.2)

where ϕx and ψx are the derivatives of ϕ and ψ on the depth x, respectively.
The dual paring between V ′

u(t) and Vu(t) is expressed as

〈
ϕ, φ

〉
V ′
u(t),Vu(t)

=
∫
Ωu(t)

ϕφ dx. (3.3)

Let ξ ∈ Vu(t), we multiply both sides of (2.7) by ξ and integrate them over Ωu(t) :

∫
Ωu(t)

ξ
∂y

∂t
dx =

∫
Ωu(t)

ξα
∂2y

∂x2
dx +

∫
Ωu(t)

ξp(x, t)dx. (3.4)

Using the method of integration by parts and the homogeneous boundary conditions,
(3.4) can be described as

∫
Ωu(t)

ξ
∂y

∂t
dx +

∫
Ωu(t)

α
∂ξ

∂x

∂y

∂x
dx =

∫
Ωu(t)

ξp(x, t)dx. (3.5)

For any t ∈ IT , we define a functional on Vu(t) × Vu(t) as

a
(
t, u;ϕ, ψ

)
=
∫
Ωu(t)

α
∂ϕ

∂x
· ∂ψ
∂x

dx. (3.6)

The properties of the functional a(t, u;ϕ, ψ) are presented in the following.

Property 1. Suppose that assumptions (A1)–(A5) hold, then

(1) a(t, u;ϕ, ψ) defined by (3.6) is a bilinear functional on Vu(t) × Vu(t).
(2) For all ϕ, ψ ∈ Vu(t), a(·, u;ϕ, ψ) is a measurable function on IT , and there exists c > 0,

such that |a(t, u;ϕ, ψ)| ≤ c · ‖ϕ‖Vu(t) · ‖ψ‖Vu(t).
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Proof. (1) For all λ1, λ2 ∈ R, for all ϕ1, ϕ2, ψ1, ψ2 ∈ Vu(t), we have

a
(
t, u;λ1ϕ1 + λ2ϕ2, ψ

)
=
∫
Ωu(t)

α
∂λ1ϕ1 + λ2ϕ2

∂x
· ∂ψ
∂x

dx

= λ1a
(
t, u;ϕ1, ψ

)
+ λ2a

(
t, u;ϕ2, ψ

)
,

a
(
t, u;ϕ, λ1ψ1 + λ2ψ2

)
=
∫
Ωu(t)

α
∂ϕ

∂x
· ∂λ1ψ1 + λ2ψ2

∂x
dx

= λ1a
(
t, u;ϕ, ψ1

)
+ λ2a

(
t, u;ϕ, ψ2

)
.

(3.7)

So a(t, u;ϕ, ψ) is a bilinear functional on Vu(t) × Vu(t).
(2)Obviously, for all ϕ, ψ ∈ Vu(t), a(t, u;ϕ, ψ) is a measurable function on IT according

to (3.6), and

∣∣a(t, u;ϕ, ψ)∣∣ =
∣∣∣∣∣
∫
Ωu(t)

α
∂ϕ

∂x
· ∂ψ
∂x

dx

∣∣∣∣∣

≤ α
(∫

Ωu(t)
ϕ2
xdx

)1/2

·
(∫

Ωu(t)
ψ2
xdx

)1/2

≤ α · ∥∥ϕ∥∥Vu(t) ·
∥∥ψ∥∥Vu(t).

(3.8)

Taking c = α, then |a(t, u;ϕ, ψ)| ≤ c · ‖ϕ‖Vu(t) · ‖ψ‖Vu(t).

Property 2. Suppose that assumptions (A1)–(A5) hold, then, for the bilinear functional
a(t, u;ϕ, ψ) defined by (3.6), there exist α0 > 0 and λ > 0, such that |a(t, u;ϕ, ϕ)| + λ|ϕ|2

Hu(t)
≥

α0‖ϕ‖2Vu(t), for all ϕ ∈ Vu(t), ∀t ∈ IT .

Proof. The conclusion follows directly from (3.6) and Garding inequality [14].

From the Properties 1 and 2 and Lax-Milgram theorem [15], there exists a bounded
continuous linear operator A(t, u) ∈ L(Vu(t), V ′

u(t)), such that

a
(
t, u;ϕ, ψ

)
=
〈
A(t, u)ϕ, ψ

〉
V ′
u(t),Vu(t)

, ∀t ∈ IT , ∀u ∈ Uad

(
IT
)
, (3.9)

A(t, u)ϕ = −α∂
2ϕ

∂x2
, ∀ϕ ∈ Vu(t), ∀u ∈ Uad

(
IT
)
. (3.10)

According to (3.9), the Properties 1 and 2, we can get the following property.

Property 3. Suppose that assumptions (A1)–(A5) hold, then for all t ∈ IT , for all ϕ, ψ ∈ Vu(t),
and for all u ∈ Uad(IT ), there existM1 > 0 andM2 > 0, such that

〈
A(t, u)ϕ, ϕ

〉
V ′
u(t),Vu(t)

≥M1
∥∥ϕ∥∥2

Vu(t)
,

〈
A(t, u)ϕ, ψ

〉
V ′
u(t),Vu(t)

≥M2
∥∥ϕ∥∥2

Vu(t)

∥∥ψ∥∥2
Vu(t)

.
(3.11)
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For any t ∈ IT , ϕ ∈ Vu(t), and u ∈ Uad(IT ), set H(t, u;ϕ) =
∫
Ωu(t)

ϕp(x, t)dx,
then H(t, u;ϕ) is a continuous linear functional on Vu(t). According to Riesz representation
theorem [14], there exists a unique element f(t;u) ∈ V ′

u(t), such that

H
(
t, u;ϕ

)
=
〈
f(t;u), ϕ

〉
V ′
u(t),Vu(t)

, ∀ϕ ∈ Vu(t). (3.12)

From the above, for each u ∈ Uad(IT ), the system (HBP) can be written as a parabolic
evolution equation denoted by (PEE):

yt +A(t, u)y = f(t;u)

y(0) = y0, y0 ∈ Hu(0),
(3.13)

where t ∈ IT , u ∈ Uad(IT ), and f ∈ L2(IT ;V ′
u(·)), L2(IT ;Vu(t)) = {w | ∫T0 ‖w(t)‖2Vu(t)dt < ∞}

with the inner product defined as

(w,w) =
∫T

0
〈w(t), w(t)〉Vu(t)dt. (3.14)

Obviously, the above process is reversible, the system (PEE) is thus equivalent to
(HBP). The definition of weak solution of the system (PEE) is given in the following.

Definition 3.1. A function y(t, x;u) ∈ L2(IT ,Ωu(t);Hu(t)) ∩ C(IT ,Ωu(t);H ′
u(t)) is a weak

solution of (PEE), if y(t, x;u) satisfies

〈
dy(·, ·;u)

dt
, ξ

〉
V ′
u(t),Vu(t)

+ a
(·, u;y(·, ·;u), ξ) =

(
f(·;u), ξ)Hu(t)

, (3.15)

where ξ ∈ Vu(t) and u ∈ Uad(IT ).

Theorem 3.2. Suppose that assumptions (A1)–(A5), Properties 1 and 3 hold. For all t ∈ IT , let
Ωu(t) = xu(t,Ω0) is bounded, and there exists a countable base {ϕ1(t), ϕ2(t), . . .} on Vu(t), such
that ϕit(t) ∈ V ′

u(t), i = 1, 2, . . . . Then, the system (PEE) has a unique weak solution y(t, x;u) ∈
L2(IT ,Ωu(t);Hu(t)) ∩ C(IT ,Ωu(t);H ′

u(t)) which depends continuously on f and y0.

Proof. Let ∂Ω◦
u(t) = {x ∈ Ωu(t) : h(t, x, u)·n(x) = 0}, here n(x) is the outward normal vector of

∂Ωu(t) at x. By the definition of Vu(t), we know that ψ ∈ Vu(t) satisfies the Dirichlet condition
(ψ(x) = 0, x ∈ ∂Ωu(t)/∂Ω◦

u(t)) for any given t ∈ IT . The system (PEE) thus has a unique weak
solution which depends continuously on f and y0 [15].

From the above theorem, we can also know that the system (HBP) has a unique
solution y(t, x;u) ∈ L2(IT ,Ωu(t);Hu(t)) ∩ C(IT ,Ωu(t);H ′

u(t)).
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4. Parameter Identification of the Coupled System

4.1. Identification Model

We define the performance criterion as

J(u) =
∫T

0

∫
Ωu(t)

(
y(t, x;u) − y(t, x))2dx dt (4.1)

with

y(t, x;u) = T(t, x;u) − (x − L)Q1(t) − T3(t),

y(t, x) = T(t, x) − (x − L)Q1(t) − T3(t),
(4.2)

where T(t, x;u) is the temperature function obtained from the system (2.6), T(t, x) is the
observed temperature. Let f0(u) = (y(t, x;u) − y(t, x))2, then (4.1) is expressed as

J(u) =
∫T

0

∫
Ωu(t)

f0(u)dx dt. (4.3)

The goal of this study is to make the temperature T(t, x;u) obtained from the system
(2.6) fits the measured data as far as possible. Then, the identification model of the system
(HBP) is expressed as

min J(u)

s.t. y(t, x;u) ∈ SUad(QT )

u ∈ Uad

(
IT
)
,

(SIP)

where SUad(QT ) = {y(t, x;u) | y(t, x;u) is the solution of system (HBP) corresponding to
u ∈ Uad(IT )}, and J(u) is defined by (4.1).

Obviously, from (4.1)–(4.2), we can conclude that the problem (SIP) is equivalent to
the following problem

min J(u) =
∫T

0

∫
Ωu(t)

(
T(t, x;u) − T(t, x)

)2
dx dt

s.t. T(t, x;u) ∈ S′
Uad

(QT )

u ∈ Uad

(
IT
)
,

(SIPO)

where S′
Uad

(QT ) = {T(t, x;u) | T(t, x;u) is the solution of system (2.6) corresponding to u ∈
Uad(IT )}.
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4.2. Strong Continuity of the Weak Solution on Parameters

Theorem 4.1. Suppose that assumptions (A1)–(A5) hold, then the mapping u → y(t, x;u) is
strongly continuous.

Proof. For any given parameter u0 ∈ Uad(IT ), let {un} ⊂ Uad(IT ) be a feasible parameter
sequence, such that ‖un − u0‖ → 0 as n → ∞, and yn and y0 the solutions of (PEE)
corresponding to un and u0, respectively. Set wn = yn − y0, pn = p(t, x;un), p0 = p(t, x;u0),
then we obtain the following system

∂wn

∂t
− α∂

2wn

∂x2
= pn − p0

w0(x, 0) = 0

∂wn

∂t

∣∣∣∣
x=0

= 0

wn|x=L = 0.

(4.4)

Multiply both sides of the first equation of (4.4) bywn and integrate them overΩu(t)×
[0, t], then we have

∫ t

0

(
wn,

∂wn

∂s

)
ds +

∫ t

0
α(s, un;wn,wn)ds =

∫ t

0

(
wn, pn − p0

)
ds. (4.5)

For the first term of (4.5) on the left side, we have

∫ t

0

(
wn,

∂wn

∂s

)
ds =

1
2

(
|wn(t)|2 − |wn(0)|2

)
=

1
2
|wn(t)|2. (4.6)

For the second term of (4.5) on the left side, according to Property 2, we have

∫ t

0
α(s, un;wn,wn)ds + λ

∫ t

0
|wn|2ds ≥ α0

∫ t

0
|wn|2ds, (4.7)

where α0 and λ are the same with that of Property 2.
Using the elementary inequality ab ≤ (1/2ε)a2 + (ε/2)b2 and taking ε = α0, then, for

the right terms of (4.5), we have

∫ t

0

(
wn, pn − p0

)
ds ≤ α0

2

∫ t

0
|wn|2ds + 1

2α0

∫ t

0

∣∣pn − p0∣∣2ds. (4.8)

Let Yn(t) = |wn|2 + α0
∫ t
0 |wn|2ds. Substituting (4.6)–(4.8) into (4.5), then we have

Yn(t) ≤ 1
α0

∫ t

0

∣∣pn − p0∣∣2ds + (α0 + 2λ)
∫ t

0
|wn|2ds. (4.9)
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Using Gronwall inequality, we obtain

Yn(t) ≤ 1
α0
eα0T

∫ t

0

∣∣pn − p0∣∣2ds. (4.10)

From all the above and ‖un−u0‖ → 0, we get |pn−p0| → 0, the mapping u → y(t, x;u)
is thus strongly continuous.

4.3. Existence of Optimal Parameter

Theorem 4.2. Suppose that assumptions (A1)–(A5) hold, then there exists at least one optimal
parameter u∗ ∈ Uad(IT ) satisfies the identification problem (SIP).

Proof. Obviously, f0(u) is continuous on Vu(t), and, from (4.3), J(u) =
∫
IT

∫
Ωu(t)

f0(u)dx dt ≥ 0.
By Theorem 4.1, the mapping u → y(t, x;u) is continuous. Hence, the mapping u → J(u)
is continuous on Uad(IT ). Since Uad(IT ) is a nonempty, bounded, and closed set, there exists
u∗ ∈ Uad(IT ), such that for all u ∈ Uad(IT ), J(u∗) ≤ J(u), e.g., u∗ ∈ Uad(IT ) is an optimal
parameter, thus the desired result is obtained.

4.4. Necessary Optimality Condition

Let u∗ ∈ Uad(IT ) be the optimal parameter of the problem (SIP), following the convex
compactness of Uad(IT ) and the continuity of J(u) on Uad(IT ), we can prove that J(u(·))
is Gateaux differentiable at u∗ ∈ Uad(IT ) and its Gateaux derivative DJ(u∗(·)) exists. Hence,
we can get the following necessary conditions for optimality.

Theorem 4.3. Suppose that assumptions (A1)–(A5) are valid, and let u∗ ∈ Uad(IT ) be the optimal
parameter of the system (SIP), then u∗(·) satisfies the following inequality:

DJ(u∗;u − u∗) = lim
γ→ 0+

J
(
u∗ + γ(u − u∗)) − J(u∗)

γ
≥ 0, ∀u ∈ Uad

(
IT
)
. (4.11)

5. Optimization and Numerical Algorithm

5.1. Optimization of the Parameter Identification Model

In this section, we aim at constructing an optimal algorithm to solve the parameter
identification problem (SIPO). On the domain Ωi(t), we decompose (2.6) as

ρici · ∂Ti(x, t)
∂t

=
∂

∂x

(
Ki · ∂Ti(x, t)

∂x

)
+ gi(x, t), (x, t) ∈ Ωi(t) × IT , i = 1, 2, 3, (5.1)

with the initial condition

Ti(x, 0) = T0(x), x ∈ Ωi(t), i = 1, 2, 3, (5.2)
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and the boundary and penetrating conditions

∂T1(0, t)
∂t

= Q1(t)

T1(h1(t), t) = T2(h1(t), t), t ∈ I

ρ1c1k1 · ∂T1(x, t)
∂x

∣∣∣∣
x=h1(t)

= ρ2c2k2 · ∂T2(x, t)
∂x

∣∣∣∣
x=h1(t)

(5.3)

T2(h1(t), t) = T1(h1(t), t)

T2(h1(t) + h2(t), t) = T3(L, t), t ∈ I

ρ2c2k2 · ∂T2(x, t)
∂x

∣∣∣∣
x=h1(t)+h2(t)

− ρ3c3k3 · ∂T3(x, t)
∂x

∣∣∣∣
x=h1(t)+h2(t)

= ρ2
dh2(t)
dt

(5.4)

T3(h1(t) + h2(t), t) = T2(h1(t) + h2(t), t)

T3(L, t) = T3(t) t ∈ I.
(5.5)

Denote the subsystem composed by (5.1), (5.2), and (5.3) as (IBP)1, by (5.1), (5.2), and
(5.4) as (IBP)2, and (5.1), (5.2), and (5.5) as (IBP)3.

According to the partial differential theory, we can obtain the following theorem.

Theorem 5.1. Suppose that assumptions (A1)–(A5) are valid, then, for any u ∈ Uad(IT ), the
subsystem (IBP)i has a unique weak solution Ti(x, t;u) ∈ C(Ωi(t), IT ,Uad;R) which depends
continuously on u ∈ Uad(IT ).

LetM,N be the numbers of the measured spatial and temporal spots, respectively, xk
the measured depth, tj the measured time, T(xk, tj ;u) the calculated temperature of sea ice at
depth xk and time tj from the system (2.6), T(xk, tj) the measured temperature data at depth
xk and time tj , then the practical identification problem can be expressed as

min Jd(u) =
M∑
k=1

N∑
j=1

(
T
(
xk, tj ;u

) − T(xk, tj)
)2

s.t. T
(
xk, tj ;u

) ∈ S′
Uad

(QT )

u ∈ Uad

(
IT
)
.

(SIPOD)
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Let S′
iUad

(QT ) = {Ti(x, t;u) | Ti(x, t;u) is the solution of the subsystem (IBP)i
corresponding to u ∈ Uad(IT )}, i = 1, 2, 3, and for the numerical implementation, the problem
(SIPOD) can be decomposed to the following three connected subproblems

min Jdi(u) =
∑
zk∈Ωi

N∑
j=1

(
T
(
xk, tj ;u

) − T(xk, tj)
)2

s.t. Ti
(
xk, tj ;u

) ∈ S′
iUad

(QT ), i = 1, 2, 3

u ∈ Uad

(
IT
)
.

(SIPODi)

Obviously, the performance function of (SIPOD) can be described as

Jd(u) =
3∑
i=1

Jdi(u). (5.6)

From Theorem 4.2, we can get that there also exists at least one optimal parameter
satisfying the subproblem (SIPODi) .

Set

TΩi(u) =
∑
xk∈Ωi

N∑
j=1

T
(
xk, tj ;u

)
, i = 1, 2, 3,

TΩi =
∑
xk∈Ωi

N∑
j=1

T
(
xk, tj

)
, i = 1, 2, 3,

Jbi(u) = (TΩi(u) − TΩi)
2, i = 1, 2, 3,

Jb(u) =
3∑
i=1

Jbi(u),

(5.7)

then, the identification problem is expressed as

min Jb(u)

s.t. T
(
xk, tj ;u

) ∈ S′
Uad

(QT )

u ∈ Uad

(
IT
)
,

(SIPODb)

and the subidentification problem is

min Jbi(u)

s.t. T
(
xk, tj ;u

) ∈ S′
iUad

(QT ), i = 1, 2, 3

u ∈ Uad

(
IT
)
.

(SIPODbi)

Theorem 5.2. If u∗ is the optimal parameter of SIPOD, then u∗ is also that of (SIPODb).
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5.2. Numerical Optimization Algorithm

In this section, the semi-implicit finite difference scheme [15] is employed to discretize, and
the nonoverlapping Schwarz alternating direction method to solve (5.1). And related to the
measured temperature data {T(zk, tj)}, a numerical optimization algorithm is constructed
with the following steps.

Step 1. Select starting points u0 = (u01, u
0
2) ∈ Uad(IT ), n directions e1, e2, . . . , en, starting step

length Δu = (Δu1,Δu2), Δu1 > 0, Δu2 > 0, acceleration factor α, accuracy ε > 0, and the
maximum iteration number kmax, set v0 = u0, k = j = 0;

Step 2. Calculate the numerical solution T(x, t;vj), by nonoverlapping Schwarz alternating
direction method and semi-implicit difference scheme.

Step 3. If Jb(vj + Δu · ej) < Jb(vj), set vj+1 = vj + Δu · ej ; for the case Jb(vj + Δu · ej) ≥ Jb(vj),
if Jb(vj −Δu · ej) < Jb(vj), set vj+1 = vj −Δu · ej , else, set vj+1 = vj .

Step 4. If j < n, set j = j + 1, go to Step 3; for the case j = n, if Jb(vn+1) ≤ Jb(uk), go to Step 5,
else, go to Step 6.

Step 5. Set uk+1 = vn+1, v0 = uk+1 + α(uk+1 − uk), k = k + 1, and j = 0, go to Step 2.

Step 6. If k ≥ kmax, stop, set u∗ = uk, else, set v0 = uk, uk+1 = uk, k = k + 1, and j = 0, go to
Step 2.

6. Numerical Results

Using the above optimal algorithm, we can obtain the temperature distribution T(xk, tj ;u) of
sea ice in the Arctic. The data set was measured by a monitor buoy installed on floe ice in the
Arctic.

The comparison between the calculated and measured sea ice temperatures from
November 1, 2003 to February 29, 2004 was shown in Figure 2, with the test temperatures
data being smoothed for the unomitted transparent errors in some of the original data.
The measured and simulated data in Figure 2 both indicate a general increasing trend of
the temperature of sea ice, while a decreasing increment with increasing depth of sea ice.
Meanwhile, because the data had been measured during the freezing period of sea ice, the
temperature generally decreases with increasing time. The calculated temperature fits well
with the measured data; furthermore, the better fit between the calculated and measured
temperatures is corresponding to the deeper sea ice. The temperature deviation between
the simulated and measured temperatures is 0.361, which is a much small error for the
temperature of sea ice. It can be concluded that the numerical results by our method reflect
the actual variation of the sea ice temperature distribution and approach the measured data
well.

7. Conclusions

In this study, we aim to simulate the temperature of sea ice with thicknesses of snow and sea
ice as identified parameters. We established a parabolic distributed system of the temperature
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Figure 2: Comparison of calculated and measured temperatures.

field of sea ice with a time-dependent domain in the Arctic sea ice and proposed its parameter
identification problem with thicknesses of snow and sea ice as identified variables and the
deviation between the calculated and measured sea ice temperatures as the performance
criterion. And we proved the unique existence of the weak solution of the thermodynamic
system, discussed the existence of the optimal parameter, and derived the one-order
necessary condition. Finally, based on the nonoverlapping domain decomposition method
and semi-implicit difference scheme, we constructed an optimization algorithm to simulate
the sea ice temperature in the Arctic. The results (Figure 2) show that the temperature of sea
ice increases with increasing depth of sea ice, while, because themeasurement had beenmade
during the freezing period of sea ice, it decreases with increasing time.

The simulated temperatures of sea ice fitted well with the measured data, and the
deviation between the simulated and measured temperature of sea ice was slight. It indicates
that the numerical results by our method reflect the actual variation of the sea ice temperature
distribution in space and time. Meanwhile, it is illuminated that the algorithm proposed in
the present study is valid and more suitable for the deeper sea ice.

Nevertheless, it is important to note that our mathematical framework was verified
only using in situ data from the Arctic, and the variabilities of the physical parameters
of the coupled sea ice system, such as density, specific heat, were not considered, more
measurements would be required for a true verification of this method in the future work.
However, we believe that our method is a promising approach worthy of further studies
under different environmental conditions in the Arctic as well as in the Antarctic.
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