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Abstract. 
We study curves of AW(k)-type in the Lie group G with a bi-invariant metric. Also, we characterize general helices in terms of AW(k)-type curve in the Lie group G.
 

1. Introduction
The geometry of curves and surfaces in a 3-dimensional Euclidean space 
	
		
			

				ℝ
			

			

				3
			

		
	
 represented for many years a popular topic in the field of classical differential geometry. One of the important problems of the curve theory is that of Bertrand-Lancret-de Saint Venant saying that a curve in 
	
		
			

				ℝ
			

			

				3
			

		
	
 is of constant slop; namely, its tangent makes a constant angle with a fixed direction if and only if the ratio of torsion 
	
		
			

				𝜏
			

		
	
 and curvature 
	
		
			

				𝜅
			

		
	
 is a constant. These curves are said to be general helices. If both 
	
		
			

				𝜏
			

		
	
 and 
	
		
			

				𝜅
			

		
	
 are nonzero constants, the curve is called cylindrical helix. Helix is one of the most fascinating curves in science and nature. Scientists have long held a fascinating, sometimes bordering on mystical obsession for helical structures in nature. Helices arise in nanosprings, carbon nanotubes, 
	
		
			

				𝛼
			

		
	
-helices, DNA double and collagen triple helix, the double helix shape is commonly associated with DNA, since the double helix is structure of DNA.
The problem of Bertrand-Lancret-de Saint Venant was generalized for curves in other 3-dimensional manifolds—in particular space forms or Sasakian manifolds. Such a curve has the property that its tangent makes a constant angle with a parallel vector field on the manifold or with a Killing vector field, respectively. For example, a curve 
	
		
			
				𝛼
				(
				𝑠
				)
			

		
	
 in a 3-dimensional space form is called a general helix if there exists a Killing vector field 
	
		
			
				𝑉
				(
				𝑠
				)
			

		
	
 with constant length along 
	
		
			

				𝛼
			

		
	
 and such that the angle between 
	
		
			

				𝑉
			

		
	
 and 
	
		
			

				𝛼
			

			

				
			

		
	
 is a non-zero constant (see [1]). A general helix defined by a parallel vector field was studied in [2]. Moreover, in [3] it is shown that general helices in a 3-dimensional space form are extremal curvatures of a functional involving a linear combination of the curvature, the torsion, and a constant. General helices also called the Lancret curves are used in many applications (e.g., [4–7]).
The notion of AW(k)-type submanifolds was introduced by Arslan and West in [8]. In particular, many works related to curves of AW(k)-type have been done by several authors. For example, in [9, 10] the authors gave curvature conditions and charaterizations related to these curves in 
	
		
			

				ℝ
			

			

				𝑛
			

		
	
. Also, in [11] they investigated curves of AW(k) type in a 3-dimensional null cone and gave curvature conditions of these kinds of curves. However, to the author’s knowledge, there is no article dedicated to studying the notion of AW(k)-type curves immersed in Lie group.
In this paper, we investigate curvature conditions of curves of AW(k)-type in the Lie group 
	
		
			

				𝐺
			

		
	
 with a bi-invariant metric. Moreover, we characterize general helices of AW(k)-type in the Lie group 
	
		
			

				𝐺
			

		
	
.
2. Preliminaries
Let 
	
		
			

				𝐺
			

		
	
 be a Lie group with a bi-invariant metric 
	
		
			
				⟨
				,
				⟩
			

		
	
 and 
	
		
			

				𝐷
			

		
	
 the Levi-Civita connection of the Lie group 
	
		
			

				𝐺
			

		
	
. If 
	
		
			

				𝔤
			

		
	
 denotes the Lie algebra of 
	
		
			

				𝐺
			

		
	
, then we know that 
	
		
			

				𝔤
			

		
	
 is isomorphic to 
	
		
			

				𝑇
			

			

				𝑒
			

			

				𝐺
			

		
	
, where 
	
		
			

				𝑒
			

		
	
 is identity of 
	
		
			

				𝐺
			

		
	
. If 
	
		
			
				⟨
				,
				⟩
			

		
	
 is a bi-invariant metric on 
	
		
			

				𝐺
			

		
	
, then we have 
						
	
 		
 			
				(
				2
				.
				1
				)
			
 		
	

	
		
			
				[
				]
				[
				]
				𝐷
				⟨
				𝑋
				,
				𝑌
				,
				𝑍
				⟩
				=
				⟨
				𝑋
				,
				𝑌
				,
				𝑍
				⟩
				,
			

			

				𝑋
			

			
				1
				𝑌
				=
			

			
				
			
			
				2
				[
				]
				𝑋
				,
				𝑌
			

		
	

					for all 
	
		
			

				𝑋
			

		
	
, 
	
		
			

				𝑌
			

		
	
, 
	
		
			
				𝑍
				∈
				𝔤
			

		
	
.
Let 
	
		
			
				𝛼
				∶
				𝐼
				⊂
				ℝ
				→
				𝐺
			

		
	
 be a unit speed curve with parameter 
	
		
			

				𝑠
			

		
	
 and 
	
		
			
				{
				𝑉
			

			

				1
			

			
				,
				𝑉
			

			

				2
			

			
				,
				…
				,
				𝑉
			

			

				𝑛
			

			

				}
			

		
	
 an orthonrmal basis of 
	
		
			

				𝔤
			

		
	
. In this case, we write that any vector fields 
	
		
			

				𝑊
			

		
	
 and 
	
		
			

				𝑍
			

		
	
 along the curve 
	
		
			

				𝛼
			

		
	
 as 
	
		
			
				∑
				𝑊
				=
			

			
				𝑛
				𝑖
				=
				1
			

			

				𝑤
			

			

				𝑖
			

			

				𝑉
			

			

				𝑖
			

		
	
 and 
	
		
			
				∑
				𝑍
				=
			

			
				𝑛
				𝑖
				=
				1
			

			

				𝑧
			

			

				𝑖
			

			

				𝑉
			

			

				𝑖
			

		
	
, where 
	
		
			

				𝑤
			

			

				𝑖
			

			
				∶
				𝐼
				→
				ℝ
			

		
	
 and 
	
		
			

				𝑧
			

			

				𝑖
			

			
				∶
				𝐼
				→
				ℝ
			

		
	
 are smooth functions. Furthermore, the Lie bracket of two vector fields 
	
		
			

				𝑊
			

		
	
 and 
	
		
			

				𝑍
			

		
	
 is given by 
						
	
 		
 			
				(
				2
				.
				2
				)
			
 		
	

	
		
			
				[
				]
				=
				𝑊
				,
				𝑍
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑤
			

			

				𝑖
			

			

				𝑧
			

			

				𝑗
			

			
				
				𝑉
			

			

				𝑖
			

			
				,
				𝑉
			

			

				𝑗
			

			
				
				.
			

		
	

					Let 
	
		
			

				𝐷
			

			

				𝛼
			

			

				′
			

			

				𝑊
			

		
	
 be the covariant derivative of 
	
		
			

				𝑊
			

		
	
 along the curve 
	
		
			

				𝛼
			

		
	
, 
	
		
			

				𝑉
			

			

				1
			

			
				=
				𝛼
			

			

				
			

		
	
, and 
	
		
			

				𝑊
			

			

				
			

			
				=
				∑
			

			
				𝑛
				𝑖
				=
				1
			

			

				𝑤
			

			
				
				𝑖
			

			

				𝑉
			

			

				𝑖
			

		
	
, where 
	
		
			

				𝑤
			

			
				
				𝑖
			

			
				=
				𝑑
				𝑤
			

			

				𝑖
			

			
				/
				𝑑
				𝑠
			

		
	
. Then we have 
						
	
 		
 			
				(
				2
				.
				3
				)
			
 		
	

	
		
			

				𝐷
			

			

				𝛼
			

			

				′
			

			
				𝑊
				=
				𝑊
			

			

				
			

			
				+
				1
			

			
				
			
			
				2
				
				𝑉
			

			

				1
			

			
				
				.
				,
				𝑊
			

		
	

A curve 
	
		
			

				𝛼
			

		
	
 is called a Frenet curve of osculating order 
	
		
			

				𝑑
			

		
	
 if its derivatives 
	
		
			

				𝛼
			

			

				
			

			
				(
				𝑠
				)
			

		
	
, 
	
		
			

				𝛼
			

			
				
				
			

			
				(
				𝑠
				)
			

		
	
, 
	
		
			

				𝛼
			

			
				
				
				
			

			
				(
				𝑠
				)
			

		
	
,…,
	
		
			

				𝛼
			

			
				(
				𝑑
				)
			

			
				(
				𝑠
				)
			

		
	
 are linearly dependent and 
	
		
			

				𝛼
			

			

				
			

			
				(
				𝑠
				)
				,
				𝛼
			

			
				
				
			

			
				(
				𝑠
				)
				,
				𝛼
			

			
				
				
				
			

			
				(
				𝑠
				)
				,
				…
				,
				𝛼
			

			
				(
				𝑑
				+
				1
				)
			

			
				(
				𝑠
				)
			

		
	
 are no longer linearly independent for all 
	
		
			

				𝑠
			

		
	
. To each Frenet curve of order 
	
		
			

				𝑑
			

		
	
 one can associate an orthonormal 
	
		
			

				𝑑
			

		
	
-frame 
	
		
			

				𝑉
			

			

				1
			

			
				(
				𝑠
				)
				,
				𝑉
			

			

				2
			

			
				(
				𝑠
				)
				,
				𝑉
			

			

				3
			

			
				(
				𝑠
				)
				,
				…
				,
				𝑉
			

			

				𝑑
			

			
				(
				𝑠
				)
			

		
	
 along 
	
		
			

				𝛼
			

		
	
 (such that 
	
		
			

				𝛼
			

			

				
			

			
				(
				𝑠
				)
				=
				𝑉
			

			

				1
			

			
				(
				𝑠
				)
			

		
	
) called the Frenet frame and the functions 
	
		
			

				𝑘
			

			

				1
			

			
				,
				𝑘
			

			

				2
			

			
				,
				…
				,
				𝑘
			

			
				𝑑
				−
				1
			

			
				∶
				𝐼
				→
				ℝ
			

		
	
 said to be the Frenet curvatures, such that the Frenet formulas are defined in the usual way: 
						
	
 		
 			
				(
				2
				.
				4
				)
			
 		
	

	
		
			

				𝐷
			

			

				𝑉
			

			

				1
			

			

				𝑉
			

			

				1
			

			
				(
				𝑠
				)
				=
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				𝑉
			

			

				2
			

			
				𝐷
				(
				𝑠
				)
				,
			

			

				𝑉
			

			

				1
			

			

				𝑉
			

			

				2
			

			
				(
				𝑠
				)
				=
				−
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				𝑉
			

			

				1
			

			
				(
				𝑠
				)
				+
				𝑘
			

			

				2
			

			
				(
				𝑠
				)
				𝑉
			

			

				3
			

			
				⋮
				𝐷
				(
				𝑠
				)
				,
			

			

				𝑉
			

			

				1
			

			

				𝑉
			

			

				𝑖
			

			
				(
				𝑠
				)
				=
				−
				𝑘
			

			
				𝑖
				−
				1
			

			
				(
				𝑠
				)
				𝑉
			

			
				𝑖
				−
				1
			

			
				(
				𝑠
				)
				+
				𝑘
			

			

				𝑖
			

			
				(
				𝑠
				)
				𝑉
			

			
				𝑖
				+
				1
			

			
				𝐷
				(
				𝑠
				)
				,
			

			

				𝑉
			

			

				1
			

			

				𝑉
			

			
				𝑖
				+
				1
			

			
				(
				𝑠
				)
				=
				−
				𝑘
			

			

				𝑖
			

			
				(
				𝑠
				)
				𝑉
			

			

				𝑖
			

			
				(
				𝑠
				)
				.
			

		
	

					If 
	
		
			
				𝛼
				∶
				𝐼
				→
				𝐺
			

		
	
 is a Frenet curve of osculating order 
	
		
			

				3
			

		
	
 in 
	
		
			

				𝐺
			

		
	
, then we define 
						
	
 		
 			
				(
				2
				.
				5
				)
			
 		
	

	
		
			
				
			
			

				𝑘
			

			

				2
			

			
				1
				(
				𝑠
				)
				=
			

			
				
			
			
				2
				𝑉
				
				
			

			

				1
			

			
				,
				𝑉
			

			

				2
			

			
				
				,
				𝑉
			

			

				3
			

			
				
				.
			

		
	

Proposition 2.1.  Let 
	
		
			

				𝛼
			

		
	
 be a Frenet curve of osculating order 3 in 
	
		
			

				𝐺
			

		
	
. Then one has 
							
	
 		
 			
				(
				2
				.
				6
				)
			
 		
	

	
		
			
				
				𝑉
			

			

				1
			

			
				,
				𝑉
			

			

				2
			

			
				
				=
				𝑉
				
				
			

			

				1
			

			
				,
				𝑉
			

			

				2
			

			
				
				,
				𝑉
			

			

				3
			

			
				
				𝑉
			

			

				3
			

			
				=
				2
			

			
				
			
			

				𝑘
			

			

				2
			

			

				𝑉
			

			

				3
			

			
				,
				
				𝑉
			

			

				1
			

			
				,
				𝑉
			

			

				3
			

			
				
				=
				𝑉
				
				
			

			

				1
			

			
				,
				𝑉
			

			

				3
			

			
				
				,
				𝑉
			

			

				2
			

			
				
				𝑉
			

			

				2
			

			
				=
				−
				2
			

			
				
			
			

				𝑘
			

			

				2
			

			

				𝑉
			

			

				2
			

			
				,
				
				𝑉
			

			

				2
			

			
				,
				𝑉
			

			

				3
			

			
				
				=
				𝑉
				
				
			

			

				2
			

			
				,
				𝑉
			

			

				3
			

			
				
				,
				𝑉
			

			

				1
			

			
				
				𝑉
			

			

				1
			

			
				=
				2
			

			
				
			
			

				𝑘
			

			

				2
			

			

				𝑉
			

			

				1
			

			

				.
			

		
	

Proof. Let 
	
		
			

				𝛼
			

		
	
 be a Frenet curve of osculating order 3 with the Frenet frame 
	
		
			
				{
				𝑉
			

			

				1
			

			
				,
				𝑉
			

			

				2
			

			
				,
				𝑉
			

			

				3
			

			

				}
			

		
	
. Since 
	
		
			
				[
				𝑉
			

			

				1
			

			
				,
				𝑉
			

			

				2
			

			
				]
				=
				𝑎
			

			

				1
			

			

				𝑉
			

			

				1
			

			
				+
				𝑎
			

			

				2
			

			

				𝑉
			

			

				2
			

			
				+
				𝑎
			

			

				3
			

			

				𝑉
			

			

				3
			

		
	
, taking the inner product with 
	
		
			

				𝑉
			

			

				1
			

		
	
, 
	
		
			

				𝑉
			

			

				2
			

		
	
, and 
	
		
			

				𝑉
			

			

				3
			

		
	
, respectively, we have 
	
		
			

				𝑎
			

			

				1
			

			
				=
				𝑎
			

			

				2
			

			
				=
				0
			

		
	
 and 
	
		
			
				⟨
				[
				𝑉
			

			

				1
			

			
				,
				𝑉
			

			

				2
			

			
				]
				,
				𝑉
			

			

				3
			

			
				⟩
				=
				𝑎
			

			

				3
			

		
	
. Thus, we find 
							
	
 		
 			
				(
				2
				.
				7
				)
			
 		
	

	
		
			
				
				𝑉
			

			

				1
			

			
				,
				𝑉
			

			

				2
			

			
				
				=
				𝑉
				
				
			

			

				1
			

			
				,
				𝑉
			

			

				2
			

			
				
				,
				𝑉
			

			

				3
			

			
				
				𝑉
			

			

				3
			

			

				.
			

		
	

						From (2.5), we get 
							
	
 		
 			
				(
				2
				.
				8
				)
			
 		
	

	
		
			
				
				𝑉
			

			

				1
			

			
				,
				𝑉
			

			

				2
			

			
				
				=
				2
			

			
				
			
			

				𝑘
			

			

				2
			

			

				𝑉
			

			

				3
			

			

				.
			

		
	

						By using the above similar method, we can obtain 
	
		
			
				[
				𝑉
			

			

				1
			

			
				,
				𝑉
			

			

				3
			

			
				]
				=
				−
				2
			

			
				
			
			

				𝑘
			

			

				2
			

			

				𝑉
			

			

				2
			

		
	
 and 
	
		
			
				[
				𝑉
			

			

				2
			

			
				,
				𝑉
			

			

				3
			

			
				]
				=
				2
			

			
				
			
			

				𝑘
			

			

				2
			

			

				𝑉
			

			

				1
			

		
	
. 
Remark 2.2. Let 
	
		
			

				𝐺
			

		
	
 be a 3-dimensional Lie group with a bi-invariant metric. Then it is one of the Lie groups 
	
		
			
				𝑆
				𝑂
				(
				3
				)
			

		
	
, 
	
		
			

				𝑆
			

			

				3
			

		
	
 or a commutative group, and the following statements hold (see [6, 12]).(i)If 
	
		
			

				𝐺
			

		
	
 is 
	
		
			
				𝑆
				𝑂
				(
				3
				)
			

		
	
, then 
	
		
			
				
			
			

				𝑘
			

			

				2
			

			
				(
				𝑠
				)
				=
				1
				/
				2
			

		
	
.(ii)If 
	
		
			

				𝐺
			

		
	
 is 
	
		
			

				𝑆
			

			

				3
			

			
				≅
				𝑆
				𝑈
				(
				2
				)
			

		
	
, then 
	
		
			
				
			
			

				𝑘
			

			

				2
			

			
				(
				𝑠
				)
				=
				1
			

		
	
.(iii)If 
	
		
			

				𝐺
			

		
	
 is a commutative group, then 
	
		
			
				
			
			

				𝑘
			

			

				2
			

			
				(
				𝑠
				)
				=
				0
			

		
	
.
Proposition 2.3.  Let 
	
		
			

				𝛼
			

		
	
 be a Frenet curve of osculating order 3 in 
	
		
			

				𝐺
			

		
	
. Then one has 
							
	
 		
 			
				(
				2
				.
				9
				)
			
 		
	

	
		
			

				𝛼
			

			

				
			

			
				(
				𝑠
				)
				=
				𝑉
			

			

				1
			

			
				𝛼
				(
				𝑠
				)
				,
			

			
				
				
			

			
				(
				𝑠
				)
				=
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				𝑉
			

			

				2
			

			
				(
				𝛼
				𝑠
				)
				,
			

			
				
				
				
			

			
				(
				𝑠
				)
				=
				−
				𝑘
			

			
				2
				1
			

			
				(
				𝑠
				)
				𝑉
			

			

				1
			

			
				(
				𝑠
				)
				+
				𝑘
			

			
				
				1
			

			
				(
				𝑠
				)
				𝑉
			

			

				2
			

			
				(
				𝑠
				)
				+
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				𝜏
			

			

				1
			

			
				(
				𝑠
				)
				𝑉
			

			

				3
			

			
				𝛼
				(
				𝑠
				)
				,
			

			
				
				
				
				
			

			
				(
				𝑠
				)
				=
				−
				3
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				𝑘
			

			
				
				1
			

			
				(
				𝑠
				)
				𝑉
			

			

				1
			

			
				
				𝑘
				(
				𝑠
				)
				+
			

			
				1
				
				
			

			
				(
				𝑠
				)
				−
				𝑘
			

			
				3
				1
			

			
				(
				𝑠
				)
				−
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				𝑘
			

			
				2
				2
			

			
				(
				𝑠
				)
				+
				2
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				𝑘
			

			

				2
			

			
				(
				𝑠
				)
			

			
				
			
			

				𝑘
			

			

				2
			

			
				(
				𝑠
				)
				−
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
			

			
				
			
			

				𝑘
			

			
				2
				2
			

			
				
				𝑉
				(
				𝑠
				)
			

			

				2
			

			
				
				(
				𝑠
				)
				+
				2
				𝑘
			

			
				
				1
			

			
				(
				𝑠
				)
				𝜏
			

			

				1
			

			
				(
				𝑠
				)
				+
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				𝜏
			

			
				
				1
			

			
				
				𝑉
				(
				𝑠
				)
			

			

				3
			

			
				(
				𝑠
				)
				,
			

		
	

						where 
	
		
			

				𝜏
			

			

				1
			

			
				(
				𝑠
				)
				=
				𝑘
			

			

				2
			

			
				(
				𝑠
				)
				−
			

			
				
			
			

				𝑘
			

			

				2
			

			
				(
				𝑠
				)
			

		
	
.
 Proof. Let 
	
		
			

				𝛼
			

		
	
 be a Frenet curve of osculating order 3 in 
	
		
			

				𝐺
			

		
	
. Then we have 
							
	
 		
 			
				(
				2
				.
				1
				0
				)
			
 		
	

	
		
			

				𝛼
			

			
				
				
			

			
				𝑑
				(
				𝑠
				)
				=
			

			

				2
			

			

				𝛼
			

			
				
			
			
				𝑑
				𝑠
			

			

				2
			

			
				=
				𝑉
			

			
				
				1
			

			
				(
				𝑠
				)
				=
				𝐷
			

			

				𝑉
			

			

				1
			

			

				𝑉
			

			

				1
			

			
				1
				(
				𝑠
				)
				−
			

			
				
			
			
				2
				
				𝑉
			

			

				1
			

			
				(
				𝑠
				)
				,
				𝑉
			

			

				1
			

			
				
				(
				𝑠
				)
				=
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				𝑉
			

			

				2
			

			
				(
				𝑠
				)
				.
			

		
	

						This implies that
							
	
 		
 			
				(
				2
				.
				1
				1
				)
			
 		
	

	
		
			

				𝛼
			

			
				
				
				
			

			
				(
				𝑠
				)
				=
				𝑘
			

			
				
				1
			

			
				(
				𝑠
				)
				𝑉
			

			

				2
			

			
				(
				𝑠
				)
				+
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				𝑉
			

			
				
				2
			

			
				(
				𝑠
				)
				=
				𝑘
			

			
				
				1
			

			
				(
				𝑠
				)
				𝑉
			

			

				2
			

			
				(
				𝑠
				)
				+
				𝑘
			

			

				1
			

			
				(
				
				𝐷
				𝑠
				)
			

			

				𝑉
			

			

				1
			

			

				𝑉
			

			

				2
			

			
				(
				1
				𝑠
				)
				−
			

			
				
			
			
				2
				
				𝑉
			

			

				1
			

			
				(
				𝑠
				)
				,
				𝑉
			

			

				2
			

			
				(
				
				
				𝑠
				)
				=
				𝑘
			

			
				
				1
			

			
				(
				𝑠
				)
				𝑉
			

			

				2
			

			
				(
				𝑠
				)
				+
				𝑘
			

			

				1
			

			
				
				(
				𝑠
				)
				−
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				𝑉
			

			

				1
			

			
				(
				𝑠
				)
				+
				𝑘
			

			

				3
			

			
				(
				𝑠
				)
				−
			

			
				
			
			

				𝑘
			

			

				2
			

			
				(
				𝑠
				)
				𝑉
			

			

				3
			

			
				
				(
				𝑠
				)
				=
				−
				𝑘
			

			
				2
				1
			

			
				(
				𝑠
				)
				𝑉
			

			

				1
			

			
				(
				𝑠
				)
				+
				𝑘
			

			
				
				1
			

			
				(
				𝑠
				)
				𝑉
			

			

				2
			

			
				(
				𝑠
				)
				+
				𝑘
			

			

				1
			

			
				
				𝑘
				(
				𝑠
				)
			

			

				2
			

			
				(
				𝑠
				)
				−
			

			
				
			
			

				𝑘
			

			

				2
			

			
				
				𝑉
				(
				𝑠
				)
			

			

				3
			

			
				(
				𝑠
				)
				.
			

		
	

						Also, we have the following:
							
	
 		
 			
				(
				2
				.
				1
				2
				)
			
 		
	

	
		
			

				𝛼
			

			
				
				
				
				
			

			
				(
				𝑠
				)
				=
				−
				2
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				𝑘
			

			
				
				1
			

			
				(
				𝑠
				)
				𝑉
			

			

				1
			

			
				(
				𝑠
				)
				+
				𝑘
			

			
				1
				
				
			

			
				(
				𝑠
				)
				𝑉
			

			

				2
			

			
				
				𝑘
				(
				𝑠
				)
				+
			

			

				1
			

			
				(
				𝑠
				)
				𝑘
			

			

				2
			

			
				(
				𝑠
				)
				−
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
			

			
				
			
			

				𝑘
			

			

				2
			

			
				
				(
				𝑠
				)
			

			

				
			

			

				𝑉
			

			

				3
			

			
				(
				𝑠
				)
				−
				𝑘
			

			
				2
				1
			

			
				(
				𝑠
				)
				𝑉
			

			
				
				1
			

			
				(
				𝑠
				)
				+
				𝑘
			

			
				
				1
			

			
				(
				𝑠
				)
				𝑉
			

			
				
				2
			

			
				(
				𝑠
				)
				+
				𝑘
			

			

				1
			

			
				
				𝑘
				(
				𝑠
				)
			

			

				2
			

			
				(
				𝑠
				)
				−
			

			
				
			
			

				𝑘
			

			

				2
			

			
				
				𝑉
				(
				𝑠
				)
			

			
				
				3
			

			
				(
				𝑠
				)
				=
				−
				2
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				𝑘
			

			
				
				1
			

			
				(
				𝑠
				)
				𝑉
			

			

				1
			

			
				(
				𝑠
				)
				+
				𝑘
			

			
				1
				
				
			

			
				(
				𝑠
				)
				𝑉
			

			

				2
			

			
				
				𝑘
				(
				𝑠
				)
				+
			

			

				1
			

			
				(
				𝑠
				)
				𝑘
			

			

				2
			

			
				(
				𝑠
				)
				−
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
			

			
				
			
			

				𝑘
			

			

				2
			

			
				
				(
				𝑠
				)
			

			

				
			

			

				𝑉
			

			

				3
			

			
				(
				𝑠
				)
				−
				𝑘
			

			
				2
				1
			

			
				
				𝐷
				(
				𝑠
				)
			

			

				𝑉
			

			

				1
			

			

				𝑉
			

			

				1
			

			
				1
				(
				𝑠
				)
				−
			

			
				
			
			
				2
				
				𝑉
			

			

				1
			

			
				(
				𝑠
				)
				,
				𝑉
			

			

				1
			

			
				
				
				(
				𝑠
				)
				+
				𝑘
			

			
				
				1
			

			
				
				𝐷
				(
				𝑠
				)
			

			

				𝑉
			

			

				1
			

			

				𝑉
			

			

				2
			

			
				1
				(
				𝑠
				)
				−
			

			
				
			
			
				2
				
				𝑉
			

			

				1
			

			
				(
				𝑠
				)
				,
				𝑉
			

			

				2
			

			
				
				
				(
				𝑠
				)
				+
				𝑘
			

			

				1
			

			
				
				𝑘
				(
				𝑠
				)
			

			

				2
			

			
				(
				𝑠
				)
				−
			

			
				
			
			

				𝑘
			

			

				2
			

			
				𝐷
				(
				𝑠
				)
				
				
			

			

				𝑉
			

			

				1
			

			

				𝑉
			

			

				3
			

			
				1
				(
				𝑠
				)
				−
			

			
				
			
			
				2
				
				𝑉
			

			

				1
			

			
				(
				𝑠
				)
				,
				𝑉
			

			

				3
			

			
				
				
				(
				𝑠
				)
				=
				−
				3
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				𝑘
			

			
				
				1
			

			
				(
				𝑠
				)
				𝑉
			

			

				1
			

			
				
				𝑘
				(
				𝑠
				)
				+
			

			
				1
				
				
			

			
				(
				𝑠
				)
				−
				𝑘
			

			
				3
				1
			

			
				(
				𝑠
				)
				−
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				𝑘
			

			
				2
				2
			

			
				(
				𝑠
				)
				+
				2
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				𝑘
			

			

				2
			

			
				(
				𝑠
				)
			

			
				
			
			

				𝑘
			

			

				2
			

			
				(
				𝑠
				)
				−
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
			

			
				
			
			

				𝑘
			

			
				2
				2
			

			
				
				𝑉
				(
				𝑠
				)
			

			

				2
			

			
				
				(
				𝑠
				)
				+
				2
				𝑘
			

			
				
				1
			

			
				(
				𝑠
				)
				𝜏
			

			

				1
			

			
				(
				𝑠
				)
				+
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				𝜏
			

			
				
				1
			

			
				
				𝑉
				(
				𝑠
				)
			

			

				3
			

			
				(
				𝑠
				)
				.
			

		
	
Notation. Let we put
							
	
 		
 			
				(
				2
				.
				1
				3
				)
			
 		
	

	
		
			

				𝑁
			

			

				1
			

			
				(
				𝑠
				)
				=
				𝑘
				(
				𝑠
				)
				𝑉
			

			

				2
			

			
				𝑁
				(
				𝑠
				)
				,
			

			

				2
			

			
				(
				𝑠
				)
				=
				𝑘
			

			
				
				1
			

			
				(
				𝑠
				)
				𝑉
			

			

				2
			

			
				(
				𝑠
				)
				+
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				𝜏
			

			

				1
			

			
				(
				𝑠
				)
				𝑉
			

			

				3
			

			
				𝑁
				(
				𝑠
				)
				,
			

			

				3
			

			
				
				𝑘
				(
				𝑠
				)
				=
			

			
				1
				
				
			

			
				(
				𝑠
				)
				−
				𝑘
			

			
				3
				1
			

			
				−
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				𝑘
			

			
				2
				2
			

			
				(
				𝑠
				)
				+
				2
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				𝑘
			

			

				2
			

			
				(
				𝑠
				)
			

			
				
			
			

				𝑘
			

			

				2
			

			
				(
				𝑠
				)
				−
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
			

			
				
			
			

				𝑘
			

			
				2
				2
			

			
				
				𝑉
				(
				𝑠
				)
			

			

				2
			

			
				+
				
				(
				𝑠
				)
				2
				𝑘
			

			
				
				1
			

			
				(
				𝑠
				)
				𝜏
			

			

				1
			

			
				(
				𝑠
				)
				+
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				𝜏
			

			
				
				1
			

			
				
				𝑉
				(
				𝑠
				)
			

			

				3
			

			
				(
				𝑠
				)
				.
			

		
	

3. Curves of AW(k)-Type
In this section, we consider the properties of curves of AW(k)-type in the Lie group 
	
		
			

				𝐺
			

		
	
.
Definition 3.1 (see, cf. [13]). The Frenet curves of osculating order 3 are(i)of type weak AW(2) if they satisfy 
										
	
 		
 			
				(
				3
				.
				1
				)
			
 		
	

	
		
			

				𝑁
			

			

				3
			

			
				
				𝑁
				(
				𝑠
				)
				=
			

			

				3
			

			
				(
				𝑠
				)
				,
				𝑁
			

			
				∗
				2
			

			
				
				𝑁
				(
				𝑠
				)
			

			
				∗
				2
			

			
				(
				𝑠
				)
				,
			

		
	
(ii)of type weak AW(3) if they satisfy 
										
	
 		
 			
				(
				3
				.
				2
				)
			
 		
	

	
		
			

				𝑁
			

			

				3
			

			
				
				𝑁
				(
				𝑠
				)
				=
			

			

				3
			

			
				(
				𝑠
				)
				,
				𝑁
			

			
				∗
				1
			

			
				
				𝑁
				(
				𝑠
				)
			

			
				∗
				1
			

			
				(
				𝑠
				)
				,
			

		
	

									where 
										
	
 		
 			
				(
				3
				.
				3
				)
			
 		
	

	
		
			

				𝑁
			

			
				∗
				1
			

			
				𝑁
				(
				𝑠
				)
				=
			

			

				1
			

			
				(
				𝑠
				)
			

			
				
			
			
				‖
				‖
				𝑁
			

			

				1
			

			
				‖
				‖
				,
				𝑁
				(
				𝑠
				)
			

			
				∗
				2
			

			
				𝑁
				(
				𝑠
				)
				=
			

			

				2
			

			
				
				𝑁
				(
				𝑠
				)
				−
			

			

				2
			

			
				(
				𝑠
				)
				,
				𝑁
			

			
				∗
				1
			

			
				
				𝑁
				(
				𝑠
				)
			

			
				∗
				1
			

			
				(
				𝑠
				)
			

			
				
			
			
				‖
				‖
				
				𝑁
			

			

				2
			

			
				(
				𝑠
				)
				,
				𝑁
			

			
				∗
				1
			

			
				
				𝑁
				(
				𝑠
				)
			

			
				∗
				1
			

			
				‖
				‖
				.
				(
				𝑠
				)
			

		
	

Definition 3.2 (see [8]). The Frenet curves of osculating order 3 are(i)of type AW(1) if they satisfy 
	
		
			

				𝑁
			

			

				3
			

			
				(
				𝑠
				)
				=
				0
			

		
	
,(ii)of type AW(2) if they satisfy  
										
	
 		
 			
				(
				3
				.
				4
				)
			
 		
	

	
		
			
				‖
				‖
				𝑁
			

			

				2
			

			
				‖
				‖
				(
				𝑠
				)
			

			

				2
			

			

				𝑁
			

			

				3
			

			
				(
				𝑠
				)
				=
				⟨
				𝑁
			

			

				3
			

			
				(
				𝑠
				)
				,
				𝑁
			

			

				2
			

			
				(
				𝑠
				)
				⟩
				𝑁
			

			

				2
			

			
				(
				𝑠
				)
				,
			

		
	
(iii)of type AW(3) if they satisfy 
										
	
 		
 			
				(
				3
				.
				5
				)
			
 		
	

	
		
			
				‖
				‖
				𝑁
			

			

				1
			

			
				‖
				‖
				(
				𝑠
				)
			

			

				2
			

			

				𝑁
			

			

				3
			

			
				(
				𝑠
				)
				=
				⟨
				𝑁
			

			

				3
			

			
				(
				𝑠
				)
				,
				𝑁
			

			

				1
			

			
				(
				𝑠
				)
				⟩
				𝑁
			

			

				1
			

			
				(
				𝑠
				)
				.
			

		
	
 From the definitions of type AW(k), we can obtain the following propositions.
Proposition 3.3.  Let 
	
		
			

				𝛼
			

		
	
 be a Frenet curve of osculating order 3. Then 
	
		
			

				𝛼
			

		
	
 is of weak 
	
		
			
				A
				W
				(
				2
				)
			

		
	
-type if and only if 
							
	
 		
 			
				(
				3
				.
				6
				)
			
 		
	

	
		
			

				𝑘
			

			
				1
				
				
			

			
				(
				𝑠
				)
				−
				𝑘
			

			
				3
				1
			

			
				(
				𝑠
				)
				−
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				𝑘
			

			
				2
				2
			

			
				(
				𝑠
				)
				+
				2
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				𝑘
			

			

				2
			

			
				(
				𝑠
				)
			

			
				
			
			

				𝑘
			

			

				2
			

			
				(
				𝑠
				)
				−
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
			

			
				
			
			

				𝑘
			

			
				2
				2
			

			
				(
				𝑠
				)
				=
				0
				.
			

		
	

Proposition 3.4.  Let 
	
		
			

				𝛼
			

		
	
 be a Frenet curve of osculating order 3. Then 
	
		
			

				𝛼
			

		
	
 is of weak 
	
		
			
				A
				W
				(
				3
				)
			

		
	
-type if and only if 
							
	
 		
 			
				(
				3
				.
				7
				)
			
 		
	

	
		
			
				2
				𝑘
			

			
				
				1
			

			
				(
				𝑠
				)
				𝜏
			

			

				1
			

			
				(
				𝑠
				)
				+
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				𝜏
			

			
				
				1
			

			
				(
				𝑠
				)
				=
				0
				.
			

		
	

Proposition 3.5.  Let 
	
		
			

				𝛼
			

		
	
 be a Frenet curve of osculating order 3. Then 
	
		
			

				𝛼
			

		
	
 is of 
	
		
			
				A
				W
				(
				1
				)
			

		
	
-type if and only if 
							
	
 		
 			
				(
				3
				.
				8
				)
			
 		
	

	
		
			

				𝑘
			

			
				1
				
				
			

			
				(
				𝑠
				)
				−
				𝑘
			

			
				3
				1
			

			
				(
				𝑠
				)
				−
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				𝑘
			

			
				2
				2
			

			
				(
				𝑠
				)
				+
				2
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				𝑘
			

			

				2
			

			
				(
				𝑠
				)
			

			
				
			
			

				𝑘
			

			

				2
			

			
				(
				𝑠
				)
				−
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
			

			
				
			
			

				𝑘
			

			
				2
				2
			

			
				𝑘
				(
				𝑠
				)
				=
				0
				,
			

			
				2
				1
			

			
				(
				𝑠
				)
				𝜏
			

			

				1
			

			
				(
				𝑠
				)
				=
				𝑐
				,
			

		
	

						where 
	
		
			

				𝑐
			

		
	
 is a constant. 
Proposition 3.6.  Let 
	
		
			

				𝛼
			

		
	
 be a Frenet curve of osculating order 3. Then 
	
		
			

				𝛼
			

		
	
 is of type 
	
		
			
				A
				W
				(
				2
				)
			

		
	
 if and only if 
							
	
 		
 			
				(
				3
				.
				9
				)
			
 		
	

	
		
			

				𝑘
			

			
				
				1
			

			
				
				(
				𝑠
				)
				2
				𝑘
			

			
				
				1
			

			
				(
				𝑠
				)
				𝜏
			

			

				1
			

			
				(
				𝑠
				)
				+
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				𝜏
			

			
				
				1
			

			
				
				(
				𝑠
				)
				=
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				𝜏
			

			

				1
			

			
				
				𝑘
				(
				𝑠
				)
			

			
				1
				
				
			

			
				(
				𝑠
				)
				−
				𝑘
			

			
				3
				1
			

			
				(
				𝑠
				)
				−
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				𝑘
			

			
				2
				2
			

			
				(
				𝑠
				)
				+
				2
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				𝑘
			

			

				2
			

			
				(
				𝑠
				)
			

			
				
			
			

				𝑘
			

			

				2
			

			
				(
				𝑠
				)
				−
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
			

			
				
			
			

				𝑘
			

			
				2
				2
			

			
				
				(
				𝑠
				)
				=
				0
				.
			

		
	

Proposition 3.7.  Let 
	
		
			

				𝛼
			

		
	
 be a Frenet curve of osculating order 3. Then 
	
		
			

				𝛼
			

		
	
 is of type 
	
		
			
				A
				W
				(
				3
				)
			

		
	
 if and only if 
							
	
 		
 			
				(
				3
				.
				1
				0
				)
			
 		
	

	
		
			

				𝑘
			

			
				2
				1
			

			
				(
				𝑠
				)
				𝜏
			

			

				1
			

			
				(
				𝑠
				)
				=
				𝑐
				,
			

		
	

						where 
	
		
			

				𝑐
			

		
	
 is a constant. 
4. General Helices of AW(k)-Type
In this section, we study general helices of AW(k)-type in the Lie group 
	
		
			

				𝐺
			

		
	
 with a bi-invariant metric and characterize these curves.
Definition 4.1 (see [6]). Let 
	
		
			
				𝛼
				∶
				𝐼
				→
				𝐺
			

		
	
 be a parameterized curve. Then 
	
		
			

				𝛼
			

		
	
 is called a general helix if it makes a constant angle with a left-invariant vector field.
Note that in the definition the left-invariant vector field may be assumed to be with unit length, and if the curve 
	
		
			

				𝛼
			

		
	
 is parametrized by arc-length
	
		
			

				𝑠
			

		
	
, then we have
						
	
 		
 			
				(
				4
				.
				1
				)
			
 		
	

	
		
			
				
				𝛼
			

			

				
			

			
				
				(
				𝑠
				)
				,
				𝑋
				=
				c
				o
				s
				𝜃
				,
			

		
	

					for 
	
		
			
				𝑋
				∈
				𝔤
			

		
	
, where 
	
		
			

				𝜃
			

		
	
 is a constant.
If 
	
		
			

				𝐺
			

		
	
 is a commutative group 
	
		
			

				ℝ
			

			

				3
			

		
	
, then Definition 4.1 reduces to the classical definition (see [14]). Since a left-invariant vector field in 
	
		
			

				𝐺
			

		
	
 is a Killing vector field, Definition 4.1 is similar to the definition given in [1].
Theorem 4.2 (see [6]).   A curve of osculating order 3 in 
	
		
			

				𝐺
			

		
	
 is a general helix if and only if 
							
	
 		
 			
				(
				4
				.
				2
				)
			
 		
	

	
		
			

				𝜏
			

			

				1
			

			
				=
				𝑐
				𝑘
			

			

				1
			

			

				,
			

		
	

						where 
	
		
			

				𝑐
			

		
	
 is a constant. 
From (4.2), a curve with 
	
		
			

				𝑘
			

			

				1
			

			
				≠
				0
			

		
	
 is a general helix if and only if 
	
		
			
				(
				𝜏
			

			

				1
			

			
				/
				𝑘
			

			

				1
			

			
				)
				(
				𝑠
				)
			

		
	
 = constant. As a Euclidean sense, if both 
	
		
			

				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				≠
				0
			

		
	
 and 
	
		
			

				𝜏
			

			

				1
			

			
				(
				𝑠
				)
			

		
	
 are constants, it is a cylindrical helix. We call such a curve a circular helix.
Theorem 4.3.  Let 
	
		
			

				𝛼
			

		
	
 be a Frenet curve of osculating order 3. Then 
	
		
			

				𝛼
			

			
				
				
			

			
				(
				𝑠
				)
			

		
	
, 
	
		
			

				𝛼
			

			
				
				
				
			

			
				(
				𝑠
				)
			

		
	
, and 
	
		
			

				𝛼
			

			
				
				
				
				
			

			
				(
				𝑠
				)
			

		
	
 are linearly dependent if and only if 
	
		
			
				𝛼
				(
				𝑠
				)
			

		
	
 is general helix.
Proof. If 
	
		
			

				𝛼
			

			
				
				
			

			
				(
				𝑠
				)
			

		
	
, 
	
		
			

				𝛼
			

			
				
				
				
			

			
				(
				𝑠
				)
			

		
	
, and 
	
		
			

				𝛼
			

			
				
				
				
				
			

			
				(
				𝑠
				)
			

		
	
 are linearly dependent, then the following equation holds: 
							
	
 		
 			
				(
				4
				.
				3
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				|
				|
				|
				|
				0
				𝑘
			

			

				1
			

			
				0
				−
				𝑘
			

			
				2
				1
			

			

				𝑘
			

			
				
				1
			

			

				𝑘
			

			

				1
			

			

				𝜏
			

			

				1
			

			
				−
				3
				𝑘
			

			

				1
			

			

				𝑘
			

			
				
				1
			

			

				𝑘
			

			
				1
				
				
			

			
				−
				𝑘
			

			
				3
				1
			

			
				−
				𝑘
			

			

				1
			

			

				𝑘
			

			
				2
				2
			

			
				+
				2
				𝑘
			

			

				1
			

			

				𝑘
			

			

				2
			

			
				
			
			

				𝑘
			

			

				2
			

			
				−
				𝑘
			

			

				1
			

			
				
			
			

				𝑘
			

			
				2
				2
			

			
				2
				𝑘
			

			
				
				1
			

			

				𝜏
			

			

				1
			

			
				+
				𝑘
			

			

				1
			

			

				𝜏
			

			
				
				1
			

			
				|
				|
				|
				|
				|
				|
				|
				|
				|
				=
				0
				.
			

		
	

						By a direct computation, we have 
							
	
 		
 			
				(
				4
				.
				4
				)
			
 		
	

	
		
			

				𝑘
			

			

				1
			

			

				𝜏
			

			
				
				1
			

			
				−
				𝑘
			

			
				
				1
			

			

				𝜏
			

			

				1
			

			
				=
				0
				;
			

		
	

						it follows that
							
	
 		
 			
				(
				4
				.
				5
				)
			
 		
	

	
		
			

				𝑑
			

			
				
			
			
				
				𝜏
				𝑑
				𝑠
			

			

				1
			

			
				
			
			

				𝑘
			

			

				1
			

			
				
				=
				0
				.
			

		
	

						Thus, 
	
		
			

				𝜏
			

			

				1
			

			
				/
				𝑘
			

			

				1
			

		
	
 = constant; that is, 
	
		
			

				𝛼
			

		
	
 is general helix. The converse statement is trivial. 
Theorem 4.4.  Let 
	
		
			

				𝛼
			

		
	
 be a general helix of osculating order 3. Then 
	
		
			

				𝛼
			

		
	
 is of weak AW(3)-type if and only if 
	
		
			

				𝛼
			

		
	
 is a circular helix.
Proof. From (3.7) and (4.2), we can obtain that 
	
		
			

				𝑘
			

			

				1
			

		
	
 = constant; it follows that 
	
		
			

				𝜏
			

			

				1
			

			

				=
			

		
	
 constant. Thus, 
	
		
			

				𝛼
			

		
	
 is a circular helix. The converse statement is trivial. 
Theorem 4.5.  A general helix of type 
	
		
			
				A
				W
				(
				2
				)
			

		
	
 has Frenet curvatures 
							
	
 		
 			
				(
				4
				.
				6
				)
			
 		
	

	
		
			

				𝑘
			

			

				1
			

			
				1
				(
				𝑠
				)
				=
			

			
				
			
			

				
			

			
				
			
			
				−
				
				1
				+
				𝑐
			

			

				2
			

			
				
				𝑠
			

			

				2
			

			
				+
				𝑑
			

			

				1
			

			
				𝑠
				+
				𝑑
			

			

				2
			

			
				,
				𝜏
			

			

				1
			

			
				(
				𝑠
				)
				=
				𝑐
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				,
			

		
	

						where 
	
		
			

				𝑐
			

		
	
, 
	
		
			

				𝑑
			

			

				1
			

		
	
, and 
	
		
			

				𝑑
			

			

				2
			

		
	
 are constants. 
Proof. If 
	
		
			

				𝛼
			

		
	
 is a general helix of type 
	
		
			
				A
				W
				(
				2
				)
			

		
	
, then from (3.9) and (4.2) we have 
							
	
 		
 			
				(
				4
				.
				7
				)
			
 			
				(
				4
				.
				8
				)
			
 		
	

	
		
			

				𝑘
			

			
				
				1
			

			
				
				(
				𝑠
				)
				2
				𝑘
			

			
				
				1
			

			
				(
				𝑠
				)
				𝜏
			

			

				1
			

			
				(
				𝑠
				)
				+
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				𝜏
			

			
				
				1
			

			
				
				(
				𝑠
				)
				=
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				𝜏
			

			

				1
			

			
				
				𝑘
				(
				𝑠
				)
			

			
				1
				
				
			

			
				(
				𝑠
				)
				−
				𝑘
			

			
				3
				1
			

			
				(
				𝑠
				)
				−
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				𝑘
			

			
				2
				2
			

			
				(
				𝑠
				)
				+
				2
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				𝑘
			

			

				2
			

			
				(
				𝑠
				)
			

			
				
			
			

				𝑘
			

			

				2
			

			
				(
				𝑠
				)
				−
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
			

			
				
			
			

				𝑘
			

			
				2
				2
			

			
				
				𝜏
				(
				𝑠
				)
				=
				0
				,
			

			

				1
			

			
				(
				𝑠
				)
			

			
				
			
			

				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				=
				𝑐
				;
			

		
	

						where 
	
		
			

				𝑐
			

		
	
 is a constant. Combining (4.7) and (4.8), we have 
							
	
 		
 			
				(
				4
				.
				9
				)
			
 		
	

	
		
			

				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				𝑘
			

			
				1
				
				
			

			
				
				𝑘
				(
				𝑠
				)
				−
				3
			

			
				
				1
			

			
				
				(
				𝑠
				)
			

			

				2
			

			
				−
				
				1
				+
				𝑐
			

			

				2
			

			
				
				𝑘
			

			
				4
				1
			

			
				(
				𝑠
				)
				=
				0
				.
			

		
	

						To solve this differential equation, we take 
							
	
 		
 			
				(
				4
				.
				1
				0
				)
			
 		
	

	
		
			

				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				=
				𝑥
				.
			

		
	

						Then, (4.9) can be rewritten as the form 
							
	
 		
 			
				(
				4
				.
				1
				1
				)
			
 		
	

	
		
			
				𝑥
				𝑑
			

			

				2
			

			

				𝑥
			

			
				
			
			
				𝑑
				𝑠
			

			

				2
			

			
				
				−
				3
				𝑑
				𝑥
			

			
				
			
			
				
				𝑑
				𝑠
			

			

				2
			

			
				=
				
				1
				+
				𝑐
			

			

				2
			

			
				
				𝑥
			

			

				4
			

			

				.
			

		
	

						Let us put 
							
	
 		
 			
				(
				4
				.
				1
				2
				)
			
 		
	

	
		
			
				𝑥
				=
				𝑦
			

			

				𝑝
			

			

				.
			

		
	

						Then (4.11) becomes 
							
	
 		
 			
				(
				4
				.
				1
				3
				)
			
 		
	

	
		
			
				𝑝
				𝑦
			

			
				2
				𝑝
				−
				1
			

			

				𝑑
			

			

				2
			

			

				𝑦
			

			
				
			
			
				𝑑
				𝑠
			

			

				2
			

			
				−
				𝑝
				(
				2
				𝑝
				+
				1
				)
				𝑦
			

			
				2
				𝑝
				−
				2
			

			
				
				𝑑
				𝑦
			

			
				
			
			
				
				𝑑
				𝑠
			

			

				2
			

			
				=
				
				1
				+
				𝑐
			

			

				2
			

			
				
				𝑦
			

			
				4
				𝑝
			

			

				.
			

		
	

						If we choose 
	
		
			
				𝑝
				=
				−
				1
				/
				2
			

		
	
, then the above equation is 
							
	
 		
 			
				(
				4
				.
				1
				4
				)
			
 		
	

	
		
			

				𝑑
			

			

				2
			

			

				𝑦
			

			
				
			
			
				𝑑
				𝑠
			

			

				2
			

			
				
				=
				−
				2
				1
				+
				𝑐
			

			

				2
			

			
				
				,
			

		
	

						its general solution is given by 
							
	
 		
 			
				(
				4
				.
				1
				5
				)
			
 		
	

	
		
			
				
				𝑦
				=
				−
				1
				+
				𝑐
			

			

				2
			

			
				
				𝑠
			

			

				2
			

			
				+
				𝑑
			

			

				1
			

			
				𝑠
				+
				𝑑
			

			

				2
			

			

				,
			

		
	

						where 
	
		
			

				𝑑
			

			

				1
			

		
	
 and 
	
		
			

				𝑑
			

			

				2
			

		
	
 are constants. Thus, we have 
							
	
 		
 			
				(
				4
				.
				1
				6
				)
			
 		
	

	
		
			

				𝑘
			

			

				1
			

			
				1
				(
				𝑠
				)
				=
			

			
				
			
			

				
			

			
				
			
			
				−
				
				1
				+
				𝑐
			

			

				2
			

			
				
				𝑠
			

			

				2
			

			
				+
				𝑑
			

			

				1
			

			
				𝑠
				+
				𝑑
			

			

				2
			

			

				,
			

		
	
so, the theorem is proved.
Corollary 4.6.  There exists no a circular helix of osculating order 3 of type 
	
		
			
				A
				W
				(
				2
				)
			

		
	
 in 
	
		
			

				𝐺
			

		
	
.
Theorem 4.7.  Let 
	
		
			

				𝛼
			

		
	
 be a general helix of osculating order 3. Then 
	
		
			

				𝛼
			

		
	
 is of type 
	
		
			
				A
				W
				(
				3
				)
			

		
	
 if and only if 
	
		
			

				𝛼
			

		
	
 is a circular helix.
Proof. Suppose that 
	
		
			

				𝛼
			

		
	
 is a general helix of type 
	
		
			
				A
				W
				(
				3
				)
			

		
	
. Combining (3.10) and (4.2) we find 
	
		
			

				𝑘
			

			
				3
				1
			

			
				(
				𝑠
				)
				=
				1
			

		
	
, that is, 
	
		
			

				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				=
				1
			

		
	
. From this 
	
		
			

				𝜏
			

			

				1
			

			
				(
				𝑠
				)
				=
				𝑐
			

		
	
. Thus, 
	
		
			

				𝛼
			

		
	
 is a circular helix. 
Theorem 4.8.  Let 
	
		
			

				𝛼
			

		
	
 be a curve of osculating order 3. There exists no a general helix of type 
	
		
			
				A
				W
				(
				1
				)
			

		
	
. 
Proof. We assume that 
	
		
			

				𝛼
			

		
	
 is a general helix of type 
	
		
			
				A
				W
				(
				1
				)
			

		
	
. Then from (3.8) and (4.2) we have 
							
	
 		
 			
				(
				4
				.
				1
				7
				)
			
 			
				(
				4
				.
				1
				8
				)
			
 			
				(
				4
				.
				1
				9
				)
			
 		
	

	
		
			

				𝑘
			

			
				1
				
				
			

			
				(
				𝑠
				)
				−
				𝑘
			

			
				3
				1
			

			
				(
				𝑠
				)
				−
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				𝑘
			

			
				2
				2
			

			
				(
				𝑠
				)
				+
				2
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				𝑘
			

			

				2
			

			
				(
				𝑠
				)
			

			
				
			
			

				𝑘
			

			

				2
			

			
				(
				𝑠
				)
				−
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
			

			
				
			
			

				𝑘
			

			
				2
				2
			

			
				𝑘
				(
				𝑠
				)
				=
				0
				,
			

			
				2
				1
			

			
				(
				𝑠
				)
				𝜏
			

			

				1
			

			
				𝜏
				(
				𝑠
				)
				=
				𝑐
				,
			

			

				1
			

			
				(
				𝑠
				)
				=
				𝑐
				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				.
			

		
	

						From (4.18) and (4.19), we have 
							
	
 		
 			
				(
				4
				.
				2
				0
				)
			
 		
	

	
		
			

				𝑘
			

			

				1
			

			
				(
				𝑠
				)
				=
				1
				.
			

		
	

						Thus, (4.17) becomes 
							
	
 		
 			
				(
				4
				.
				2
				1
				)
			
 		
	

	
		
			

				𝑘
			

			
				2
				2
			

			
				(
				𝑠
				)
				−
				2
				𝑘
			

			

				2
			

			
				(
				𝑠
				)
			

			
				
			
			

				𝑘
			

			

				2
			

			
				(
				𝑠
				)
				+
			

			
				
			
			

				𝑘
			

			
				2
				2
			

			
				(
				𝑠
				)
				=
				−
				1
				,
			

		
	

						equivalently to 
							
	
 		
 			
				(
				4
				.
				2
				2
				)
			
 		
	

	
		
			
				
				𝑘
			

			

				2
			

			
				(
				𝑠
				)
				−
			

			
				
			
			

				𝑘
			

			

				2
			

			
				
				(
				𝑠
				)
			

			

				2
			

			
				=
				−
				1
				.
			

		
	

						It is impossible, so the theorem is proved. 
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