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A class of Cohen-Grossberg-type BAM neural networks with distributed delays and impulses are
investigated in this paper. Sufficient conditions to guarantee the uniqueness and global exponential
stability of the periodic solutions of such networks are established by using suitable Lyapunov
function, the properties of M-matrix, and some suitable mathematical transformation. The results
in this paper improve the earlier publications.

1. Introduction

The research of neural networks with delays involves not only the dynamic analysis of
equilibrium point but also that of periodic oscillatory solution. The dynamic behavior of
periodic oscillatory solution is very important in learning theory due to the fact that learning
usually requires repetition [1, 2].

Cohen and Grossberg proposed the Cohen-Grossberg neural networks (CGNNs) in
1983 [3]. Kosko proposed bi directional associative memory neural networks (BAMNNs)
in 1988 [4]. Some important results for periodic solutions of delayed CGNNs have been
obtained in [5–10]. Xiang and Cao proposed a class of Cohen-Grossberg BAM neural
networks (CGBAMNNs) with distributed delays in 2007 [11]; in addition, many evolutionary
processes are characterized by abrupt changes at certain time; these changes are called to
be impulsive phenomena, which are included in many neural networks such as Hopfield
neural networks, BAM neural networks, CGNNs, and CGBAMNNs and can affect dynamical
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behaviors of the systems just as time delays. The results for periodic solutions of CGBAMNNs
with or without impulses are obtained in [11–15].

The objective of this paper is to study the existence and global exponential stability
of periodic solutions of CGBAMNNs with distributed delays by using suitable Lyapunov
function, the properties of M-matrix, and some suitable mathematical transformation.
Comparing with the results in [13, 14], improved results are successively obtained, the
conditions for the existence and globally exponential stability of the periodic solution of such
system without impulses have nothing to do with inputs of the neurons and amplification
functions; and we also point that CGBAMNNs model is a special case of CGNNs model,
many results of CGBAMNNs can be directly obtained from the results of CGNNs.

The rest of this paper is organized as follows. Preliminaries are given in Section 2.
Sufficient conditions which guarantee the uniqueness and global exponential stability of peri-
odic solutions for CGBAMNNs with distributed delays and impulses are given in Section 3.
Two examples are given in Section 4 to demonstrate the main results.

2. Preliminaries

Consider the following periodic CGNNs model with distributed delays and impulses:

ẋi(t) = −ai(xi(t))
⎡
⎣bi(t, xi(t)) −

n∑
j=1

pij(t)fj
(
ρjxj(t)

)

−
n∑
j=1

uij(t)
∫+∞

0
kij(s)fj

(
ρjxj(t − s)

)
ds − Ii(t)

⎤
⎦, t > 0, t /= tk,

Δxi(tk) = −γikxi(tk), t = tk, k ∈ Z+,

(2.1)

where 1 ≤ i ≤ n, t > 0, and Z+ = {1, 2, . . .}. xi(t) denotes the state variable of the ith neuron,
fj(·) denotes the signal function of the jth neuron at time t; Ii denotes input of the ith neuron
at time t; ai(·) represents amplification function; bi(t, ·) is appropriately behaved function;
pij(t) and uij(t) are connection weights of the neural networks at time t; respectively, ρj
is positive constant, which corresponds to the neuronal gain associated with the neuronal
activations and kij corresponds to the delay kernel function; pij(t) and uij(t) are continuously
periodic functions on [0,+∞) with common period T > 0.

Δxi(tk) = xi(t+k) − xi(t−k); tk is called impulsive moment and satisfies 0 < t1 < t2 < · · · ,
limk→+∞tk = +∞; xi(t−) and xi(t+) denote the left-hand and right-hand limits at tk;
respectively, we always assume xi(t−k) = xi(tk) and x′

i(t
−
k
) = x′

i(tk), k ∈ Z+.
For system (2.1), we assume the following.

(H1) The amplification function ai(·) is continuous, and there exist constants ai, ai such
that 0 < ai ≤ ai(xi(t)) ≤ ai for 1 ≤ i ≤ n.

(H2) The behaved function bi(t, ·) is T -periodic about the first argument; there exists
continuous T -periodic function αi(t) such that

bi(t, x) − bi
(
t, y
)

x − y ≥ αi(t) > 0, (2.2)

for all x /=y, 1 ≤ j ≤ n.
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(H3) For activation function fj(·), there exists positive constant Lj such that

Lj = sup
x /= y

∣∣∣∣∣
fj(x) − fj(x)

x − y

∣∣∣∣∣, (2.3)

for all x /=y, 1 ≤ j ≤ n.

(H4) The kernel function kij(s) is nonnegative continuous function on [0,+∞) and
satisfies

∫+∞
0

seλskij(s)ds < +∞,

Kij(λ) =
∫+∞

0
eλskij(s)ds

(2.4)

is differentiable function for λ ∈ [0, rij), 0 < rij < +∞, Kij(0) = 1 and
limλ→ r−ijKij(λ) = +∞.

(H5) There exists positive integer k0 such that tk+k0 = tk + T and γi(k+k0) = γik hold.

Remark 2.1. A typical example of kernel function is given by kij(s) = (sr/r!) rr+1
ij e−rij s for

s ∈ [0,+∞), where rij ∈ (0,+∞), r ∈ {0, 1, . . . , n}. These kernel functions are called as the
gamma memory filter [16] and satisfy condition (H4).

For any continuous function S(t) on [0, T], S and S denote mint∈[0,T]{|S(t)|} and
maxt∈[0,T]{|S(t)|}, respectively.

For any x(t) = (xi(t), x2(t), . . . , xk(t))
T ∈ Rk, t > 0, define ‖x(t)‖ =

∑k
i=1 |xi(t)|, and for

any ϕ(s) = (ϕ1(s), ϕ2(s), . . . , ϕk(s))
T ∈ Rk, s ∈ (−∞, 0], define ‖ϕ(s)‖ = sups∈(−∞,0]

∑k
i=1 |ϕi(s)|.

Denote

PC
(
(−∞, 0], Rk

)
=
{
ψ : [−∞, 0] −→ Rk | ψ(s) is bounded and continuous for all but at

most a finite number of points s ∈ (−∞, 0], and at these points s,

ψ(s+), ψ
(
s−
)

exist and ψ
(
s−
)
= ψ(s)}.

(2.5)

Then PC((−∞, 0], Rk) is a Banach space with respect to ‖ · ‖.
The initial conditions of system (2.1) are given by

xi(s) = ϕi(s), −∞ ≤ s ≤ 0, 1 ≤ i ≤ n, (2.6)

where ϕ(s) = (ϕ1(s), ϕ2(s), . . . , ϕn(s)) ∈ PC([−∞, 0], Rn).
Let x(t, ϕ) = (x1(t, ϕ), x2(t, ϕ), . . . , xn(t, ϕ)

T ) denote any solution of the system (2.1)
with initial value ϕ ∈ PC((−∞, 0], Rn).
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Definition 2.2. A solution x(t, ϕ) of system (2.1) is said to be globally exponentially stable, if
there exist two constants λ > 0, M > 0 such that

∥∥x(t, ψ) − x(t, ϕ)∥∥ ≤M∥∥ψ − ϕ∥∥e−λt, t > 0, (2.7)

for any solutions x(t, ψ) of system (2.1).

Definition 2.3. A real matrix A = (aij)n×n is said to be a nonsingular M-matrix if aij ≤ 0 (i, j =
1, 2, . . . , n, i /= j), and all successive principle minors of A are positive.

Lemma 2.4 (see [17]). A matrix with nonpositive off-diagonal elements A = (aij)n×n is a
nonsingular M-matrix if and if only there exists a vector p = (pi)1×n > 0 such that pTA > 0 or
Ap holds.

Lemma 2.5. Under assumptions (H1)–(H5), system (2.1) has a T -periodic solution which is globally
exponentially stable, if the following conditions hold.

(H6) M = A − C is a nonsingularM-matrix, where

A = diag
(
α1, α2, . . . , αn

)
, C =

(
cij
)
n×n, cij =

(
pij + uij

)
ρjLj

. (2.8)

(H7) ai((1 − γik)s) ≥ |1 − γik|ai(s), for all s ∈ R, i = 1, 2, . . . , n.

Proof. Let x(t, ψ1) and x(t, ψ2) be two solutions of system (2.1) with initial value ψ1 =
(ϕ1, ϕ2, . . . , ϕn) and ψ2 = (ζ1, ζ2, . . . , ζn) ∈ PC((−∞, 0], Rn), respectively.

Let

Fi(θ) = μi

(
αi −

θ

ai

)
−

n∑
j=1

μj
(
pji + ujiKji(θ)

)
ρiLi, i = 1, 2, . . . , n. (2.9)

Since M is a nonsingular M-matrix according to condition (H6), MT is also a nonsingular
M-matrix; we know from Lemma 2.4 that there exists a vector p = (μ1, μ2, . . . , μn)

T such that
MTp > 0; that is,

μiαi −
n∑
j=1

μj
(
pji + uji

)
ρiLi > 0, (2.10)

for 1 ≤ i ≤ n, which indicates that Fi(0) > 0. Since Fi(θ) are continuous and differential on
[0, rji) and limθ→ r−jiFi(θ) = −∞ according to condition (H4), F ′

i(θ) < 0 for θ ∈ [0, uji). There
exist constants θi such that Fi(θi) = 0 for i = 1, 2, . . . , n. So we can choose

0 < λ ≤ min{θ1, θ2, . . . , θn}, (2.11)

such that

Fi(λ) ≥ 0. (2.12)
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Define

Xi(t) =
∣∣xi
(
t, ψ2
) − xi

(
t, ψ1
)∣∣. (2.13)

Now we define a Lyapunov function V (t) by

V (t) =
n∑
i=1

μi

⎧
⎨
⎩Vi(t) +

n∑
j=1

uijLjρj

∫+∞
0

kij(s)
∫ t
t−s
Xj

(
μ
)
eλ(s+μ)dμds

⎫
⎬
⎭, (2.14)

in which

Vi(t) = eλt sign
(
xi
(
t, ψ2
) − xi

(
t, ψ1
)) ∫xi(t,ψ2)

xi(t,ψ1)

1
ai(s)

ds. (2.15)

for i = 1, 2, . . . , n.
When t /= tk, k ∈ Z+, calculating the upper right derivative of V (t) along solution of

(2.1), similar to proof of Theorem 3.1 in [10], corresponding to case in which r → 1, vijl(t) = 0
in [10], we obtain from (2.12)–(2.15) that

D+V (t)|(2.1) ≤ −eλt
⎧
⎨
⎩

n∑
i=1

μi

(
αi −

λ

ai

)
Xi(t) −

n∑
i=1

n∑
j=1

μi
(
pij + uijKij(λ)

)
ρjLjXj(t)

⎫
⎬
⎭

= −eλt
⎧
⎨
⎩

n∑
i=1

μi

(
αi −

λ

ai

)
Xi(t) −

n∑
i=1

n∑
j=1

μi
(
pji + ujiKji(λ)

)
ρiLiXi(t)

⎫
⎬
⎭

= −eλt
n∑
i=1

Fi(λ)Xi(t) ≤ 0.

(2.16)

When t = tk, k ∈ Z+, we have

Vi
(
t+k
)
= eλt

+
sign
(
xi
(
t+k, ψ2

) − xi
(
t+k, ψ1

)) ∫xi(t+k ,ψ2)

xi(t+k ,ψ1)

1
ai(s)

ds

= eλt sign
(
1 − γik

)(
xi
(
tk, ψ2

) − xi
(
tk, ψ1

)) ∫ (1−γik)xi(tk ,ψ2)

(1−γik)xi(tk ,ψ1)

1
ai(s)

ds,

= eλt sign
(
xi
(
tk, ψ2

) − xi
(
tk, ψ1

)) ∫xi(tk ,ψ2)

xi(tk ,ψ1)

∣∣1 − γik
∣∣

ai
((

1 − γik
)
s
)ds,

(2.17)
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which, together with (H7), leads to

Vi(tk) − Vi
(
t+k
)
= eλt sign

(
xi
(
tk, ψ2

) − xi
(
tk, ψ1

)) ∫xi(tk ,ψ2)

xi(tk ,ψ1)

(
1

ai(s)
−

∣∣1 − γik
∣∣

ai
((

1 − γik
)
s
)
)
ds,

≥ eλt sign
(
xi
(
tk, ψ2

) − xi
(
tk, ψ1

)) ∫xi(tk ,ψ2)

xi(tk ,ψ1)

ai
((

1 − γik
)
s
) − ∣∣1 − γik

∣∣ai(s)
ai(s)ai

((
1 − γik

)
s
) ds ≥ 0,

(2.18)

that is,

Vi
(
t+k
) ≤ Vi(tk). (2.19)

It follows that

V
(
t+k
)
=

n∑
i=1

μi

⎧
⎨
⎩Vi(t

+) +
n∑
j=1

uijLjρj

∫+∞
0

kij(s)
∫ t+

t+−s
Xj

(
μ
)
eλ(s+μ)dμds

⎫
⎬
⎭

≤
n∑
i=1

μi

⎧
⎨
⎩Vi(t) +

n∑
j=1

uijLjρj

∫+∞
0

kij(s)
∫ t
t−s
Xj

(
μ
)
eλ(s+μ)dμds

⎫
⎬
⎭ = V (tk).

(2.20)

Then we have

V (t) ≤ V (0). (2.21)

On the other hand, from (2.14), we have

V (t) ≥ m0e
λt

n∑
i=1

∣∣xi
(
t, ψ2
) − xi

(
t, ψ1
)∣∣, V (0) ≤M0 sup

l∈(−∞,0]

n∑
i=1

∣∣ϕi(l) − ζi(l)
∣∣, (2.22)

in which

m0 = min
1≤i≤n

(
μi
ai

)
, M0 = max{M1,M2}, M1 = max

1≤i≤n

(
μi
ai

)
,

M2 =
n∑
j=1

μjmax
1≤i≤n
(
ujiρiLi

) ∫+∞
0

seλsmax
1≤i≤n

kji(s)ds.
(2.23)

Hence, from (2.21) and (2.22), we know that the following inequality holds for t > 0:

∥∥x(t, ψ2
) − x(t, ψ1

)∥∥ ≤M∥∥ψ2 − ψ1
∥∥e−λt, (2.24)

in which M =M0/m0.
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We can always choose a positive integer N such that e−λ0NTM ≤ 1/2 and define a
Poincaré mapping P : C → C by P(ξ) = xT (ξ); we have

∥∥∥PNψ2 − PNψ1

∥∥∥ ≤ 1
2
∥∥ψ2 − ψ1

∥∥, (2.25)

which implies that PN is a contraction mapping. Similar to [10], using contraction mapping
principle, we know that system (2.1) has a T -periodic solution which is globally exponentially
stable. This completes the proof.

Remark 2.6. The result above also holds for (2.1) without impulses, and the existence and
globally exponential stability of the periodic solution for (2.1) have nothing to do with
amplification functions and inputs of the neuron. The results in [5] have more restrictions
than Lemma 2.5 in this paper because conditions for the ones in [5] are relevant to
amplification functions.

3. Periodic Solutions of CGBAMNNs with Distributed
Delays and Impulses

Consider the following periodic CGBAMNNs model with distributed delays:

ẋi(t) = −ai(xi(t))
⎡
⎣bi(t, xi(t)) −

m∑
j=1

pij(t)fj
(
ρjyj(t)

)

−
m∑
j=1

uij(t)
∫+∞

0
kij(s)fj

(
ρjyj(t − s)

)
ds − Ii(t)

⎤
⎦, t > 0, t /= tk,

Δxi(tk) = −γikxi(tk), t = tk, k ∈ Z+,

ẏj(t) = −cj
(
yj(t)
)[
dj
(
t, yj(t)

) −
n∑
i=1

qji(t)gi
(
ρ̃ixi(t)

)

−
n∑
i=1

vji(t)
∫+∞

0
k̃ji(s)gi

(
ρ̃ixi(t − s)

)
ds − Jj(t)

]
, t > 0, t /= tk,

Δyj(tk) = −δjkyj(tk), t = tk, k ∈ Z+

(3.1)

for 1 ≤ i ≤ n, 1 ≤ j ≤ m, and Z+ = {1, 2, . . .}; xi(t) and yj(t) denote the state variable of the ith
neuron from the neural field FX and the jth neuron from the neural field FY at time t; fj(·) and
gi(·) denote the signal functions of the jth neuron from the neural field FY and the ith neuron
from the neural field FX at time t; respectively, Ii and Jj denote inputs of the ith neuron from
the neural field FX and the jth neuron from the neural field FY at time t; respectively, ai(·) and
cj(·) represent amplification functions; bi(t, ·) and dj(t, ·) are appropriately behaved functions;
pij(t), qji(t), uij(t), and vji(t) are the connection weights; ρj , ρ̃i are positive constants, which
correspond to the neuronal gains associated with the neuronal activations; kij and k̃ji
correspond to the delay kernel functions; uij(t), vji(t), pij(t), qji(t), Ii(t), and Jj(t) are all
continuously periodic functions on [0,+∞) with common period T > 0.
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Δxi(tk) = xi(t+k) − xi(t−k), Δyj(tk) = yj(t+k) − yj(t−k); tk is called impulsive moment and
satisfies 0 < t1 < t2 < · · · , limk→+∞tk = +∞; xi(t−), yj(t−) and xi(t+), yj(t+) denote the left-
hand and right-hand limits at tk; respectively, we always assume xi(t−k) = xi(tk), yj(t−k) =
yj(tk), x′

i(t
−
k) = x

′
i(tk), and y′

j(t
−
k) = y

′
j(tk), k ∈ Z+.

For system (3.1), we assume the following.

(H8) Amplification functions ai(·) and cj(·) are continuous and there exist constants
ai, ai and cj , cj such that 0 < ai ≤ ai(xi(t)) ≤ ai, 0 < cj ≤ cj(yj(t)) ≤ cj , 1 ≤
i ≤ n, 1 ≤ j ≤ m.

(H9) bi(t, u), dj(t, u) are T -periodic about the first argument, there exist continuous,
T -periodic functions αi(t) and βj(t) such that

bi(t, x) − bi
(
t, y
)

x − y ≥ αi(t) > 0,
dj(t, x) − dj

(
t, y
)

x − y ≥ βj(t) > 0 (3.2)

for all x /=y, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

(H10) For activation functions fj(·) and gi(·), there exist constant Lj and L̃i such that

Lj = sup
x /=y

∣∣∣∣∣
fj(x) − fj

(
y
)

x − y

∣∣∣∣∣, L̃i = sup
x /=y

∣∣∣∣∣
gi(x) − gi

(
y
)

x − y

∣∣∣∣∣, ∀x /=y ∈ R, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

(3.3)

(H11) The kernel functions kij(s) and k̃ji(s) are nonnegative continuous functions on
[0,+∞) and satisfy

∫+∞
0

seλskij(s)ds < +∞,

∫+∞
0

seλsk̃ji(s)ds < +∞,

Kij(λ) =
∫+∞

0
eλskij(s)ds, K̃ji(λ) =

∫+∞
0

eλsk̃ji(s)ds,
(3.4)

are differentiable functions for λ ∈ [0, rij) and λ ∈ [0, r̃ji); respectively, 0 < rij <

+∞, 0 < r̃ji < +∞, Kij(0) = 1, K̃ji(0) = 1, limλ→ r−ijKij(λ) = +∞ and limλ→ r̃−ji K̃ji(λ) =
+∞.

(H12) There exists positive integer k0 such that tk+k0 = tk+T and γi(k+k0) = γik, δj(k+k0) = δjk
hold.

We assume that system (3.1) has the following initial conditions:

xi(s) = ϕi(s), yj(s) = φj(s), i = 1, 2, . . . , n, j = 1, 2, . . . , m , −∞ ≤ s ≤ 0, (3.5)

where ψ = (ϕ, φ) ∈ PC((−∞, 0], Rn+m), ϕ(s) = (ϕ1(s), ϕ2(s), . . . , ϕn(s)), φ(s) = (φ1(s),
φ2(s), . . . , φm(s)).

Let Z(t, ψ) = (x(t, ψ), y(t, ψ)) denote any solution of the system (3.1) with initial value
ψ = (ϕ, φ) ∈ PC, x(t, ψ) = (x1(t, ψ), x2(t, ψ), . . . , x(tn, ψ)), y(t, ψ) = (y1(t, ψ), y2(t, ψ), . . . ,
ym(t, ψ)).
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Theorem 3.1. Under assumptions (H8)–(H12), there exists a T -periodic solution which is
asymptotically stable, if the following conditions hold.

(H13) The following M is a nonsingularM-matrix, and

M =

(
A −C
−C̃ Ã

)
, (3.6)

in which

A = diag
(
α1, α2, . . . , αn

)
, Ã = diag

(
β

1
, β

2
, . . . , β

m

)
,

C =
(
eij
)
m×n, C̃ =

(
ẽij
)
n×m, ẽij =

(
qji + vji

)
ρ̃iL̃i, eij =

(
pij + uij

)
ρjLj .

(3.7)

(H14) ai((1 − γik)s) ≥ |1 − γik|ai(s), cj((1 − δjk)s) ≥ |1 − δjk|cj(s), ∀s ∈ R, i = 1, 2, . . . , n, j =
1, 2, . . . , m.

Proof. Let

xn+j(t) = yj(t), an+j
(
t, xn+j(t)

)
= cj
(
t, yj(t)

)
, bn+j

(
t, xn+j(t)

)
= dj
(
t, yj(t)

)
,

pn+j,i(t) = qji(t), pi,n+j(t) = pij(t), un+j,i(t) = vji(t), ui,n+j(t) = uij(t),
Si(xi(t)) = gi(xi(t)), Sn+j

(
xn+j(t)

)
= fj
(
xj(t)
)
, ϕn+j(s) = ψj(s),

In+j = Jj(t), kn+j,i(s) = k̃ji(s), kij(s) = ki,n+j(s),
αn+j(t) = βj(t), L̃n+j = Lj, ρ̃n+j = ρj .

(3.8)

It follows that system (3.1) can be rewritten as

ẋi(t) = −ai(xi(t))
⎡
⎣bi(t, xi(t)) −

m∑
j=1

pi,n+j(t)Sn+j
(
ρ̃n+jxn+j(t)

)

−
m∑
j=1

ui,n+j(t)
∫+∞

0
ki,n+j(s)Sn+j

(
ρ̃n+jxn+j(t − s)

)
ds − Ii(t)

⎤
⎦, t /= tk,

Δxi(tk) = −γikxi(tk), t = tk, k ∈ Z+,

ẋn+j(t) = −an+j
(
xn+j(t)

)[
bn+j
(
t, xn+j(t)

) −
n∑
i=1

pn+j,i(t)Si
(
ρ̃ixi(t)

)

−
n∑
i=1

un+j,i(t)
∫+∞

0
kn+j,i(s)Si

(
ρ̃ixi(t − s)

)
ds − In+j(t)

]
, t /= tk,

Δxn+j(tk) = −γn+j,kxn+j(tk), t = tk, k ∈ Z+,

(3.9)

for 1 ≤ i ≤ n, 1 ≤ j ≤ m.
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Initial conditions are given by

xi(s) = ϕi(s), s ∈ (−∞, 0], i = 1, 2, . . . , (n +m). (3.10)

Thus system (3.9) is a special case of system (2.1) in mathematical form, under conditions
(H8)–(H14), we obtain from Lemma 2.5 that system (3.9) has a T -periodic solution which is
globally exponentially stable if ai((1 − γik)s) ≥ |1 − γik|ai(s) and the following matrix M′ is a
M-matrix, and

M′ = A′ − C′, (3.11)

where

A′ = diag
(
α1, α2, . . . , αn+m

)
,

D′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 w′
1,n+1 · · · w′

1,n+m
...

...
...

...
0 · · · 0 w′

n,n+1 · · · w′
n,n+m

w′
n+1,1 · · · w′

n+1,n 0 · · · 0
...

...
...

...
w′
n+m,1 · · · w′

n+m,n 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(3.12)

in which w′
ij = (pij + uij)ρ̃j L̃j .

Then, we know from (3.8) and (3.11) that Theorem 3.1 holds.
If ai(xi(t)) = cj(yj(t)) = 1, bi(t, xi(t)) = bi(t)xi(t) and dj(t, yj(t)) = dj(t)yj(t), where

bi(t) and dj(t) are positive continuous T -periodic functions for i = 1, 2, . . . , n, j = 1, 2, . . . , m.
System (3.1) reduces to the following Hopfield-type BAM neural networks model:

ẋi(t) = −bi(t)xi(t) +
m∑
j=1

pij(t)fj
(
ρjyj(t)

)

+
m∑
j=1

uij(t)
∫+∞

0
kij(s)fj

(
ρjyj(t − s)

)
ds + Ii(t), t > 0, t /= tk,

Δxi(tk) = −γikxi(tk), t = tk, k ∈ Z+,

ẏj(t) = −dj(t)yj(t) +
n∑
i=1

qji(t)gi
(
ρ̃ixi(t)

)

+
n∑
i=1

vji(t)
∫+∞

0
k̃ji(s)gi

(
ρ̃ixi(t − s)

)
ds + Jj(t), t > 0, t /= tk,

Δyj(tk) = −δjkyj(tk), t = tk, k ∈ Z+.

(3.13)

Corollary 3.2. Under assumptions (H9)–(H12), there exists a T -periodic solution which is globally
asymptotically stable, if the following conditions hold.
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(H′
13) The following M is a nonsingularM-matrix, and

M =

(
A −C
−C̃ Ã

)
, (3.14)

in which

A = diag
(
b1, b2, . . . , bn

)
, Ã = diag

(
d1, d2, . . . , dm

)
,

C =
(
eij
)
m×n, C̃ =

(
ẽij
)
n×m, eij =

(
pij + uij

)
ρjLj , ẽij =

(
qji + vji

)
ρ̃iL̃i.

(3.15)

(H′
14) 0 ≤ γik ≤ 2, 0 ≤ δjk ≤ 2 for i = 1, 2, . . . , n, j = 1, 2, . . . , m, k ∈ Z+.

Proof. As bi(t, xi(t)) = bi(t)xi(t) and dj(t, yj(t)) = dj(t)yj(t), we obtain αi(t) = bi(t) and βj(t) =
dj(t) in (H2), (H′

13) implies (H13) holds. Since ai(xi(t)) = cj(yj(t)) ≡ 1, then condition (H14)
reduces to (H′

14). Corollary 3.2 Holds from Theorem 3.1.

Remark 3.3. The conditions for the existence and globally exponential stability of the periodic
solution of (3.1) without impulses have nothing to do with inputs of the neuron and
amplification functions. The results in [13, 14] have more restrictions than Theorem 3.1 in
this paper because conditions for the ones in [13, 14] are relevant to amplification functions
and inputs of neurons our results should be better. In addition, Corollary 3.2 is similar to
Theorem 2.1 in [15]; our results generalize the results in [15].

Remark 3.4. In view of proof of Theorem 3.1, since CGBAMNNs model is a special case of
CGNNs model in form as BAM neural networks model is a special case of Hopfield neural
networks model, many results of CGBAMNNs can be directly obtained from the ones of
CGNNs, needing no repetitive discussions. Since system (3.1) reduces to autonomous system,
Theorem 3.1 still holds, which means that system (3.1) has a equilibrium which is globally
asymptotically stable; we know that many results in [18] can be directly obtained from the
results in [19].

4. Two Simple Examples

Example 4.1. Consider the following CGNNs model with distributed delays:

ẋ1(t) = −2
[
x1(t) − 0.2 tanh(x1(t)) − sin t

∫+∞
0

e−s tanh(x2(t − s))ds
]
,

ẋ2(t) = −(2 + cos(x2(t)))
[
x2(t) − 0.3

∫+∞
0

e−s tanh(x1(t − s))ds − 5
]
.

(4.1)

Obviously, system (4.1) satisfies (H1)–(H5).
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Figure 1: Time response of state variables x1, x2 and phase plot in space (t, x1, x2) for system (4.1).

Note that

M =
(

1 −1.2
−0.3 1

)
, (4.2)

it is a nonsingular M-matrix and system (4.1) also satisfies condition (H6). According to
Lemma 2.5, system (4.1) has a 2π-periodic solution which is globally exponentially stable.
Figure 1 shows the dynamic behaviors of system (4.1) with initial condition (0.1, 0.2).

However, It is easy to check that system (4.1) does not satisfy Theorem 4.3 or 4.4 in [5],
so theorems in [5] cannot are used to ascertain the existence and stability of periodic solutions
of system (4.1).

Example 4.2. Consider the following CGBAMNNs model with distributed delays and
impulses:

ẋ1(t) = −(2 + sin(x1(t)))
[

2x1(t) − sin t
∫+∞

0
e−s
∣∣y1(t − s)

∣∣ds − 1
]
, t > 0, t /= tk,

Δx1(tk) = −γ1kxi(tk), t = tk, k ∈ Z+,

ẏ1(t) = −(3 + cos
(
y1(t)
))[

(3 + cos t)y1(t) − sin t
∫+∞

0
e−s|x1(t − s)|ds − 1

]
, t > 0, t /= tk,

Δy1(tk) = −δ1ky1(tk), t = tk, k ∈ Z+,

(4.3)

where tk = πk, k ∈ Z+.
Obviously, system (4.3) satisfies (H8)–(H12).
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Figure 2: Time response of state variables x1, y1 and phase plot in space (t, x1, y1) for system (4.3)
without impulsive effects.

Case 1. γ1k = 0, δ1k = 0. Note that

M =
(

2 −1
−1 2

)
, (4.4)

it is a nonsingular M-matrix and system (4.3) also satisfies condition (H13). According to
Theorem 3.1, system (4.3) without impulses has a 2π-periodic solution which is globally
exponentially stable. Figure 2 shows the dynamic behaviors of system (4.3) with initial
condition (0.1, 0.2).

However, it is easy to check that system (4.3) without impulses does not satisfy
Theorem 1 in [13] and theorems in [14]; so theorems in [13, 14] cannot be used to ascertain
the existence and stability of periodic solutions of system (4.3).

Case 2. γ1k = 0.7, δ1k = (1 − 0.5 sin(tk + 1)). Note that a1(s) = 2 + sin s, c1(s) = 3 + cos s,
and a1/a1 = 0.5 > |1 − γ1k| = 0.3 and |1 − δ1k| < 0.5 < c1/c1 = 2/3, which means condition
(H14) also holds for system (4.3). Hence, system (4.3) with impulses still has that there exists
a 2π-periodic solution which is globally asymptotically stable. Figure 3 shows the dynamic
behaviors of system (4.3) with initial condition (0.1, 0.2).

This example illustrates the feasibility and effectiveness of the main results obtained
in this paper, and it also shows that the conditions for the existence and globally exponential
stability of the periodic solutions of CGBAMNNs without impulses have nothing to do
with inputs of the neurons and amplification functions. If impulsive perturbations exist, the
periodic solutions still exist and they are globally exponentially stable when we give some
restrictions on impulsive perturbations.
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Figure 3: Time response of state variables x1, y1 and phase plot in space (t, x1, y1) for system (4.3) with
impulsive effects.

5. Conclusions

A class of CGBAMNNs with distributed delays and impulses are investigated by using
suitable Lyapunov functional, the properties of M-matrix, and some suitable mathematical
transformation in this paper. Sufficient conditions to guarantee the uniqueness and global
exponential stability of the periodic solutions of such networks are established without
assuming the boundedness of the activation functions. Lemma 2.5 improves the results in
[5], and Theorem 3.1 improves the results in [13, 14] and generalize the results in [15]. In
addition, we point that CGBAMNNs model is a special case of CGNNs model; many results
of CGBAMNNs can be directly obtained from the ones of CGNNs, needing no repetitive
discussions. Our results are new, and two examples have been provided to demonstrate the
effectiveness of our results.

Appendix

The source program (MATLAB 7.0) of Figure 1 is given as follows [14].

clear

T=70;

N=7000;

h=T/N;

m=40/h;

for i=1:m

U(:,i)=[0.1; 0.2];

end
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for i=(m+1):(N+m)

r(i)=i∗h-40;

x(i)=r(i);

I=2;

J=2+cos(U(2,i-1));

A=[-I,0; 0,-J];

B=[0,sin(x(i))∗I; 0.3∗J,0];

U(:,i)=h∗A∗[(U(1,i-1)-0.2∗tanh(U(1,i-1))); U(2,i-1)]+U(:,i-1);

P(:,1)=[0; 0];

for k=1:m

P(:,1)=P(:,1)+h∗exp(-(40-(k-1)∗h))∗[(tanh(U(1,i-m+k-1)));(tanh(U(2,i-m+k-1)))];

end

U(:,i)=U(:,i)+B∗h∗[(P(1,1));(P(2,1))]+h∗[0; 5∗J];

end

y=U(1,:);

z=U(2,:);

hold on

plot(r,y,’:’)

hold on

plot(r,z)

hold on

plot3(r,y,z)

The source program (MATLAB 7.0) of Figures 2 and 3 is given as follows [14].

clear

T=70;

N=7000;

h=T/N;

m=40/h;

for i=1:m

U(:,i)=[0.1;0.2];

end

for i=(m+1):(N+m)

r(i)=i∗h-40;

x(i)=r(i);

I=2+sin(U(1,i-1));

J=3+cos(U(2,i-1));
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A=[-I,0;0,-J];

B=[0,I∗sin(x(i)); J∗sin(x(i)),0];

U(:,i)=h∗A∗[2∗U(1,i-1);(3+cos(x(i)))∗U(2,i-1)]+U(:,i-1);

P(:,1)=[0;0];

for k=1:m

P(:,1)=P(:,1)+h∗exp(-(40-(k-1)∗h))∗[(abs(U(1,i-m+k-1)));(abs(U(2,i-m+k-1)))];

end

U(:,i)=U(:,i)+B∗h∗[(P(1,1));(P(2,1))]+[I; J]∗h;

if mod(i-m,314)==0

U(:,i)=[0.3,0; 0,1/2∗(sin(x(i)+1))]∗U(:,i);

end

end

y=U(1,:);

z=U(2,:)

hold on

plot(r,y,’:’)

hold on

plot(r,z)

hold on

plot3(r,y,z)
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